
December 11, 2017 Statistics: A Journal of Theoretical and Applied Statistics ZT˙Statistics˙v4

To appear in Statistics: A Journal of Theoretical and Applied Statistics
Vol. 00, No. 00, Month 20XX, 1–26

ARTICLE

Zero-truncated Compound Poisson integer-valued GARCH models

for time series
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Starting from the Compound Poisson INGARCH models, we introduce in this paper a new
family of integer-valued models suitable to describe count data without zeros that we name
Zero Truncated CP-INGARCH processes. For such class of models, a probabilistic study con-
cerning moments existence, stationarity and ergodicity is developed. The conditional quasi-
maximum likelihood method is introduced to consistently estimate the parameters of a wide
zero truncated compound Poisson subclass of models. The conditional maximum likelihood
method is also used to estimate the parameters of ZTCP-INGARCH processes associated to
well specified conditional laws. A simulation study that compares some of those estimators
and illustrates their finite distance behavior as well as a real-data application conclude the
paper.
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1. Introduction

The usual probability distributions describing the integer-valued models present in litera-
ture assume, in general, that the count data to be modeled have zero counts, that is, zero
is a possible value of their supports. It may however happen that the expected number
of zeros according to the probability distribution of the fitted model is not compatible
with those actually occurring. We have in this case an inflation situation, or deflation,
of the zero value and in order to correct this phenomenon we have to provide for the
possibility to mix such distribution with a point probability. This is for example the case
of integer-valued zero inflated models, studied in particular in [5], [8] and [10].
There is yet another type of counting series that structurally exclude the zero value.

The number of days of hospitalization in an hospital or the number of days of travel
of tourists from a certain country in a period of the year are clear examples of count
series without zeros. An interesting and dynamical series of count data without zeros is,
for instance, the daily number of occupied beds in a central hospital inpatient service.
When the structure of the series is such that it makes no sense the occurrence of zeros,
the underlying distribution should not include zero in its support. As referred in [7]
(p. 174) ”some statisticians have encouraged the use of shifted (...) models ... that is,
the counts are shifted left so that 1 counts become 0’s, 2’s become 1’s and so forth.
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The problem is that the resultant model is not based on data as they in fact exist”.
The study here developed illustrates clearly that this is not the good approach. So, as
suggested by [7], a more adequate possibility to describe such a situation is the truncation
of zero in integer-valued models generally compatible with the situation in study. Within
count time series analysis, this problem had been already addressed, for instance in [2]
considering ZT-Poisson INAR(1) processes.
A class of integer-valued models recently introduced in the literature is the class of

integer-valued GARCH processes with compound Poisson conditional distribution (CP-
INGARCH). This is a very general class of models that is able to respond to situations
compatible with all compound Poisson laws among which stand out the Poisson, Negative
Binomial, generalized Poisson and Neyman type A laws. In view of the wideness of the
family of distributions associated with these processes it is natural to expect that such
distributions truncated in zero may be compatible with count models without null results.
This fact led us to introduce a new class of models based on the CP-INGARCH class
but without the possibility of zeros. We call these new models CP-INGARCH truncated
at zero and denote them briefly as ZTCP-INGARCH.
In Section 2 we recall the definition of the compound Poisson model with values in N0

with generalized autoregressive conditional heteroskedasticity and introduce the integer-
valued compound Poisson truncated at zero model definition (ZTCP-INGARCH). We
analyze aspects of its probabilistic structure, namely the existence of moments, and
the strict stationarity and ergodicity in a general sub-class. We study then the geo-
metric ZTCP-INGARCH model; this model does not belong to that sub-class but, as
we shall see, we are able to establish its second order stationarity. Section 3 includes
the consistent estimation of the parameters of the ZTCP-INGARCH model by Poisson
conditional quasi-maximum likelihood method as well as the conditional maximum like-
lihood methodology for particular ZTCP-INGARCH processes, namely those associated
to Poisson or to the geometric conditional laws. A simulation study that illustrates and
evaluates the estimation methodologies developed concludes this Section. A real-data
application, presented in Section 4, and some final conclusions end the paper.

