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Abstract In this paper we propose a numerical scheme to approximate the solution of
a non-Fickian coupled model that describes, e.g., miscible transport in porous media.
The model is defined by a system of a quasilinear elliptic equation, which governs
the fluid pressure, and a quasilinear integro-differential equation, which models the
convection—diffusion transport process. The numerical scheme is based on a conform-
ing piecewise linear finite element method for the discretization in space. The fully
discrete approximations is obtained with an implicit-explicit method. Estimates for
the continuous in time and the fully discrete methods are derived, showing that the
numerical approximation for the concentrations and the pressure are second order
convergent in a discrete L?-norm and in a discrete H !-norm, respectively.
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1 Introduction

Transport processes in porous media are usually modeled by the classical convection—
diffusion equation

¢%+V-(v0)+V-J=q1 in £2 x (0, T1], ¢Y)

where £2 represents the spatial domain, ¢ is the porosity of the medium, c is the
concentration of the injected fluid, v its velocity, and J designates the mass flux
defined by Fick’s law

J =-D,Vc. 2)

In (2), D, denotes the dispersion—diffusion tensor that depends on the velocity v and
is given by

1
Dy = dp@l + a;||v||] + (g — a,)mvvf, 3)

where |.|| denotes the euclidian norm, 7 is the two dimensional identity matrix, d,, is
the molecular diffusion coefficient, and ay and «; are the transversal and the longitu-
dinal dispersivities, respectively.

The parabolic equation defined by (1), (2) is usually coupled with the elliptic pres-
sure equation

_ V-(gw) =q in2x(,T], @)

where the permeability tensor K and/or the viscosity u can depend on the concentra-
tion. The velocity v in Eq. (1) depends on the pressure p through Darcy’s law

v=—§Vp in 2 x (0, T]. ()]

In (1) and (4), g1 and g3 represent source and sink terms.

Despite the popularity of this model, gaps between experimental data and simulation
results were observed in several scenarios. Without being exhaustive we mention [5—
10,20,22,29]. To overcome the limitations of traditional Fickian transport models,
several non-Fickian models were proposed in the literature. Forinstance, in [26,31,33],
hyperbolic equations were introduced to replace the classical diffusion equations.
Continuous time random walks models were tested, e.g., in [S—7,10]. In the present
paper, we consider an integro-differential model identical to those proposed in [8,
9,23], and that have been extensively studied in the literature. We refer [3,27] for
overviews on non-Fickian models for transport in porous media. It should be noted
thatintegro-differential models have been also used to describe diffusionin viscoelastic
materials ([11,12,16,18]).
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In what follows the convection—diffusion equation (1), (2), with ¢ = 1, is replaced
by the following integro-differential equation

t
%—V - (DVc)+V - (Bc)=/ Ker(t —s)V - (EVe)(s)ds +q1 in 2 x (0,T],
0

at
(©)

where K., (s) denotes a memory kemel. In this work we use the following notation:
if w: 2 x [0,T] — IR then by w(t) we denote the function w(t) : 2 — IR such
that w(t)(x) = w(x, t). Equation (6) is established using the mass conservation law
(1) with the mass flux J given by

J=Jr + Jur + Jad, @)

where J,4 stands for the advective mass flux, while Jr and J, r represent the Fickian
and non-Fickian dispersive mass fluxes, respectively. In (7), Jg is defined by (2),
Jua = Bc, and J,, g is the nonlocal in time operator

t
Tup(t) = [) Ker(t — $)(EV)(s) ds,

where E depends on the velocity v and eventually on the concentration ¢. Equation
(6) for the concentration is coupled with the elliptic equation

—V.-(AVp)=¢q in2x(0,T], (8)

where A is a diagonal tensor. We observe that (8) coincides with (4) for the particular
choice A = X,

As already mentioned, the classical convection—diffusion equation is not able to cap-
ture the behavior of transport processes in porous media. For illustration, we reproduce
inFig. 1 some of the results presented in [20]. In that figure, the results of two laboratory
tracer experiments described in [29] (left image) and [5] (right image) are compared
with the best-fit curves obtained with the classical convection—diffusion equation (1),
(2), and the integro-differential equation (6) with K, (s) = l ¢t . The measured con-
centration values are represented by dots, and we observe tlfat the integro-differential
model (green line), unlike the classical model (blue line), accurately describes the
experimental data in particular the late-time tails. More details about Fig. 1 can be
found in [20].

The development of efficient and accurate numerical methods to solve the integro-
differential equation (6) has attracted the attention of researchers during the last
decades. A significative number of contributions can be found in the literature.
Without being exhaustive we mention [24,25,32,35], for the study of semi-discrete
finite element approximations [28], for the analysis of semi-discrete lumped mass
approximations, [13,14,30], for the construction of semi-discrete finite volume
approximations, and [1,2,4,21], for finite difference methods presenting the same
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Fig. 1 Time evolution of the concentration at a specific point of the domain, as given by (6) (solid line)
and by (1), (2) (dash line). The experimental data are represented by dots

qualitative behavior as the continuous integro-differential initial boundary value prob-
lems. We note that the finite difference methods studied in this last group of papers
can be seen as piecewise linear finite element methods with convenient quadrature
rules. To the best of our knowledge the numerical discretization of the non-Fickian
coupled problem (6), (8) was not yet analysed. In this paper we introduce finite dif-
ference methods for the approximation of the pressure and the concentration whose
errors are second order convergent in discrete H! and L? norms, respectively. From
these results we conclude that the numerical velocity is also a second order approxi-
mation. In this way, we extend to non-Fickian coupled problems, the results presented
in [15,19] for piecewise linear finite element methods. We point out that these results
are somehow unexpected in the context of finite difference methods as well as finite
element methods. In fact, the truncation errors induced by the spatial discretizations
that we consider are only of first order when non-uniform grids are used and it is also
well known that piecewise linear finite element methods are first order convergent
with respect to the H !-norm. Moreover we note that the analysis in this paper differs
from the one used in [15,19], which is based on the definition of a convenient auxil-
iary problem and was introduced by Wheeler in [34]. Here, we apply the approach of
[21].

The remaining of the paper is organized as follows. Section 2 is devoted to the
construction of the semi-discrete approximation for the solution of the coupled system
(6), (8). In this section we also introduce the variational formulation and the finite
difference scheme. The convergence analysis of the semi-discrete approximation for
the pressure and the concentration is presented in Sect. 3. The main result of this section
is Theorem 1 which establishes the second order convergence rate of the numerical
scheme for the pressure and the concentration with respect to discrete versions of the
H'-norm and L2-norm, respectively. An implicit-explicit (IMEX) method to compute
the fully discrete approximations (in time and space) for the pressure and concentration
is studied in Sect. 4. In Sect. 5, some numerical experiments are included and in Sect. 6
we present some conclusions.
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2 Space discretization
2.1 Notation and definitions

Let 2 = (0,1) x (0, 1). We consider the coupled system (6), (8) with Dirichlet
boundary conditions

p=ppr ond2x(0,T],c=0 onaf2 x (0, T], ()
and known initial concentration
c(0)=c¢p in 2. (10)

In (6), (8) the coefficient functions A, D, and E are second order diagonal square

matrices with entries a;, d;, and ¢;, i = 1, 2, respectively, where a; depends on ¢ while

di, e; and d,, e, depend on Z—p and g—p, respectively, and also on ¢ and eventually
x

on the time and space variables. The two dimensional vector B has entries by and b,

which depend on Z_P and g—p, respectively, and both depend also on c.
x y

Remark 1 The dependence of A on ¢ comes directly from the pressure equation (4).
On the other hand, the dependence of D, B, and E on g—p, Z_p , and ¢ comes naturally
x

from Egs. (1)—-(3) and Darcy’s law (5). Note also that, for gimplicity, K,D,and E
were assumed diagonal. However, the results given in this paper can be extended to
the 2 x 2 matrix case provided that these terms are treated properly. See some details
for such approximations in [17,21].

