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We address the problem of the gauge fixing versus Gribov copies in lattice gauge theories. For the Landau gauge, 
results show that a suitable combination of evolutionary algorithms with traditional steepest descent methods 
identifies the global maximum of the optimisation function. We discuss the performance of the combined algorithm 
on small cubic lattices for SU(2) and SU(3). 

1. INTRODUCTION AND MOTIVA- 
TION 

The formulation of gauge theories on the lattice 
does not require gauge fixing. However, to study 
Green’s functions of the fundamental fields, it is 
unavoidable to pick a gauge. Moreover, the cor- 
relation functions of the fundamental fields can 
be used to compute renormalization constants 
or non-perturbative coefficients used in numeri- 
cal simulations. For a general overview on gauge 
fixing in lattice gauge theories and related issues 
see [l]. 

On the lattice, gauge fixing can be viewed as 
an optimisation problem. Typically, we have a 
maximising function with many local maxima, 
the Gribov copies, and we want to identify its 
global maximum. The global maximum is not al- 
ways unique defined. From the numerical point 
of view, global optimisation is not a trivial task, 
and among the various techniques Genetic Algo- 
rithms (GA) [2] seems to be a good global search- 
ing method. 

Genetic Algorithms require an evolutive popu- 
lation and assume a number of rules for reproduc- 
tion. The tuning of basic parameters, the proba- 
bilities of the genetic operators and the size of the 
evolutive population, is crucial to have good per- 
formance. The size of the population is an impor- 
tant parameter and can easily drive the method 
to use as much memory as available. 

l orlandoQteor.fis.uc.pt 
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Our investigation started using pure GA to 
SU(3) and SU(2) Landau gauge fixing on 44 and 
84 lattices. We conclude that the method was un- 
able to identify conveniently the global maximum. 
This negative result is due to the large number of 
variables involved and to the structure of the opti- 
misation function. Fortunately, a combination of 
GA with steepest descent method (SD) [3] seems 
to be able to converge to the global maximum. 
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Figure 1. Local maxima from an 84 SU(3) con- 
figuration obtained after 1000 SD starting at ran- 
domly chosen different points. 
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Minimum Nsteps vs npop - SU(2) 

Figure 2. Nsteps as function of npop for a random 
SU(2) configuration. 

2. EVOLUTION PROGRAM AND LAN- 
DAU GAUGE FIXING 

Landau gauge fixing is implemented by global 
maximising the function of the links 

WI = c Re {a [d4 &a(4 g+t, + 4) > 0) 
Z# 

over the gauge orbits. 
Our implementation of the combined GA and 

SD algorithm uses the genetic operators (after re- 
unitarisation): i) random crossover, ii) random 
blending, and the mutation operators 

g(z) ---) g(z) + CA, (2) 

g(z) + A, (3) 

g(z) -+ g(z) (1 + eA) > (4 

where E (1~1 5 0.025) is a random number and A 
is a random W(N) matrix. 

As fitness function we take 

Fbl = Nsteps SD iterations on F[Ug] , (5) 

i.e. the fitness function is obtained from (1) after 
Nsteps steepest descent iterations. 

The code starts by generating an uniformly dis- 
tributed initial population 2.5 times larger than 

Minimum Nsteps vs npop - SU(3) 

Figure 3. Nsteps as function of npop for /3 = 5.7 
SU(3) configurations. 

the evolutive population. The first generation is 
chosen from this initial population. The mat- 
ing selection for reproduction, and the choice of 
the first evolutive generation, uses roulette wheel 
sampling favouring the best members of the pop- 
ulation. 

On the final generation we apply SD requiring 
ItlAl < lo-” to all members of the population. 

3. RESULTS AND DISCUSSION 

The combined algorithm was tested with SU(2) 
44 random configurations, and 84 (p = 5.7) 
SU(3) configurations generated with version 6 of 
the MILC code [4]. 

All runs report results after 400 GA genera- 
tions. Concerning CPU time we are not yet in 
the position on giving numbers. This is because 
we performed a large number of convergence tests 
at intermediate generations. Final results, includ- 
ing more details about the method and CPU time 
information will be reported elsewhere soon. 

For 3 of the SU(3) configurations and for the 
SU(2) configurations, the global maximum was 
computed by performing a large number (1000) 
of SD starting from randomly chosen different 
points. In our case, this should not be a prob- 
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F for gauge fixed configurations 

Figure 4. F for gauge fixed SU(3) configurations. 

lem since we are working with relatively small lat- 
tices. If we compare the results of the combined 
algorithm with random search, we have never ob- 
served maxima larger than that obtained by ran- 
dom search. 

Configurations show a large number of local 
maxima - see figure 1. For the combined algo- 
rithm, the convergence of the best member of the 
population to the global maxima of F depends on 
the size of the evolutive population (npop) and on 
Insteps. Although one can arrive at the proper 
answer with quite small evolutive populations, 
the number of single steepest descent iterations 
defining the fitness function (CPU time) increases 
as the size of the population decreases. In figures 
2 and 3 one can see the relation between npop 
and Insteps for SU(2) and SU(3) configurations. 

Results are encouraging but further studies of 
how the algorithm scales with volume and B 
should be done. The tests were performed using 
a serial version of the code. A parallel implemen- 
tation of the algorithm is about to start testing. 

To address the problem of Gribov copies we 
look at the simplest correlation function which 
can be computed, namely the gluon propaga- 
tor. In order to compute the propagator, 22 
over-relaxed/quasi heat bath SU(3) configura- 
tions where generated and the correlation func- 

Gluon Propagator - SU(3) configurations 

Figure 5. SU(3) gluon propagator. 

tion from SD compared to the correlation func- 
tion from the combined GA/SD algorithm. Re- 
sults are given in figure 5. The two methods show 
essentially the same behaviour. However, due to 
the large number of maxima in some configura- 
tions, a careful analysis should be done before 
drawing conclusions. Furthermore, if an analysis 
of the gluon propagator certainly must be done, 
investigations of the quark and ghost propagators 
should not be forgotten. 
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