2. Zero Truncated CP-INGARCH processes

2.1. Zero truncated compound Poisson law

Let us recall that an integer-valued random variable X follows a compound Poisson law
with parameter λ, λ > 0, if its characteristic function is such that

ΦX(u) = exp(λ(ΦY (u)− 1)), u ∈ R,

with ΦY the characteristic function of a random variable Y , called compounding vari-
able. The corresponding generating function (of probabilities), gX(u) = E

(
uX
)
, |u| ≤ 1,

satisfies

gX(u) = exp(λ(gY (u)− 1)),

with gY the generating function of Y , and we have P (X = 0) = gX(0) = exp(λ(gY (0)−1))
where gY (0) = P (Y = 0).
We say that the nonnegative integer-valued random variable Z follows a compound

Poisson law truncated at zero associated to X if its characteristic function is
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ΦZ(u) = E
(
eiuZ

)
, u ∈ R,

= E
(
eiuX |X ̸= 0

)

=

+∞∑
k=1

eiukP (X = k)

P (X ̸= 0)

=
exp(λ(ΦY (u)− 1))− exp(λ(gY (0)− 1))

1− exp(λ(gY (0)− 1))
.

2.2. Zero truncated CP-INGARCH model

Let X = (Xt, t ∈ Z) be a nonnegative integer-valued stochastic process and, for t ∈ Z,
let Xt denote the σ− field generated by (Xt−j , j ≥ 0) .

Definition 2.1 ([4]) The process X is said to follow a compound Poisson GARCH model
with values in N0 with orders p and q (p, q ∈ N) if, for all t ∈ Z, the characteristic
function of Xt conditioned on Xt−1 is given by

ΦXt|Xt−1
(u) = exp

{
i

λt

ϕ
′

t (0)
[ϕt (u)− 1]

}
, u ∈ R,

with

E
(
Xt|Xt−1

)
= λt = α0 +

p∑

j=1

αjXt−j +
q∑

k=1

βkλt−k

for constants α0 > 0, αj ≥ 0 (j = 1, ..., p), βk ≥ 0 (k = 1, ..., q) and where (ϕt, t ∈ Z) is
a family of characteristic functions on R, Xt−1− measurables, associated to a family of
discrete laws with support in N0 and finite mean. i represents the imaginary unit.

In a briefly way, we say that X follows a CP − INGARCH(p, q) model.
If q = 1 and β1 = 0, the CP −INGARCH(p, q) model is denoted CP −INARCH(p).

We note that as ϕt is the characteristic function of a discrete distribution with support
in N0 and finite mean, the derivative of ϕt (u) at u = 0, ϕ

′

t (0) , exists and is nonzero.
As the conditional distribution of Xt on Xt−1 is a discrete compound Poisson law

with support in N0 then for all t ∈ Z and conditioned on Xt−1, Xt can be identified in
distribution with the random sum

Xt
d
= Xt,1 + ...+Xt,Nt

whereNt is a random variable following a Poisson distribution with parameter λt

E(Xt,j)
and

Xt,1, ..., Xt,Nt
are discrete and independent random variables, with support contained in

N0, independent of Nt and having common characteristic function ϕt, with finite mean.
The distribution of Xt,j is called compounding distribution and we assume Xt equal
to zero if Nt = 0. This property may be used to generate time series following a CP-
INGARCH model.
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We can now introduce the definition of the nonzero integer-valued (or zero truncated)
generalized autoregressive conditional heteroscedastic compound Poisson model, briefly
ZTCP − INGARCH(p, q).

Definition 2.2 The stochastic process Z = (Zt, t ∈ Z) follows a ZTCP −
INGARCH(p, q) model if, for any t ∈ Z, the characteristic function of Zt conditioned
on Zt−1 is given by

ΦZt|Zt−1
(u) =

exp
{
i λt

ϕ′
t(0)

[ϕt (u)− 1]
}
− exp

{
i λt

ϕ′
t(0)

[gt (0)− 1]
}

1− exp
{
i λt

ϕ′
t(0)

[gt (0)− 1]
} , u ∈ R, (1)

with

λt = α0 +
p∑

j=1
αjZt−j +

q∑
k=1

βkλt−k

where α0 > 0, αj ≥ 0 (j = 1, ..., p), βk ≥ 0 (k = 1, ..., q) and (ϕt, t ∈ Z) is a family of
characteristic functions on R, Zt−1− measurable, associated to a family of discrete laws
with support in N0 and finite mean and where (gt, t ∈ Z) is the corresponding family of
probability generating functions.