By L%(2), L*(382), H'(£2), and H(} (£2) we denote the usual Hilbert spaces. In
L?(£2) we consider the usual inner product (., .) and the induced norm represented by
| - ||. By H/2(3£2) we represent the usual Sobolev space. By [V]? we represent the
usual cartesian product of the space V.

Assuming that g1 (¢), g2(t), co € L*(2), and p, € H'/2(852), the weak solution of
the system (6)—(10) can be obtained by solving the following variational problem: find

p(t) € H'(R2) and c(t) € H}(R2), with p(t) = ps(t) on 3S2 and Z—f(x) e LX),
such that
(Alc®))Vp(t), Vu) = (q2(t), u), Vu € Hy(2), 1D
d
(d—f(t), w) + (D(c(®), Vp®))Ve(t), Vw) — (B(c(®), Vp()c(t), Vw)

t
+ / K. (t — $)(E(c(s), Vp(s))Ve(s), Vw)ds = (q1(t), w), Yw € H}(£2),
0
(12)
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for ¢t € (0, T'], and where (10) holds in L2-sense. In the above formulation the kernel
1 s

function can be defined by K, (s) = —e™ r, but it is not limited to that case. We
T

remark that the inner product in [L2(£2)]? is also denoted by (., .).

In what follows we derive the semi-discrete approximation for the pressure and
concentration defined by the coupled variational problem (11), (12). We start by intro-
ducing some basic definitions and notations.

In £2 we introduce a non-uniform rectangular grid which is the cartesian prod-
uct of two 1D non-uniform grids {x;,i = 0,..., Ny}, {y;,j = 0,..., Ny}. Let
h = (hy,...,hN,) and k = (k1,..., kn,) be vectors of positive entries such that
Zj\fle h; = Zj];l kj =1.Letx; =xi—1+h;,i =1,..., Ny, with xg = 0 and let
yj =yj-1+kj, j=1,..., Ny, with yo = 0. In £2 we define the grid

2n = {0y, i=0,..., N3 j=0,..., Ny}.

We also introduce the set of grid points 2y = 2y N 2, 02y = Ly N dR2.

We consider a sequence of grids £2y such that the maximal mesh-size Hy,qx =
max{h;, kj, i =1,...,Ny; j =1,..., Ny} tends to zero. We use the symbol “A”
for the sequence of mesh-size vectors and write “H € A” for the convergence when
Hpax — 0and with respect to H running through this sequence. By Wy we represent
the space of grid functions defined in 25 and by Wy o the subspace of Wy of grid
functions vanishing on 32y . By Ry we denote the operator of pointwise restriction to
the grid 2 5. Let Ty be a triangulation of £2 using the set 2 g as vertices. We denote
by diam A the diameter of the triangle A € 7y. By Pyvy we denote the continuous
piecewise linear interpolant of vy with respect to 7y .

In Wy ¢ we introduce the inner product

o wade =, |DijlvaGi, y)wa(xi, y), wh,ve € Who,
(xi,yj)€RH

where |J; ;| denotes the area of [J; ; with (J; ; = (xi—1/2, Xi+1/2) X (¥j—1/2, ¥j+1/2)N

2 forxiy10 = xi + iTH, Xi—1/2 = Xi — El’ and yj+1,2 is defined analogously. By

| - | # we denote the norm induced by this inner product.
For vy = (v1,5,v2.5), Wy = (W1, wp, i) € [Wy]?, we use the notation

(v, wH)H,+ = (V1,H, W1,H)Hx + (V2,H, W2,H)H,y,

where
Ny Ny—1
(vH, WH)Hx = Z Z hikj+12vE (xi, yj))wa (i, ¥j), VH, wH € WH,
i=1 j=1
Ne—1 Ny

(ve, wH)H,y = Z Zhi+1/2kjvy(xi, yj)wy(xi,yj), vy, wy € Wg.
i=1 j=1
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We define |wyllgx =/ (Wh, we) g« and |wy g,y = /(wy, wy)H,y-

Let D_ and D be the usual backward finite difference operators with respect to
the variables x and y, respectively,

wy (xi, yj) — wy (Xi-1, y;j)
h;

D_ywy(xi, yj) =

and

wy (xi, yj) — wyxi, yj-1)
k; ’

D—yWH(xi, yj) =
and let Vg be the discrete version of the gradient operator V defined by Vywy =
(D—xwg, D_ywpg). We introduce the following discrete version of the H L_norm

2 2 1/2
lwelle = (lwely + 1Vawally )"

where
2 2 2
IVewr Iy, + = I1D—xwrlg x + 1D-ywally,,-

With these definitions holds the following discrete Poincaré-Friedrichs inequality

1
2 2
lwellz < 5IIVewrl g+, Ywe € Who.

In order to define the discrete approximations in space cg () and py (¢) we introduce
the following notation:

wy (xi, ¥j) + wy (xi-1, y;)

2 ’

wH (X, ¥j) + wy (X, yj-1)

Mi(wh)(xi, ;) = iR/, 2 a4 ,
(Mgwy, Vgvp)g,+ = Mp(wh), D_xwg)x + + (M (wg), D_ywg)y, +,

My(wy)(xi, y;) =

and

hiD_xwy (Xi+1,y;) + hiv1D—xwgy (xi, y;)

Dyw (xi, yj) = hi + hiey
1 1

being the finite difference operator Dy defined analogously with respect to the vari-
able y. To approximate the coefficient functions, we introduce the diagonal matrices
Ag(t), Dy(t) and Eg(t) whoseentriesag, gy (t),dg, g (t) andeg g (¢),£ = 1, 2, respec-
tively, depend on the numerical concentration ¢y (¢) and pressure py (¢), that are given
by

a,g(t) =a1(Mp(cg(t))), di,gt) =di(Mp(ca(t)), D—xpu(t)),
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and

e1,g(t) = es(Mr(ca(t)), D—xpu(2)).

The vector By (t) depends on cyg(¢) and py (f)
b1,u() = bi(cu(t), Drpu(t)).

The entries a g (t), d2, 5 (t), e2,u(¢) and by g (t) are defined analogously.

2.2 Numerical scheme

We now define the semi-discrete approximations cg (¢) and pg(¢) for the solution of
(11), (12): find py(t) € Wy and cy (t) € Wy 0, with pg () = Ry pp(t) on 82y and

ddL:[(t) € WH,o, such that

(Ag®Vapa @), Vaup)y,+ = (q2,5(t), un)H, (13)

foralluy € Wy o,

d t
(%(I), wH) +an(cu(1), wH)+/0 by (s, t,cy(s), wy)ds = (q1.u @), wy)H,
H

(14)
forall wyg € Wy 0, and
cy(0) = Ryco in L2y, (15)

fort € (0,T].
In (14), ag (cy (t), wy) and by (s, t, cy(s), wy) are given by

ag(cg(t),wy) = (Dgp)Vucua (), VHwrH)H +
—(My(Bg(t)cy(t)), VHwy)H,+,
by(s,t,cy(s),wy) = Ker(t — 8)(Eg(s)Vhcu(s), Vawr) g +

and in (13), (14)
1
qZ,H(xi,Yj,t)=mL QZ(x,y,t)dXd)’, (xi,)’j)egH,e=1,2- (16)
i,j i

We observe that (13), (14) can also be obtained from the finite element coupled
variational equations

(A(Pycy())VPypu(t), VPyup) = (g2(t), PHuy), Yug € Wg,
17



Non-Fickian convection-diffusion models in porous media

d
(EPHCH(t)a PHwH) + (D(Pucy(t), VPypy(t))VPycy(t), VPrwy)
— (B(Pucu(t), VPypu(t))Pycu(t), VPywy)
t
+ fo Koot — $)E(Pucu(s), V Py p )V Pucu(s), VPawp) ds

= (q1(t), Prwn), (18)
for all wy € Wg 0, using suitable quadrature rules (see [17]).

