
Lígia Abrunheiro¹, Margarida Camarinha², and Jesús Clemente-Gallardo³

¹CIDMA – Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Portugal and ISCA, University of Aveiro, 3810-500 Aveiro, Portugal

²CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal

³BIFI – Department of Theoretical Physics and Unidad asociada IQFR-BIFI, University of Zaragoza, Edificio I+D, Campus Río Ebro, C/ Mariano Esquillor s/n, E-50018 Zaragoza, Spain

The purpose of this note is to replace Lemma 6 in page 13 of the paper, to guarantee the accuracy of other results derived from it, in particular, the discussion after Remark 4 in page 15. In the original version, the result we prove does not allow to conclude, as we claim, that the set of constants of the motion we identify can be used with Lie-Cartan theorem.

The formulation of the lemma is misleading. Besides, we need the additional hypothesis that G is semisimple to be able to prove the correct statement. Therefore, both the statement and the proof should be replaced by the following:

Lemma 1 If the Lie group G is semisimple, then $\{l_j : j = 1, \ldots, n+1\}$ is a set of functionally independent functions on an open dense subset of $O_\eta \times g \times g^*$.

Proof. In the proof and for the sake of simplicity, we identify $\eta \in g^*$ with an element of g via the Riemannian metric. We shall also consider O_η to be the adjoint orbit defined by a regular element η in a Cartan subalgebra t of g and r be the rank of g.

Consider the coordinate expression for the invariants, with respect to the natural basis taken from the orthonormal basis $\{A_i\}_{i=1,\ldots,n}$ of the Lie algebra g:

$$ l_1 = \sum_{j=1}^{n} y^j \theta_j(\nu_1, \ldots, \nu_{2m}) + \frac{1}{2} \sum_{j=1}^{n} (\xi_j)^2 $$

$$ l_{i+1} = \theta_i(\nu_1, \ldots, \nu_{2m}) + \sum_{j,k=1}^{n} C_{jk}^i y^j \xi_k, \quad i = 1, \ldots, n, $$

where ν_1, \ldots, ν_{2m} are the variables in the orbit O_η. The differentials of the invariants can be written as

$$ dl_1 = \sum_{\alpha=1}^{2m} \sum_{j=1}^{n} y^j \frac{\partial \theta_j}{\partial \nu_\alpha} \, d\nu_\alpha + \sum_{j=1}^{n} \theta_j \, dy^j + \sum_{j=1}^{n} \xi_j \, d\xi_j $$

We shall prove that $dl_1 \land dl_2 \land \ldots \land dl_{n+1} \neq 0$ on an open dense subset of $O_\eta \times g \times g^*$. The coefficients of the above exterior product corresponding to the elements $dv_1 \land dv_2 \land \ldots \land dv_{2m} \land d\xi_i \land \ldots \land d\xi_{n+1}$ are sums containing $2m$ terms, not depending on the variables ξ_i, and $r + 1$ terms, each one depending linearly on a different variable ξ_i. The $r + 1$ terms are given by minors of order n of the matrix representing the linear map F from $T_\theta O_\eta \times g$ into g that applies (Z, W) to $i_*[\theta(Z) - ad_Y W]$, where i is the inclusion of O_η into g. If we prove that the map F has full rank in an open dense subset of $O_\eta \times g$, then the corresponding minor of order n of the matrix representation gives the non-vanishing term we are looking for.

In order to do so, let us recall the standard root space decomposition (see for instance [1]) for the complexified algebra g^C:

$$g^C = g^C_0 \oplus \bigoplus_{\alpha \in \Delta} g^C_\alpha$$

with respect to a Cartan subalgebra t^C (i.e., g^C_0 corresponds to the centralizer of t^C in g^C which is equal to C^C if the algebra is semisimple). The related vectors $X_\alpha, Y_\alpha \in g$ such that $[T, X_\alpha] = \alpha(T)Y_\alpha$ and $[T, Y_\alpha] = -\alpha(T)X_\alpha$, for all $T \in t$ and for each root $\alpha \in \Delta$, induce the decomposition

$$g = t \oplus \bigoplus_{\alpha \in \Delta_+} \mathbb{R}X_\alpha \oplus \mathbb{R}Y_\alpha$$

and give a basis B^1_θ of g. Let us consider the tangent space $T_\theta O_\eta = \{[\theta, A], A \in g\}$, for each $\theta \in O_\eta$. Using the basis B^1_θ, it is possible to check that there exists an open dense subset of O_η defined by elements θ such that $T_\theta O_\eta \cap t = \{0\}$. Under this condition, it is possible to extend a basis $B_\theta^{0,1}$ of $T_\theta O_\eta$, using a basis of t, in order to obtain a basis B^2_θ of g. Now, we consider the basis $B_\theta^{0,1} \times B^1_\theta$ of $T_\theta O_\eta \times g$ and the basis B^2_θ of g. It is clear that the matrix of the map F relatively to these basis has full rank for all $\theta \in O_\eta$ such that $T_\theta O_\eta \cap t = \{0\}$ and for all $Y = T + \sum_{\alpha \in \Delta_+} (b_\alpha X_\alpha + c_\alpha Y_\alpha)$ with no null coefficients b_α and c_α, for each $\alpha \in \Delta_+$. Therefore, we proved that the map F has full rank in an open dense subset of $O_\eta \times g$. This implies that there is an open dense subset of $O_\eta \times g \times g^*$ where the functions $\{l_1, \ldots, l_{n+1}\}$ are functionally independent.

This new version of the Lemma guarantees the accuracy of the results contained in the last part of the original paper.

References