If q = 1 and β1 = 0, the ZTCP − INGARCH(p, q) model is denoted ZTCP −
INARCH(p).

In order to assure that λt is Zt−1− measurable we consider, in what follows,
q∑

k=1
βk < 1.

Example 2.3 a) Considering ϕt the characteristic function of the Dirac law in {1} , that
is, ϕt (u) = exp (iu) , u ∈ R, whose probability generating function is gt (u) = u, u ∈ R,
we obtain for Z the ZT Poisson INGARCH model.
b) Similarly, considering any of the Compound Poisson INGARCH models highlighted

in [4], such as the generalized Poisson, the negative binomial (unless a scale factor),
DINARCH, GEOMP, GEOMP2 and NTA models, among others, we get in this way the
corresponding Zero truncated Compound Poisson INGARCH model.

In the following Figures 1 and 2 we present the trajectories and the basic descriptives
of a series X following a CP−INGARCH(1, 1) model with Poisson conditional law with
λt = 0.2+0.5Xt−1+0.3λt−1, and of a Z process following the ZTCP −INGARCH(1, 1)
model with the same parameter values in the corresponding λt, which illustrate the
probabilistic changes related with the zero truncation. In fact, the empirical distributions
of the shifted process X +1 and of Z are clearly different, even in mean. Obviously, this
difference will be more evident with the increasing of the probability of zero occurrences.
These series were generated using the algorithm included in Appendix C.

From the relations between the characteristic function and the moments of the corre-
sponding probability law we deduce

E
(
Zt|Zt−1

)
=

λt

1− exp
{
i λt

ϕ′
t(0)

[gt (0)− 1]
}
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Figure 1. X series following a CP − INGARCH model: time plot and principal descriptive summaries
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Figure 2. Z series following a ZTCP − INGARCH model: time plot and principal descriptive summaries

E
(
Z2
t |Zt−1

)
=

λ2
t − iλt

ϕ
′′
t (0)

ϕ′
t(0)

1− exp
{
i λt

ϕ′
t(0)

[gt (0)− 1]
} .

We note that E
(
Zk
t |Zt−1

)
is a function of λk

t ,λ
k−1
t , ..., k ∈ N.

2.3. Probabilistic structure

The general probabilistic study presented in the subsections 2.3.1 and 2.3.2 is developed
within the subclass of ZTCP−INGARCH models for which ϕt, t ∈ Z, are deterministic
functions. In subsection 2.3.3 a particular ZTCP − INGARCH model with random ϕt

functions is considered.

2.3.1. Moments

Let us begin by establishing that the moments existence of one of the processes involved
on the model definition, Z and λ , determines the moments existence of the other.

Proposition 2.4 If Z = (Zt, t ∈ Z) is a solution of the model (1) then E (Zt) exists if
and only if E (λt) exists.

Proof. Let us assume that E (λt) exists. As gt (0) is a probability value, ϕ
′

t (1) > 0 and
λt ≥ α0, we deduce

E

⎛

⎝ λt

1−exp

{
iλt

ϕ
′
t(1)

[gt(0)−1]

}

⎞

⎠ ≤ E

⎛

⎝ λt

1−exp

{
iα0

ϕ
′
t(1)

[gt(0)−1]

}

⎞

⎠ = 1

1−exp

{
iα0

ϕ
′
t(1)

[gt(0)−1]

}E (λt)

and so

E (Zt) = E
[
E
(
Zt|Zt−1

)]
= E

⎛

⎝ λt

1−exp

{
iλt

ϕ
′
t(1)

[gt(0)−1]

}

⎞

⎠
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exists. Otherwise, if E (Zt) exists it is enough to take into account that

λt ≤ λt

1−exp

{
iλt

ϕ
′
t(1)

[gt(0)−1]

}

to conclude that E (λt) exists. !

Moreover, it is easily proved that

E
(
Zk
t |Zt−1

)
=

R
(
λk
t ,λ

k−1
t , ...

)

1− exp
{

iλt

ϕ′
t(1)

[gt (0)− 1]
}

with R a linear function of λk
t ,λ

k−1
t , ...; so it is clear that if the k order moment, k ∈ N,

of one of the processes, Z or λ, exists so does the k order moment of the other. We note
that the existence of such moments requires a priori the k− order differentiability of the
ϕt function.