Remark 2 The discrete in space coupled variational problem (13), (14) is equivalent
to the following finite difference method

— Vi - (Ag(®)VEpE()) = q2,5(1), (19)

d
ZH©) = V(D@ Vaca®) + Vi g - Ba®en®)

t
- fo Ker(t — $)V5 - (5 () Ve ())ds + quu (), 20)

complemented by the initial conditions (15) and the boundary conditions cg () = 0
and pg(t) = Rups(t) on 382. Here, Vjwy = (Dywp, Dywy) and V} jwy =
(Dc,wa’ Dc,ywH), Where

wy (Xis1,¥j) —wa(xi, yj)

waH(xi,)’j) = h 1/2 ’
i+
wH (Xi+1, yj) — WH(Xi-1, ¥j)
Dc,wa(xi,)’j)= s Z1+h 1 - yl E]
1 i+

and the corresponding operators in y-dimension, Dy and D y, are defined analogously.

In the following section we show that the solutions pg (¢) and cy (¢) of the finite
difference problem (19), (20), or equivalently, the fully discrete in space piecewise
linear finite element solutions of the variational problem (17), (18), are second order
convergent approximations for the pressure p(¢) and concentration c(?).

3 Convergence analysis

This section is dedicated to derive error estimates for the numerical solutions of our
finite difference scheme, namely,

eq,p(t) =Ryp(t) — pu(t) and ep(t) = Ryc(t) —cu(t).
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We observe that these two error functions are solutions of the following initial boundary
value problem

(Ag(®en,pt), Vaug)y,+ = t11(ug), (21)
(dZH'C ®, wH) + (DH(t)VHen,(t), VHWH) H,+
t H

— (Mg(Bg()en,c()), Vawr) H,+

t
= —/0 K (t —s)(Eg(s)Vhen (s), Vawg) g, +ds + to(wy), (22)

foralluy, wy € Wh o, and

en,p(t) =enc(t)=0 ondQy
eg,(0) =0 in 2p.

In (21) and (22), the error terms 71 (4 ) and 7 (wy) are defined by

T1(uy) = (Ag@)VaRup(t), Vaug)y — (q2,5(t), ug)n

and

n(wy) = (RHZ—j(t), wH) + (Dut)VuRyct), VEwH)H +
H
— (Mg(Bg(t)Rgc(t)), VRwWH) g +

t
+/0 Ker(t — $)(Eg(s)VuRpuc(s), Vagwy) g, +ds — (q1,u(t), wH)H.
(23)

A possible approach could be to follow the procedure introduced by Wheeler in
[34] and used, e.g., in [19]. However, this technique requires that the sequence of
spatial grids is quasi-uniform in the sense that

H,
M4 < ¢, for H € A.

min
Here we propose a type of analysis that avoids the above smoothness assumption on
the spatial grids. In addition, our approach is less restrictive regarding the regularity
of the solutions p and c.
Nevertheless, the convergence analysis that we present still requires some regularity

conditions on p and ¢ as well as on the coefficient functions of the model. For the
coefficient functions we assume the following:

ag € CL(R) NW2P(R), dy, by, er € Ch(R?) N W2 (R?),
0<Amin<a iR, and 0< Dpin<d; nR? £=1,2.
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Here, CL(IR) and C}(IR?) represent the space of functions defined in IR and IR?,
respectively, with bounded first order partial derivatives. By W2 (IR) and W2 > (IR?)
we denote the usual Sobolev spaces. To simplify the proofs of the convergence results,
we start by introducing some notation. Let Ay and A, be defined as A, replacing a;,
a; by a1, a; and af, a;, respectively, with

ay(xi,yj,t) = ar(c(xi-1/2, yj» 1)),
ay(xi, yj,t) = ax(c(xi, yj—1/2, 1)),

1
aj(xi, yj,t) =a (E(C(xi—l, yj, t) +clxi, yj, t))) ,

1
a;(xia Yis t) =a (E(C(xia Yi—1, t) +C(Xi, Yijs t))

Dy and D7, are defined in a corresponding way.
In the following, |.||cs denotes the usual norm in C9(R2), g € INy. We start by
estimating the error term eg, ,(2).

Proposition 1 If p(t) € H>(R2), c(t) € H*(R2), then there exists a positive constant
C such that

IVaenp®las < C(1pOlcilenc®ln +5,0), (24)

where

1/2
7)) = (Y @iam 2)* (le(®) 1220y + 1e® 1))

AeTy

1/2
+ (Ip®ler +1)( Y @am A 1pOl3s ) ) @9

AeTy

Proof As we have successively

(Au(t)Vhen,p(t), Vaen p())n,+
= (Ag(OVHRup®), Vuen,p(1)u,+ — (q2,5(t), en,p())H

= (AnOVaRap®), Vren, O+ + (V- (AOVP®)) enp®)
= (Ag(OVuRup(), Vuen,p(1))H,+

Ny Ny—1 .
Yi+1/2 ap
- Z Z hi/ ai(xi—1/2, ¥, t)a_x(xi—l/Za)’, t)dyD_ ey p(xi, yj,t)
y

i=1 j=1 =172

Ne—1 Ny Xi+1/2 ap
-y ij/ ax(x, yj-1/2, t)@(xa)’j—l/Z,t)d-XD—yeH,p(xiayj’t)’

i=1 j=1 *i-1/2
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where (V . (A(t)Vp(t)))H is defined by (16) with g, replaced by V - (A(t)Vp(t)),
we conclude the following error equation

(Ag(t)Vhen,p(t), Vaen p())u,+ = t1(en,p(1)),

where 71 (eq, »(t)) admits now the representation

3
Tien,p®) =Y 74 (2)

i=1
with
70 (0) = (Ar () — A O)VaRup, Vier p®)a,+,
() = (A5 () — Au®)VeRap, Vien () H, +,
and

t D) = (Ap)VuRup, Vaen pO))u.+
Ny Ny—1

Yj+1/2 ap
— Z Z hif ay(xi-12,y,t) —xi-1/2, ¥, t)dyD_xen p(xi, yj, t)
bt = Vie1s2 d0x
i=1 j=1 =l

N,—1 Ny Xit1/2 ap
= Z ijf a(x, yj—1/21t)5(x1yj—1/21 1)dxD_yey p(xi, yj, 1),

i=1 j=1 Xi—1/2

with a1 (x;_1/2, ¥, 1) = ai(c(xi—1/2, ¥, 1), aa(x, yj—172,t) = az(c(x,yj-1/2)) to
shorten notation. Since p(t) € H?($2) and H>(£2) is continuously embedded in
Cl(2), bholds |[Vg Ry p(t) || 1r,+ < |V p(t)]|co, and then

1T < Clp@® i llem,cOllal Vaew, @)l a,+-

To obtain an estimate for 1:[(12) (¢) we observe that, for g(c(xi, yj, ) = Mpc(xi, yj, t)—

c(xi—1/2, yj,t), one gets
Yj+1/2

0
Ig (a—c(x,-, y, t)) | dy
y

Yj+1/2
+ f 18(cCxi, y. )| dy
y

j-1/2

k Yji+1/2  fXi | 92¢ \dxd
=< '+1/2f f xay
J yi-1p Jxii oxady,t

Yit12 % §2¢
+ h-f / | —|dxdy,
‘ Yj Xi—1 dx?