2.3.2. Existence of a strictly stationary and ergodic solution

In order to study the stationarity of the truncated process let us assume that the deter-
minist functions ϕt are independent of t. So we consider in this subsection ϕt = ϕ and,

accordingly, gt = g . In these conditions and if
p∑

j=1
αj +

q∑
k=1

βk < 1, the CP − INGARCH

model has a strictly stationary and ergodic solution ([4], Theorem 5), X∗ = (X∗
t , t ∈ Z) ,

with characteristic function of the law of X∗
t conditioned on X∗

t−1 given by

ΦX∗
t |X∗

t−1
(u) = exp

{
i

λ∗
t

ϕ′ (0)
[ϕ (u)− 1]

}

with conditioned expectation E
(
X∗

t |X∗
t−1

)
= λ∗

t = α0 +
p∑

j=1
αjX∗

t−j +
q∑

k=1
βkλ∗

t−k and we

can define the process Z∗ = (Z∗
t , t ∈ Z) such that

Z∗
t = X∗

t |X∗
t > 0. (1)

This process Z∗ = (Z∗
t , t ∈ Z) is a solution of the ZTCP − INGARCH model with

λt = α0 +
p∑

j=1
αjZ∗

t−j +
q∑

k=1
βkλt−k and, as Z∗

t is a measurable function of a strictly

stationary and ergodic process, Z∗ is also strictly stationary and ergodic. In fact, we
note that Z∗ = (Z∗

t , t ∈ Z) is a stochastic process whose conditional law is the law of

1 In particular, we know that E (X∗
t ) exists if and only if E (λ∗

t ) exists and this happens if and only if
p∑

j=1
αj +

q∑
k=1

βk < 1. Moreover, E (λ∗
t ) = E (X∗

t ) is independent of t.
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X∗
t |Z∗

t−1 conditioned on X∗
t > 0. So,

E
(
Z∗
t |Z∗

t−1

)
= E

[
E
(
X∗

t |X∗
t > 0 | X∗

t−1

)
| Z∗

t−1

]

= E

[
λ∗
t

P X∗
t−1 (X∗

t > 0)
| Z∗

t−1

]

= E

⎡

⎢⎢⎢⎣

α0 +
p∑

j=1
αjX∗

t−j +
q∑

k=1
βkλ∗

t−k

1− exp
{

iλ∗
t

ϕ′ (0)
[g (0)− 1]

} | Z∗
t−1

⎤

⎥⎥⎥⎦

=

α0 +
p∑

j=1
αjZ∗

t−j +
q∑

k=1
βkλt−k

1− exp
{

iλt

ϕ′ (0)
[g (0)− 1]

} ,

that is, E
(
Z∗
t |Z∗

t−1

)
= λt

1−exp
{

iλt

ϕ
′
(0)

[g(0)−1]
} .

Furthermore, from the equality λt = α0 +
p∑

j=1
αjZ∗

t−j +
q∑

k=1
βkλt−k we deduce that

(
1−

q∑
k=1

βkLk

)
λt = α0 +

p∑
j=1

αjZ∗
t−j

that is,

λt =
α0

1−
q∑

k=1
βk

+
+∞∑
n=0

(
q∑

k=1
βkLk

)n p∑
j=1

αjZ∗
t−j .

We may now present the following property.

Proposition 2.5 The ZTCP-INGARCH model (1) with ϕt = ϕ has a strictly stationary

and ergodic solution, Z∗, if
p∑

j=1
αj +

q∑
k=1

βk < 1. Moreover, if Z∗ is a strictly stationary

and ergodic solution then λ∗ is also a strictly stationary and ergodic process.

If Z is stationary in mean the same happens to λ and we have the following relation
between the corresponding means:

(
1−

q∑

k=1

βk

)
E(λt) = α0 +

p∑

j=1

αjE(Zt)

⇔ E(λt) =
α0

1−
q∑

k=1
βk

+

p∑
j=1

αj

1−
q∑

k=1
βk

E(Zt).

Example 2.6 It is clear that every ZT process associated to a strictly stationary and
ergodic process is also strictly stationary and ergodic. In particular, the ZT processes
associated to the models INGARCH (gt (u) = u), NB-DINARCH (with ϕt the charac-
teristic function of the logarithmic law with parameter α−1

α ,α > 0), NTA-INGARCH
(where ϕt is the characteristic function of the Poisson law with parameter φ,φ > 0)
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and GEOMP2-INGARCH (with ϕt the characteristic function of the geometric law with

parameter p, p ∈ ]0, 1[) such that
p∑

j=1
αj +

q∑
k=1

βk < 1 have strictly stationary and er-

godic solutions as they correspond to models with deterministic and independent of t
characteristic functions ϕt ([4]).

2.3.3. A Zero truncated geometric INGARCH model

In this subsection we present a zero truncated CP-INGARCH model, not belonging to the
general subclass previously considered, for which some probabilistic properties, namely
the second order stationarity, may be established. As this model is based on the geometric
law we begin by recalling that this law is a compound Poisson one.

a) Presentation

The geometric law belongs to the class of compound Poisson laws. In fact, given p ∈
]0, 1[ , let (Yj , j ≥ 1) be a sequence of i.i.d. random variables with logarithmic distribution
with parameter p, that is, with probability function given by

P (Yj = y) = −(1− p)y

y ln p
, y = 1, 2, ...

and let N be a random variable following a Poisson distribution with mean − ln p and
independent of (Yj , j ≥ 1). Then the random variable X = Y1 + ... + YN follows a
geometric law with parameter p, that is,

P (X = x) = p (1− p)x , x = 0, 1, ...

In these conditions, the characteristic function of X is

ΦX(u) = exp
{
ln
(
1− (1− p)eiu

)
− ln p

}
=

p

1− (1− p)eiu

taking into account that λ = ln p and ϕY (u) =
ln(1−(1−p)eiu)

ln p .

The geometric INGARCH process (Xt, t ∈ Z) , introduced in Zhu (2011) as a particular
case of the negative binomial model, is obtained considering, conditionally on Xt−1,

Xt = Yt,1 + ...+ Yt,Nt

where Yt,1, Yt,2, ... are i.i.d. random variables with logarithmic distribution with param-
eter 1

1+λt
, independent of the random variable Nt which follows the Poisson law with

parameter ln (1 + λt). The characteristic function of the compounding variables (Yt,j) is
given by

ϕt(u) =
ln
(
1− λt

1+λt
eiu

)

ln 1
1+λt

.

This function is Xt−1- measurable and dependent on t. Nevertheless, as we will see, it
is possible to study the stationarity of the corresponding truncated model.
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We note that the generating function of Yt,j is gt(u) =
ln
(
1− λt

1+λt
u
)

ln 1
1+λt

and so gt(0) = 0;

moreover

ϕ
′

t(0) =
iλt

ln(1+λt)
.

For the ZT Geometric INGARCH model we obtain

ΦZt|Zt−1
(u) =

eiu

1 + λt − λteiu
.

b) Stationarity of the ZT Geometric INGARCH model

Let us consider any solution Z of the ZT geometric INGARCH model. The conditional
moments of orders 1 and 2 of the law of Zt conditioned on Zt−1 are given by

E
(
Zt|Zt−1

)
= λt + 1

E
(
Z2
t |Zt−1

)
= (2λt + 1) (λt + 1) .

Taking into account the first equality it is easy to establish that the truncated geometric
model Z is stationary in mean if and only if

p∑
j=1

αj +
q∑

k=1
βk < 1.

Under this condition, the processes λ and Z are both stationary in mean and the corre-
sponding (non conditional) means are

E (Zt) = µZ =

α0 + 1−
q∑

k=1
βk

1−
p∑

j=1
αj −

q∑
k=1

βk

E (λt) = µZ − 1 =

α0 +
p∑

j=1
αj

1−
p∑

j=1
αj −

q∑
k=1

βk

.

Let us now analyze the second order stationarity of Z. Without loss of generality, we
take p = q (the coefficients in excess are considered zero). We have

E (Zt−jλt−k) = E
[
E
(
Zt−j |Zt−j−1

)
λt−k

]
, if k ≥ j

= E (λt−jλt−k) + E (λt−k)

E (Zt−jλt−k) = E
[
Zt−j

(
E
(
Zt−k|Zt−k−1

)
− 1
)]

= E (Zt−jZt−k)− E (Zt−j) , if k < j.