J=1/2

kjv121g(c(xi, yj, )| < kj+1/2f

Yi-1/2
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where the last inequality was derived using the Bramble-Hilbert Lemma. We note
that

hiv12Mre(xi, yj, t) — c(Xi, yj—1/2, 1)

can be estimated in a similar way,

) 1/2
221 < Clp®ler( Y @iam A le@®lay))  1VHER Ol
AGTH

To conclude the proof we observe that Lemma 5.1 of [17] can be applied to establish
the estimate,

TP ) < c( Y @iam A)*(Ip@ 1% (el ) + le@® 1 4))
AeTy

1/2
+ 1@ 1P Oz + 1PON34))  1VERpOllf+-
a

In what follows we establish an upper bound for 72(wg) defined by (23). We start
by remarking that this error can be rewritten in the following equivalent form

T (wy) = 1p(wy) + t8(wh) + 1e(Wh) + 1a(Wh),
with

(i) = Du®VaRuc®), Vawmn + ((V.(DOVe®)) wn)
= (Da(®)VERHc(®), VHWH) H +

Ny Ny—1 Yj+12 dc
=Y b [ iy 05 iy . YD )
. N . X
i=1 J=1 Yj-1/2
Ne—1 Ny Xi+1/2 dc
— Z ij/ da(x, yj-1/2,8) —(x, yj—1/2, )dx D_ywy (xi, y;),
Xi-1/2 ay

i=1 j=1

where ((V . (D(t)Vc(t)))H,wH)H is defined by (16) with g, replaced by
V- (D(t)Vc(t)) and, to simplify, the following notations were used

0
di(xi-12, y,t) = di(c(Xi-1/2, ¥, 1), a_i(xi—l/Z, ¥, 1), (26)

0
dy(x,yj—1/2,t) = da(c(x, yj—-1/2,1), %(x, Yji-1/2,1)),
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t
te(wy) = /0 Ko (t —s)(Eg(s)VuRyc(s), Vgwy) g +ds

+ fot Ko (t — s)((v - (E(t)Vc(s)))H, wH)Hds

t
- fo Koy (t — $)(E(s) Vi Ruc(s), Vaws)a +ds

N, Ny—1

Yj+1/2
- f er(t_s)z Z / " e1(xi-1/2, y, §)
Yj

i=1 j=1 -2

dc
X _(xi—1/2a y,8)dydsD_xwy (xi, y;)

Ni—1 Ny Xi+1/2
f er(t —5) Z Zk / er(x, yj-1/2,5)

i=1 j=I1 Xi-1/2

ac
X 5(36, Yj-1/2,8)dxdsD_ywgy(xi, y;),
where ey, £ = 1, 2, are defined by (26) with d, replaced by ey,

ta(wn) = ~(Mu (BuORue®), Vawn)n+ — (V- (B®e®)) wn)

=—(My(Bu(t)Ryc(t)), VHwy)H,+
N, Ny—1

Yj+1/2
+ Z Z / bi(xi-12, y,)c(xi-1/2, ¥, )dyD _xwy (xi, y;)
i=1 j=1 Yi-172

Ny—1 Ny Xit1/2

+ Z Zk / by(x,yj—1/2,t)c(x, yj—172, t)dxD_ywgy (xi, y;)
i=1 j=1 Xi—1/2

with
bi(xi-12,y,t) = bi(c(xi- 1/2,)’,1‘) (xx 172, ¥> 1)),

ba(x,yj-1/2,t) = ba(c(x, yj—1/2, t), (x Yj-1/2,1)), (27)

and (V : (B(t)c(t)))H is defined by (16) with g¢ replaced by V - (B(t)c(t)),

)= (Ra e 0.0n) = ((50),0m8),,

dc . . dc
where (E(t))H is defined by (16) with g, replaced by E(t).
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In the following we estimate each error term individually.

2
Proposition 2 Ifp(t), c(t) € H3(.Q)and p ( ) = 6 (t) in 82, thenthere exists

a positive constant C such that, for Hyax small enough and wy € Wy 0, we have
ol < C(le®ler(1+ 1p®llcr) (llesc®

+ ( Z (diam A)4”p(t)”H3(A))1/2)

AeTy

+ A+ e@len® (Y @iam A)*(le®Is ) + ez,
AGTH

1/2
+ PO+ 1POl20)) ) IVEwE b4

Proof For p(wg) holds the decomposition

3
wn) =Y 5 (wa),

i=l1

with -c,()l)(wy), 1:1(,2) (wg), and t(3)(wH) defined by

5 (wy) = (Du(t) — D))V Ruc(t), Vawr)a,+,
5 (wr) = (D) — Du®)VaRuc®), Vawr)  +,

and

5 -
7 )(wy) (D (®)VuRye,Vygwy)y +

x Nyl Yj+1/2
—Z Z f dy(xi- 1/2,)’,1‘) (Xz ~1/2, Y)dyD_xwy (xi, y;)
yj

i=1 j=1 -1/2

Ni—1 Ny Xi+1/2

- Z ijf dy(x,yj- 1/2,t) (x Yj-1/2, )dxD_ywy (xi, y;).

i=1 j=1 Xi-1/2
For 1:1()1) (wy) we can easily establish the estimate
1
(25 )| = Clle®ler (lemc® i + lew Oz ) IVawa .+

For tD)(wH) we have 1(2)(wy) = tl()z 1)(wy) + 1(2 2)(wH) with
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Ny Ny—1
ad;
iy ws) =Y. > h k,+1/z—g1 (c(xi, yj, ) D_xc(xi, yj, D _xwh (xi, ;)
i=1 j=1
N,—1 Ny

+ Z th/zk gz(C(x“y,,t))D-yc(x“y,,t)D-ywH(x,,y,)
i=1 j=1

where g1(c(xi, yj,t) = Mpc(xi, yj,t) — c(xi-1/2, ¥j, 1), g(c(xi, yj,t) = Myc
(xi, yj,t) —c(xi, yj—1/2, 1), and

Ny Ny—1

52w =YY h k,m gl(p(x,, Yis)D—xc(xi, ¥, )D_xwh (X, y})
i=1 j=1

- Z Z hx+1/2k,—g2(p(x,,yj,t))D-yC(xi, Yj,)D_ywg (xi, y;),
i=1 j=1

with g1(p(xi, yj, t)) = D—Xp(xuijt) Sx (xi—1/2, ¥j, 1) and g2(p(xi, yj, 1)) =
D_yp(xi, yj, t) — (x,,y, 1/2,1). In 'L’D )(wy) £ = 1,2, the partial derivatives
of di and d; are evaluatcd at convenient pomts

Following the steps used to estimate 7, )(e H,p(t)) on the proof of Proposition 1, it
can be shown that

) 1/2
AeTy

a
To estimate 'L’D )(wy) we observe that if p(f) € H>(£2) then ap

the previous assumptions for g1, we get

€ H*(R2). Under

Yji+1/2 ap
kjv12181(p(xi, yj, D) < kj+1/2/ 181 (—(xi, Y, t)) |dy
Yj-172 dy

Yi+1/2
+ f 181 (p(xi, 3, 1)Idy
y

j-1/2

Yj+172
f f J+1/2| (t))l + h;l 3 (t)I)dxdy,
¥i

—1/2

being the last upper bound obtained using the Bramble-Hilbert Lemma. For g, holds
a similar result, and we obtain

1/2
75 P | = Cle®ler (Y @iam A4 Ip©)1304)  IVawHI8,+-
AeTy
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Lemma 5.1 of [17] allows us to deduce the upper bound for 1:1()3) (wgy),
tQ W)l < €A+ le@le( Y @iam 2)* (Ile®) ) + el
AeTy

2 4 172
+ PO gs gy + 1PONS2a)))  IVHWHI -

Finally, taking into account (24) we conclude the proof. O

Under the assumptions of Proposition 2 and following its proof we can derive the
next result.