By developing E (ZtZt−h) = E
[
E
(
Zt|Zt−1

)
Zt−h

]
= E [(λt + 1)Zt−h] for h ≥ 1,

E (λtλt−h) for h ≥ 0, and using the stationarity in mean of Z, we get
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E
(
Z2
t

)
= C + 2[

p∑
j=1

α2
jE
(
Z2
t−j

)
+

p∑
j,k=1
j ̸=k

αjαkE
(
Zt−jZt−k

)
+

+2
p∑

j=1

p∑
k=1

αjβkE
(
Zt−jλt−k

)
+

p∑
k=1

β2
kE
(
λ2
t−k

)
+

p∑
j,k=1
j ̸=k

βjβkE
(
λt−jλt−k

)
]

where C = 3µλ + 1 + 2α2
0 + 4α0 (µλ − α0) . We note that

E
(
Z2
t

)
= E

(
2λ2

t + 3λt + 1
)

⇔ E
(
Z2
t

)
= 2E

(
λ2
t

)
+ 3µλ + 1

⇔ E
(
λ2
t

)
= E(Z2

t )−3µλ−1
2

⇔ E
(
λ2
t

)
= E(Z2

t )
2 − 3µZ−2

2 ,

which implies that Z is a second order process if and only if the same occurs with λ.
Analogously to what is done in [4], Proposition 1, we obtain

i) E
(
Z2
t

)
= b0 + 2

p∑
j=1

(
α2
j +

β2
j+2αjβj

2

)
E
(
Z2
t−j

)
+

+4
p−1∑
j=1

p∑
k=j+1

αk (αj + βj)E
(
Zt−jZt−k

)
+ 4

p−1∑
j=1

p∑
k=j+1

βk (αj + βj)E
(
λt−jλt−k

)
]

ii) E (ZtZt−h) = b1,h +
(
αh +

βh

2

)
E
(
Z2
t−h

)
+

h−1∑
j=1

(αj + βj)E
(
Zt−jZt−h

)
+

+
p∑

j=h+1
αjE

(
Zt−jZt−h

)
+

p∑
j=h+1

βjE (λt−jλt−h) , h ≥ 1

iii) E (λtλt−h) = b2,h +
αh+βh

2 E
(
Z2
t−h

)
+

p∑
j=h+1

αjE (Zt−jZt−h)+

+
h−1∑
j=1

(αj + βj)E (λt−kλt−h) +
p∑

j=h+1
βjE (λt−jλt−h) , h ≥ 1

with b0 = (3 + 4α0) (µZ − 1) + 1− 2α2
0 −

(
3µZ−2

2

) p∑
k=1

(
β2
k + 2αkβk

)
+

+2 (µZ − 1)
p∑

j,k=1
j≤k

αjβk − 2µZ

p∑
j,k=1
j<k

αkβj

b1,h = µZ

(
1 + α0 −

h−1∑
k=1

βk

)
+ (µZ − 1)

p∑
k=h

βk − 3µZ−2
2 βh

b2,h = (µZ − 1)

(
α0 +

h∑
j=1

αj

)
− µZ

p∑
j=h+1

αj − 3µZ−2
2 (αh + βh) .

From these calculations, it is easy to see that the vector Wt, with dimension p+ q− 1,
given by

Wt =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
(
Z2
t

)

E (ZtZt−1)
...
E
(
ZtZt−(p−1)

)

E (λtλt−1)
...
E
(
λtλt−(q−1)

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦
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satisfies an autoregressive equation of order max(p, q)

Wt = b+

max(p,q)∑

k=1

BkWt−k (2)

with b = [bj ]j=1,...,p+q−1 a real p+ q − 1 dimensional vector such that

bj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b0, j = 1(
1 + α0 −

j−2∑
k=1

βk

)
µX + (µX − 1)

p∑
k=j−1

βk − 3µX−2
2 βj−1, j = 2, ..., p

(
α0 +

j−p∑
k=1

αk

)
(µX − 1)− µX

p∑
k=j−p+1

αk − 3µX−2
2 (αj−p + βj−p) , j = p+ 1, ..., p+ q − 1

and Bk (k = 1, ..., max(p, q)) real square p+ q− 1 dimensional matrices. The coefficients
of these matrices are equal to those of the matrices obtained for the corresponding non
truncated model ([4]).
So, we may write the following proposition.