Proposition 3 Under the assumptions of Proposition 2, there exists a positive constant
C such that, for H,,,, small enough, we have

o) < [ 1Kt = e lwmras,
where
te.e(w) = C(le®lc (1 + 1p®ler) (leme)lla
+ (X @iam 2150135 ) )

AETH

+ 1+ ||C(S)||cl)3 (diamA)4 ||C(S)||§13 A T ||C(S)||‘}12 A
(4) (4)
AeTy

1/2
+ 1) 20y + 1POepsy)) ) IVawa -
ces 3 azp azl’ . 2
Proposition 4 If p(t) € H°(2), ——(t) = —— () in 2, c(t) € H*(82), and the
dxdy dyox

spatial grid satisfies
hi

hit1

L <c 28)
kj+1

then there exists a positive constant C such that, for Hy,qx small enough and wy €
Wh.0, we have

lta(wr)| < C(IIC(t)Ilcﬂ(1 +p®lict)ler,c®llu

+ (le®leo (1 + Ip® ) + 1) (Y @iam 4)* (le®)

AeTy

2 4 2 172
+ 6@ 0| PO 20y + 1PO1S304)) ) IVEWE -
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Proof LetB};(t) and ﬁy(t) be the vectors with entries b1 (c(x;, yj, 1), Dnp(xi, yj, 1)),
d

bZ(C(xi: )’1, t)’ ka(xia )’1, t)) and bl(c(xia )’1, t): a_z(xia )’1, t)): bZ(C(xia )’1, t)a

g—i(x,-, ¥j,t)), respectively. Using these vectors, it is easily established for 7p(wg)

the representation

3
tp(wy) =Y 75 (wp),

i=1

where
e (wy) = (Mu (Bl (t) — Bu(t) Ruc(t)), Vawn) .+,
tP wy) = Mu((Bu(t) — Bj;©)Ruc(t)), Vawr)u, +,
and

9 (wy) = —(My(By ()Ruc), Vawn) .+

Ny Ny—1 Yj+1/2
+ Z Z hi/ bi(xi-1/2, y, t)c(xi-172, y,)dyD_ywy (xi, y;)
y

i=1 j=1 =172
N:—1 Ny Xi+1/2

+ Z ij/ ba(x, yj-172, )c(x, yj—1/2, )dxD_ywg (xi, y;),
i=1 j=1 Xi—1/2

For tl(;l) (wg), we can easily establish the following estimate

1
5" @)l = Cle®lco(llem.e@ll + IVren,p@ln+ ) I Viwa s+

An estimate for téz)(w y) can be obtained following the approach used to estimate

1:1()2 )(wH) in the proof of Proposition 2. For this, we must replace g;, i = 1,2,
(introduced in the construction of the upper bound for 1:1()2’2)(w H)) by g1(xi, y.t) =

a a
Dpp(xi, yj, 1) — a_i(xi,)’j:t) and g2(xi, y,t) = Dip(xi,yj, 1) — %(x.-,y,-,t),
respectively. In this case we obtain

1/2
2 @)l = Clle®lco(( Y (@iam A)* ()12 )

AeTy

) 172
+( Y @iam 24 p®)1500)) ) IVEWHIH+-
AeTy
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Considering now Lemma 5.5 of [17] we obtain for 'cg) (wg) the estimate

7 (wm)| < C(lle®)llco + 1)( Y (diam A)* (@1 ) + 1O 13200
AGTH

1/2
+ 1POl32ay + 1PO13s)) VW

Finally, combining the upper bound for |tg)(w #)| with Proposition 1 we conclude
the proof. o

Lemma 5.7 of [17] allows us to derive the next proposition.

d
Proposition 5 If d—f(t) € H%(R2), then there exists a positive constant C such that,

for Hy oy small enough, we have

. dc 172
i)l = €( Y @iam A4 013 )  IVawHIE
AETH

forallwy € Wgy .

From Propositions 1-5, with the aid of Gronwall’s Lemma, we conclude the next
convergence result.

82 82
Theorem 1 If p, ¢ € L®(0, T, H3(2)), p(t) is such that ~ L (1) = 22
B dxdy 0yox
$2, the spatial grids 2y, H € A, satisfy (28), then there exists a positive constant C

such that

(1) in

t
les,c % + fo IVaen, ()% ds < CHp,y, t€[0,T], (29)

and
lem,p®)ll,a < CH?,,, t€l0,T], (30)

Proof Taking in (21) and (22) uy = ep ,(t) and wy = ey .(t), respectively, we
obtain

(Ag()en p(t), Vuen,p)u,+ = t1(en,p(t)), (31)
d
0 ler,c®)13 +2(Da () Vren,c(t), Vien,«(t)n,+

— 2(My (B (t)en,c(t)), Vaen,c(t))n,+

t
= —2/0 Ker(t —s)(Eg(s)VuRyc(s), Vyen () g, +ds + 212 (eq (1)),
(32)
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where 71(eq, p(t)) and 72 (eq . (t)) were estimated in Propositions 1 and 2-5, respec-
tively.
From Proposition 2 we get

C
Itp(ene )] < ;5 lc®le + IOl len el +2€* | Vaenc O, ,
¢ 1 1 3)?
- 4?(||C(t)||cl( +1p®llc) + ( +||C(t)||c1))
> iam 2 (et ) + 16O + 1POTh200) + 1POI304):

AETH
(33)

where € # 0. Proposition 3 allows us to establish the following upper bounds for
te(en,c (7)),

C t
Ite(en.c)| < 5511 Kerl72 fo le@)IZ: A+ POl c1)?ller,c(s) |5 ds
(o s [f 3\2
+ galKerlds [ (Ie@ler 0+ 1@l + A+ 1e@len?)
> (diam A) (1166 ) + 162347 + 12Oy gy + 12654 )ds
AeTy
+ 262 Vyen, )% 4
C t
< @nKeruiz el ao(cry (X + 1Pl (cr))? fo les,c(s)%ds
C 2
+ zea1Kerll32 (llelooieny @ + Pl zooicy) + (1 + llclooe)?)
Z (dlam A)4(|IC|I24(H2(A)) + IlclliZ(Hli(A)) + ||P||14(H2(A)) + ||P||12(H3(A)))
AETH
+ 2€*|Vhen O 4. (34)
where ||.|| o (cmy, m € N, and ||.||zr g7 (a), ¥ € IN, n € INg, denote the usual norms

in the usual spaces L*°(0, T, C™(£2)) and L" (0, T, H"(A)), respectively.
For tp(epq () it can be easily shown that

C
Ita(ene | = 15 le®lico + POl c) llenc Ol +2€*IVren. Ol
c 2
+ 2 (le®lco @ + 1Pl +1)
> (diam A)* (@31 gy + 1@ 00 + 1PONp gy + 12O )

AETH
(33
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Finally, from Proposition 5 the following upper bound for tz(eq .()) is easily
obtained

C . dc
Ita(en, )] < ;55 D @iam )|l 4) + €I Vren Ol 4 (36)
AETH

Combining the upper bounds (33)-(36) with (32) and attending that

C
|(Mu (B (t)en,«(t)), Vien,c(t)n,+| < 46—2||eH,c(t)||%, + €| Vaen, 0% 4,

and

t
l./o Ker(t —s)(Eg(s)VuRyC(s), Vhen,c(t))u,+ds|

C t
< 2 IKalls [ 1Vuen ol ods +1Vnen OFF,..
we obtain

d
2 el +2(Dmin — 106 Vren, Ol
C
< S (IO +1pO1e)? +1)ler Ol
C t
+ 5 KerlaleB ey (1 + 1P ey’ fo le,c(s)13ds