Proposition 2.7 A zero truncated geometric INGARCH process, Z, stationary in mean
is second order stationary if and only if

P (L) = Ip+q−1 −
max(p,q)∑

k=1

BkL
k

is a polynomial matrix such that detP (z) has all its roots outside the unit circle, where
Ip+q−1 is the identity matrix of p + q − 1 order and Bk (k = 1, ..., max(p, q)) are the
matrices present in the autoregressive equation (2).

c) Particular cases

Let us analyze some particular cases of the zero truncated geometric INGARCH model,
namely those with small orders.

c.1) If p = q = 1 and α1 + β1 < 1, the matrix B1 reduce to the scalar

2
(
α2
1 +

β2
1+2α1β1

2

)
and the necessary and sufficient condition of weak stationarity of Z

becomes α2
1 + (α1 + β1)

2 < 1. In this case we have

E (Zt) = µZ = α0+1−β1

1−(α1+β1)

and from E
(
Z2
t

)
= b0 +B1E

(
Z2
t−1

)
we get

E
(
Z2
t

)
= b0

1−B1

with b0 =
(
3 + 4α0 − α1β1 − 3

2β
2
1

)
µZ − 2 (α0 + 1)2 + β2

1 and B1 = α2
1 + (α1 + β1)

2 .
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Moreover, for h ≥ 1,

E (ZtZt−h) = (1 + α0)µZ + α1E (Zt−1Zt−h) + β1

(
E
(
λ2
t

)
+ E (λt−h)

)

= (1 + α0)µZ + β1 (µZ − 1) + β1

(
E
(
Z2
t

)

2
− 3µZ − 2

2

)
+ α1E (Zt−1Zt−h)

and we deduce

E (ZtZt−h) =

[
(1 + α0)µZ + β1 (µZ − 1) +

β1

2
E
(
Z2
t

)
− β1

2
(3µZ − 2)

](
1− αh

1

1− α1

)
+ αh

1E
(
Z2
t

)

=

[
(1 + α0 + β1)µZ − 3β1

2
µZ

](
1− αh

1

1− α1

)
+

[
β1

2

(
1− αh

1

1− α1

)
+ αh

1

]
E
(
Z2
t

)

=

(
1 + α0 −

β1

2

)(
1− αh

1

1− α1

)
µZ +

[
β1 + (−2α1 − β1 + 2)αh

1

2 (1− α1)

]
E
(
Z2
t

)
.

The autocovariance function of Z, γ(h) = Cov (ZtZt−h) , h ≥ 0, follows from these
equalities.

Remark 2.8 We note that the expressions obtained may be used to estimate the param-
eters of the model by the moments method in a simple but consistent way. If β1 = 0, for
example, the estimators of α0 and α1 are

α̂0 = Z (1− α̂1)− 1, α̂1 =

√
Z
(
1− Z

)
+ S2

Z

2S2
Z

where Z and S2
Z denote, respectively, the empirical mean and variance of a n-sample

(Z1, ..., Zn) of the process Z.

c.2) If p = q = 2, B1 and B2 are 3-order matrices equal to

B1 =

⎡

⎣
2α2

1 + β2
1 + 2α1β1 4α2 (α1 + β1) 4β2 (α1 + β1)

α1 +
β1

2 α2 β2
α1+β1

2 α2 β2

⎤

⎦

B2 =

⎡

⎣
2α2

2 + β2
2 + 2α2β2 0 0
0 0 0
0 0 0

⎤

⎦

and we get

detP (z) = 1−
(
(α1 + β1)

2 + α2 + β2 + α2
1

)
z +

+
(
(α1 + β1)

2 (α2 + β2) + (α2 + β2)
2 + α2

2 − α2
1β2 + α2

1α2 + 2α1α2β1

)
z2 +

+
(
(α2 + β2)

3 + α2
2 (α2 + β2)

)
z3.

If, in particular, α1 = β1 = 0 then the roots of detP (z) = 0 are

z1 =
1

α2 + β2
, z2 =

1√
(α2 + β2)

2 + α2
2

, z3 = −z2,

and the necessary and sufficient condition of weak stationarity of Z becomes (α2 + β2)
2+

α2
2 < 1.
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3. Parameter estimation

The parameter estimation of a ZTCP-INGARCH process is the goal of this Section.
Firstly we consider a general estimation methodology, the Poisson conditional quasi-
maximum likelihood [1], which is applicable to the wide class of ZTCP-INGARCH models
with ϕt deterministic and independent of t. The following two subsections are dedicated to
present the conditional maximum likelihood approach in two different situations; namely,
we consider firstly that the conditional law is a ZT Poisson one and, after, a ZT geometric.
We stress that in this last case we estimate a ZTCP-INGARCH model for which ϕt is a
non-deterministic measurable function of λt.