C t
+ 5l Ke,uiz(ncuim(cl)(l + 1Pl zsoccry)® + 1) fo IVaen,c(s)1%,  ds

+ Te,c(t), 37

where

C 2
Te,c(t) = G—Z(IIC(t)IIcl A+ lp@®lc) + A+ IIC(t)IIcl))

Z; (diam 2)* ()42 4) + 1O 4 + 1PONG2 00 + 12O 13))
Ae H

c 2
+ E”Ker”iz(”c”Lm(Cl)(l + 1Pl oo cry) + (A + ||C||LOC(C1))3)

> (diam A)4(||c||24(H2(A), + llelZ2gg3ay) + 121320 + npniz(m(A)))
AeTy
C . 4 dc 2
AETH
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Inequality (37) leads to
t
e, @13 + 2(Dpin — 1062) f IVrenc()l ,ds
0
< llewrc O3 + < (leluqen (@ + 21 V+11n ()1 3d
= lleH,c H 62( c L°°(C1) P L°°(C1) ) A €H.c\S)|xgas
C K12y llcl 1 2 [*[° 2 dud
+ geaIKerlallelyocy A+ IPloe)? | | llencGnlduds
C t K
+ 5elKerlZa (I ety (1 + 1Pl + 1) fo fo IVren o)l duds

+ [ rctoras. (38)
0

Let e be such that D,,i, — 10€2 > 0. Under the smoothness assumptions onc and p it
can be shown that fot Te,c(s)ds < CHp ... Asen,.(0) = 0and considering the discrete
Poincaré-Friedrichs inequality (2.1) and Gronwall’s Lemma we conclude (29).

From Proposition 1 we conclude the error estimate (30) for the pressure py (f). O

Theorem 1 is the main result of this paper and it establishes the second order
convergence rate of the finite difference scheme (19), (20), or equivalently, of the
piecewise linear finite element method (17), (18).

4 Time discretization

Our goal in this section is to propose an IMEX method for the coupled non-Fickian
problem (6), (8). The method is obtained by integrating in time the ordinary differential
equation (20) or equivalently the discrete variational equation (14).

In the temporal domain [0, T'], let us introduce the uniform time grid {#, =
mAt, m = 0,..., M}, with tyy = T, and where At is a fixed time step. By p;
and c; we represent the numerical approximations for p(t,,) and c(t,), respectively,
defined by the IMEX method

- Vi - (AFVePE™) = @5, inQa, (39)

cmtl = 4 AtV - (DR Vet — AtV g - (B )

m
+ A Ker(tmys — 1) Vi - (B ' Vel + At@@)y™, inQy, (40)
£=0

form =0,..., M — 1, and with the initial conditions
¢ = Rpco inQpy, 41)
and boundary conditions

¢4, =0, p& =Rupp(ty) ondRy, £=1,...,M. (42)
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Here we used the following notation: the non-null entries of A, are given by
al(thH) a(Myc’y), the non-null entries of DZ""H are given by d(Myc?,
D_ptY), doy(Myc, D—ypn*Y), being By™* and Ef™ ', m = 0,..., M,
defined analogously. By D_; we denote the first order backward finite difference
operator with respect to the time variable. We observe that (39), (40) is equivalent to
the coupled discrete variational problem

(ARVEPE Y Vawm) e+ = (@5, wr)n, forallwy € Wi, (43)

m,m+1

(D—cp ™ wp)y = —(D" ' Vucdg ™, Vawr) g+

+ (Mu(Bp™ ™), Vawr) g +

+ At Z Ker(tm+1 — te)(Ef;}HIVHCﬁ, Vawg)my,+
£=0

+ (g2 wr)y, forallwy € Wgo. (44)

Remark 3 From (44) it seems that we would need to save all previous solutions to
compute the solution at the current time level. This would be computationally very
demanding. However, we remark that our scheme can be, in certain cases, rewritten as
a three-time-level method following the approach introduced in [20]. Therefore, using
that formulation, there is no need to store all the previous solutions. In the numerical
simulations presented in this paper we have followed that approach.

In what follows we establish bounds for the errors
e’;},p = Ryp(t,) — py and e';'lyc = Ryc(ty) — .
Following the proof of Proposition 1, it can be shown that
1V i+ < C(IpGms0) e €] i+ Tp(tns1)

tm+1 dc
ptmidler [ IR Oluds), @
tm t

where 7, (tm+1) is given by (25) with ¢ = ty41.
We deduce in what follows several estimates needed to compute an upper bound

for ||e"’+1 || . We observe that
dc
(Dt —( 27 ) amt); e =—(D_ieft! eptn + tare(ef)), (46)
where

m+1 1 d’c m+1
e < C( | IRe G Olla dsliel I
Im

( Z (dlam A)4” (tm+1)||;12(A))l/zllvHe"H.1 ”H +)

AeTy
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For

D, d(em+1) — (Dm m+1VHCm+1 VHem+1)H N
Ny )‘ Yi+1/2
-3 z S e
i1 j=1 Yy

ac
X o @im172, 9, tmi1) dyD—sel ! (5i> ¥))

Nem1 Ny Xi+1/2

-y ijf (X, ¥js tm+1)

i=1 j=1 Xi—1/2

8
(’C Yi-1/2: tms1) dxD_yetl (x;, y;),

with dg (x;, y, tm+1), £ = 1, 2, defined by (26) with ¢ = t,,+1, we have

m+1) _ (Dm ;m+1 m+1

1
Tp.d(e VHeZ:t_ , Vyey

where

1
ltp,1E(€H )] < D (eft))

tm+1
+ Clletmn) e (1+ 1Pl 1) f IRu
tm

dc
x — ()| nds|Vref .+,
dt
being tp (e H+ ) given by

.0t = C(letnsnlicr (1 + 1pEmslcr) (Ief el

+ ( > (diam A)4|Ip(tm+1)||§13(A))l/2)

AETH

" )H,++ D, IE(eHC )s

(47)

(48)

+ 1+ ||c(t,,,+1>||cn>3( > diamayt 3 (1m0l

AeTy fele,p}

172 m+1
+ 1f Cni D)) )IVEER a4
For

palent!) = —(My (B"’ ey, Vaena .

Yi+1/2
+ Z Z fy b1(xi, ¥, tms1)c(Xi-1/2, s tm+1) dy

i=1 j=1 =1/2
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1
x D_xept (xi, y))
Nx-1 Ny Xit+1/2

+ E ij/ ba(x, yj, tm+1)e(x, yj—1/2,1) dx

i=1 j=1 Xi—-1/2

1
x D_yet! (xi, ),

(49)

with by, £ = 1, 2, given by (27) and ¢t = t,,+1, assuming (28), we can prove that,

B d(e'"H) < (MH(BZ""HeH) Vuept Yo+ + B, 1£(t?m+1

where

1
t8.16(€f )] < 8. (€] )

bnt1
+ Clietn+Dlcr (1 + Ilp(tm+1)|lcl)f IRe
tm

dc m
AU T P
t
being 73, e(e”‘“) equal to

w8.0€55)) = C(llctns0)llco(1+ 1Pt e, N
+ (lletn+Dlico(1 + IpEm+1)llc1) + 1)
x (1 (iam A)*(lems) 3

AETH

+ lletn+D 1320 + 1PEmeD 1324,

172
1P 0a)) ) IV 5+

Finally, we establish an estimate for

£,8+1
wea(ef) = —AtZK"‘“ “EG Vach, Vaeg .

Ny Ny—1

Im+1 Yj+1/2
+ f Ker(tm+1 _S)Z Z hl/ el(xi,y’s)
0 Yy

i=1 j=1 i-172

dc
X oG, 3, s)dydsD_elt (xi, y))

Nx—1 Ny Xi4+1/2

Im+
+‘/(; Ker(tm+1 —5) Z Zk f ez(x,J?j, s)

i=1 j=1 Xi-1/2

(50)
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ac
X 3y Yj-172,8)dxds Dy}t (xi, y)), 1)

where Ke",'“"Z = Kor(tm+1 — tg). Using the decomposition

6
tealeft) =Y e, (52)
£=1
with
m
e = Aty KEYHEGT Vgl Viel a4, (53)
£=0

m
e = At Y KMV (EY (te ten) — Ef ) VEREC(), Viel Das,  (54)
£=0

with E7, (¢, t¢+1) defined as E, (t¢) but considering the concentration and the pressure
at time levels #¢ and #y1, respectively,

m
g3 = At ) KnY(Ente, ter1) — Efy (e, ter1)VaRuc(te), Vael D a,+,

£=0
- . (55)
with E g (tg, tg+1) defined as Ey (t¢) but considering the concentration and the pressure
at time levels #¢ and #y1, respectively,

m
tea= Aty KE(En(te, te) — Ente, te+1) Ve Ruc(te), Vaey ' u +,

=0
(56)
tm+1 41
tEs = fo Ker (tms1 — $)(En (s)VaRue(s)ds, Vel .+
m
— At Z KM LBy (tg, t)) Ve Ruc(te), VHe';'}:l)H,+, (57)
=0

and
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tm+l
Tpe=— fo Ko tmst — )(E(5) Vi Rye(s)ds, Vel g 4

Yi+1/2

Im+
+ /0 1 Ker(tmy1 —S)Z Z f e1(xi, y,5)

i=1 j=l1 Yj-1/2

ac
X a(xi—l/z, y,8)dydsD et (xi, yj)

tm1 N1 Ny Xit1f2
+ /0 Ker(tmi1 =) D )k / ex(x, yj, 8)
X;

i=1 j=1 i-1/2

dc
X 5()@ Vji-1/2, s)dxdsD_ye';}:tl (xi, yj)-

For tg,1 we easily establish the upper bounds

i 172 m 1/2
|r51|<c(AtZ(Km+” 2) (A 1Vmehcy) IV a
£= £=0

2 2 172
< C(IKerlizzo 1y + T ALK, 7200 1
©.7) ©.1)

m
x (863 19mely %) 1V meR
£=0

m 1/2
< CVT+ At Kol gon (4t Y IVnely ) I1VaeR .

Using (45), it can be shown that

lrm|<C(AtZ<K'"+” 2" (a0 Y2 1% (1 + 1pGes )y o1y
£=0 £=0

(58

(59

a1 g 1/2 "
+ AtZ”C(tl)Hcl(tp(tl-f-l) +At/ IIRHd—f(s)II%qu)) Vre +1||H+

£=0

m
< C(VT+ AtlKerl g1 0,7y (el o oy (L + 1Pl cogery)*At Y liefy Iy
£=0

+ “ 2 A “ 2 A 1 R d_c 2 d 1/2 V m+1
cligocryt ) Tpltes1)? + At | IRE G Ol ds) VAR A+
2=0 ¢

where ||.||ce(cry denotes the usual norm in C4(0, T, C”(£2)), g, r € N.

(60)
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Following the steps used in the proof of Proposition 2 to estimate 7, )(w H), We
obtain

|r53|<c(AtZ(K"‘+” )Y (AtZIIC(te)Ilcl( > (diam A)* (e s

AETH
PG a)) IV

<CcJT+ AtuKe,nHl(o,T)||c||co(c1)( Y (diam 2)*(llcllgo g2,

AeTy

1/2
+ 0PI 2os)  IVaERE e ©1)

For tg 4 we easily get

mn g+l
el = 0(ae Yz 9) (a2 Y tewolts [ iRy o1 as)”
£=0 fe

=0
IVaeg i +
< CAtJ/1+ At||Ker |l grco,1) ”C”CO(Cl)”C”HI(CI)”VHth. la,+, (62)

where ||.|| g4 (cry denotes the usual norm in H4(0, T', C” (2)), q, r € Ny.
As 1 5 represents the error of the left-rectangular rule, we deduce that

ITes5| < CAt(llKér 20,1y llel z2icty + 1 Kerll 20,7y (ll€ll coery (el oy
+ 1pllmien) + Iellmien) ) IVaeE: a4

< CAtIIKerIIHI(o,T)(||C||c0(c1)(1 + el grcoy + Pl ieny) + ||C||H1(c1))
x | Vueltln,+. (63)

At last, for 7g ¢ holds the following

Im+1
Itegl < C fo Ker(tmst — $)(1+ ()l o1)?

(X @iamar( X (1Ol + 15 Oe) +1)) ds
AeTy fele,p}

1
X IVaey s la,+
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< CllKerll20,7y(1 + liclcoery)?
) 4 4 5 1/2
(X @iam (3 (1 Wfsque + 1o +1))  ds
ATy felc,p}

x [ Veen g+ (64)

Now we assume the following smoothness conditions: ¢ € C2(0, T, C%(£2)) N
HY(0,T, H*(R)),p € H'(0, T, H*(R)), and K., € H!(0, T).

From (44) to (64) it is a straightforward task to prove the existence of positive
constants C;, i =1, 2,3, such that, form =0, ..., M — 1, the following holds

+1 +1
”em ”H + DmmAt”VHem ”H + = ”eH L”H

+ Crar(lef oI + e I + At Z IVel ) + 2, (69)

£=0
where
+1 tm+1 d
21 < Coe (a1 [ (1Ru S5 O + 1R G 01 )ds + A7)
. c
+ C34t Y (diam A)“(na(tmﬂ)ni,zm)
AGTH
+ ) (I Gne)lpagay + 1 Cma) s 09) + 1).
fefe,p}
Inequality (65) leads to
m+1
(1= C1A)|\ € 13 + DminAt Y Vel (I 4
£=0
< (- C141)|le}; N3 + DminAt| Vel .|+
m m £ . m+1
+ Cran( D by ol + At Y IVneh M) + 3wl
£=0 £=0 j=0 £=1

Considering now the discrete Gronwall’s Lemma we conclude that, for At such that
1-Ci1At >0,

+1 +1
||e'"+‘||H+Ath IVaeh I, < . (mZ
pard o min{l — C{ At, Dyin}

m £+1

+ CoArY Y7l C2mtEDA) - (66)

£=0 j=1
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Cy

form =0,..., M—1andwithCy = — .
min{1 — C1 At, Dpin}

the error estimate (66) leads to

Finally, we remark that

m+1

lemth 3 +at 3 1Vgel % 4 < C(H:,“+At2), m=0,...,M-1, (67
£=0
while from (45) we get
IVae s < C(Hpge + A7), m=0,...,M—1. (68)

5 Numerical results

This section is dedicated to some numerical experiments. We start by presenting two
examples that illustrate the convergence result established in the previous section.

. I.:or eﬁ,p = Rpyp(ty) — py and € = Ryc(ty,) — ¢y we compute the error
indicators

Erorp, = max |l ,lln,

and

m
1/2
2 £ 2
Error, = mflme(”e%'C"H + At E IIVHeHycllH&) s
=1,..., =

where p and c are solutions of the coupled problem (6), (8) with boundary and ini-
tial conditions (9), (10), respectively, and where p¥%; and c¢’; are numerical solutions
obtained with the IMEX method (39)—(42). To evaluate the convergence rate we use

the formula

E

log ( ITOTg | )

Errorg 2

log (Hl,max) ’
HZ,max

forg = p, c,and where Hy and H> are two grid vectors with Error, 1 and Error, > the
corresponding errors. The initial grid £2y is randomly generated. The new grids are

defined considering the midpoints of the intervals [x; -1, x;] and [y;—1, y;]. Moreover,
we fix T = 0.01 and Az = 107",

Rateg =
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Table 1 Numerical errors and convergence rates for Example 1

H, max Error P Rate P Eﬂ'()l'c Ratcc N, X N y
1.316e-01 2.615e-04 1.981 2.841e-05 1.975 9 8
6.579¢-02 6.625e-05 1.995 7.227e-06 1.993 18 16
3.290e-02 1.662e-05 1.999 1.815e-06 2.000 36 32
1.645e-02 4.158e-06 2.000 4.538e-07 2.009 72 64
8.224e-03 1.040e-06 2.000 1.127e-07 2.018 144 128
4.112e-03 2.600e-07 - 2.783e-08 - 288 256
-8F y=2.030x - 4.061 108 y=2.021x-6.146
-10 -12|
-12 -14
-14 -16
-16 —18!
- - -4 -3 -2 -1 -6 -5 -4 ) -2 -1

Fig. 2 From left to right: plot of log(Errorp) and log(Error) versus log(Hmax)

Example 1 In this example, we consider the system (6), (8) with the following coef-
ficients

ap
- 14+2c+ — 0
_|1+c¢ O _ ox
A(C)— _O 2+C], D(C9 Vp)_ 0 1+c+2a_p ’
dy
9x “ax 0
B(c,Vp) = o | E(c,Vp) = o T oop |, and Key(s)=e '
p . c—
3 =
L cay 9y

We choose g1, g2, and the initial condition (10) so that the exact solution is
p(x,y,1) =e'xy(x — 1)(y — )sin(xy) and c(x,y, ) =e'xy(x — )(y — 1).

In Table 1 we present the results of our simulation. We observe that the solutions p
and ¢ belong to Hg (£2) and the numerical results illustrate the convergence estimates
(67) and (68).

For further illustration, we solve Example 1 using a considerable number of ran-
domly generated spatial grids. In Fig. 2 we plot the logarithmic norm of all errors
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Table 2 Numerical errors and convergence rates for Example 2

H, max Error P Rate P ElTOl'c Ra‘bc N, X N y
1.381e-01 9.708e-03 1.050 7.783e-05 1.293 8 10
6.906e-02 4.688e-03 1.051 3.177e-05 1.121 16 20
3.453e-02 2.263e-03 1.079 1.461e-05 1.084 32 40
1.726e-02 1.071e-03 1.093 6.888e-06 1.086 64 80
8.632¢-03 5.024e-04 1.009 3.246e-06 1.001 128 160
4.316e-03 2.497e-04 - 1.622e-06 - 256 320
-4 -9
y=1.124x - 2.389 y=1.166x — 7.215
-5 -10
(<)
-6 ° oooo -1 ° )
-7 -12
0% 0%
-8 -13
-9 -14
-6 -5 -4 -3 -2 -1 -6 -5 -4 -3 -2 -1

Fig.3 From left to right: plot of log(Errorp) and log(Error) versus log(Hmax)

Error,, g = p, c, versus the logarithmic norm of all H,4x. The slope of the least-
square straight line (shown in green) is an approximation of the convergence order, and
the values obtained, which are also displayed in Fig. 2, again confirm the convergence
estimates (67) and (68).

In the next example we consider that p(¢) € HO2 (£2) butitdoesn’t belong to Hg (£2).
Following the lines of Theorem 1 and using the results of [17], we anticipate that the
second order convergence rate will be lost for both p(¢) and c(¢).

Example 2 We now consider system (6), (8) with the coefficient functions used in
Example 1 but we choose g1, g2, and the initial condition (10) so that the exact
solution is

p(x,y,1) = e 2xy(x* — 1)(y* — DIx — 0.5*! and c(x,y,1)
=e'xy(x —D(y—1).

The numerical results presented in Table 2 agree with expectations, since the conver-
gence rate for both p and c is of order O (H,,45)-

In Fig. 3, we repeat the same type of experiments plotted on Fig. 2. The slope of
the least-square straight line, close to one, again confirms the first order convergence
rate for Example 2.
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v !“4
0.3

10.6
”

P04

F A0,
H(l
A .

Fig. 4 From left to right: pressure and initial concentration

1
!ux
0.6
04
In.’

0

1
qu
06
04
In,‘

0

Fig. 5 From left to right: Fickian concentration (first row) and non-Fickian concentration (second row) at
time 0.15, 0.5, and 1

In what follows we present one example that intent to illustrate not only the differ-
ences between Fickian and non-Fickian models, in the case of miscible displacement
in porous media, but also the fact the non-Fickian model can replicate key properties
observed in real world experiments.

Example 3 Let us consider the miscible displacement problem in porous media. We
suppose that the resident fluid and the injected fluid are fully miscible and flow together
as a unique fluid. We assume that there are no source or sink terms, i.e., g1 = g2 = 0,
and that the initial distribution of the injected fluid is as given in Fig. 4 (on the right).
In the pressure equation (4) we take K = I, u = 1, and the Dirichlet boundary con-
ditions: 0.4 (bottom boundary), 0.2 (left and right boundaries) and O (top boundary).
We also consider a uniform spatial mesh with size 0.004 and the time step At = 1073,
The obtained pressure field is shown in Fig. 4 (on the left). Let ¢ represent the con-
centration of the injected fluid. For both Fickian and non-Fickian model we define the
diffusion tensor D = d,,¢1 withd,, =5 x 1073 and ¢ = 1, meaning that the longi-
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tudinal () and transversal (o) dispersivity coefficients are zero. For the non-Fickian
model we also take T = 10~! and E = dyy ,rI With dy, »r = 1072, The coupled
problem is complemented with Dirichlet homogeneous boundary conditions for the
concentration. This is equivalent to assume that the fluid is removed when it reaches
the boundary.

In Fig. 5 we show the evolution of the concentration in the Fickian and non-Fickian
case. As can be seen from the figures, the non-Fickian model is able to reproduce
key features reported in experimental studies, such as highly asymmetric plumes with
steep fronts and long and low concentration tails. Note that, for simplicity, in this
example we omit physical units.

6 Conclusion

This paper deals with the numerical approximation of a coupled initial boundary value
problem formed by the elliptic equation (8) and the integro-differential equation of
Volterra type (6). This system can be used to describe, e.g., miscible transport in porous
media where a memory effect in time is present.

To solve the coupled system (8), (6) we proposed the IMEX method (39), (40) which
can be seen as a fully discrete in time and space piecewise linear finite element method
(43), (44). The convergence properties of the method were studied. We proved in
particular that the numerical pressure and concentration are second order convergentin
space with respect to a discrete H!-norm and L2-norm, respectively. The convergence
estimates (67) and (68) are somehow unexpected because (39), (40) is a finite difference
method with first order truncation error with respect to the L°°-norm. Moreover, we
also proved that the IMEX method (39), (40) is first order accurate in time.

We point out that the convergence analysis was made avoiding the usual approach,
introduced by Wheeler in [34], and where the error is split into two terms with the aid
of an auxiliary stationary problem. This alternate technique relies on the analysis of
a convenient error equation and allows to relax the smoothness assumptions required
by the technique in [34].

Numerical experiments were also performed. The results of Example 1 illustrate
the error estimates (67) and (68), while Example 2 shows the sharpness of these
estimates, since the reduction of the smoothness of the solutions p, ¢ imply losing
the second order convergence rate. At last, in Example 3, we used the problem of
miscible displacement in porous media to highlight the differences between Fickian
and non-Fickian model.
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