3.1. Zero truncated CP-INGARCH process: Poisson conditional
quasi-maximum likelihood estimation

Following [1] we may deduce the Poisson quasi-maximum likelihood estimator of the
parameter vector of a stochastic process Z following a ZTCP-INGARCH model with ϕt

deterministic and independent of t. So, the estimator is deduced considering that the
conditional law of Zt given Zt−1 is a Poisson one.
So, we have n observations, Z1, ..., Zn, of a strictly and ergodic time series valued in

N following a ZTCP-INGARCH model (1) with deterministic and independent of time
ϕt = ϕ functions, such that

E
(
Zt|Zt−1

)
= m (Zt−1, Zt−2, ...; θ0,K0) =

λt

1− exp
{
i λt

ϕ′ (0)
[g (0)− 1]

} =
λt

1− exp (−K0λt)

with θ0 = (α00,α01, ..., a0p,β01, ...,β0q) unknown belonging to some parameter compact
subset, Θ, of ]0,+∞[× [0,+∞[p+q , K0 =

i
ϕ′ (0)

[1− g (0)] > 0, and where

λt = λt(θ0) = α00 +
p∑

j=1

α0jZt−j +
q∑

k=1

β0kλt−k(θ0) (3)

with
q∑

k=1
β0k < 1.

Considering the polynomials Aθ0 (z) =
p∑

j=1
α0jzj and Bθ0 (z) = 1−

q∑
k=1

β0kzk, we assume

that if q > 0, Aθ0 (z) and Bθ0 (z) have no common roots and that at least one α0j ̸= 0
for j = 1, ..., p, and β0q ̸= 0 if α0p = 0.
For all ϕ = (θ,K) = (α0,α1, ...,αp,β1, ...,βq,K) ∈ Θ× ]0,+∞[ , the measurable func-

tion m = m (Zt−1, Zt−2, ...;ϕ) is valued in (α0,+∞), since

m =
λt

1− exp (−Kλt)
≥ λt ≥ α0.

We also assume the existence of E (Zt)
1+ε , for some ε > 0, and that the conditional

distribution of Zt is non degenerated.
For all ϕ ∈ Θ× ]0,+∞[ , z0 ∈ N and t ≥ 1, we consider
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mt (ϕ) = m (Zt−1, Zt−2, ...;ϕ) and m̃t (ϕ) = m (Zt−1, Zt−2, ..., Z1, z0, z0, ...;ϕ) .

The choice of z0 for the unknown initial values Z0, Z−1, ... involved in mt (ϕ) is asymp-
totically unimportant since we have a.s.

lim
t→+∞

at = 0 and lim
t→+∞

Ztat = 0, where at = sup
ϕ∈Θ×]0,+∞[

|m̃t (ϕ)−mt (ϕ)| .

In fact,

|m̃t (ϕ)−mt (ϕ)| =

∣∣∣∣∣∣
λt

1− exp (−Kλt)
− λ̃t

1− exp
(
−Kλ̃t

)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

exp (−Kλt)− exp
(
−Kλ̃t

)

(1− exp (−Kλt))
(
1− exp

(
−Kλ̃t

))

∣∣∣∣∣∣
|λt|+

∣∣∣λt − λ̃t

∣∣∣
M

where M = 1− exp (−Kα0) . So,

|m̃t (ϕ)−mt (ϕ)| ≤
|exp(−Kλt)−exp(−Kλ̃t)|

M2 |λt|+
|λt−λ̃t|

M .

Noting that equation (3) is similar to that satisfied by the volatility in a GARCH(p, q)
model, the arguments used by [3] to show (7.30), p. 157, give

sup
θ∈Θ

∣∣∣λt (θ)− λ̃t (θ)
∣∣∣ ≤ Rρt

where R and ρ denote generic quantities such that R > 0 and ρ ∈ (0, 1) .

Moreover the inequality
∣∣∣λt (θ)− λ̃t (θ)

∣∣∣ ≤ Rρt is equivalent to

exp
(
−Kλ̃t (θ)

) [
exp

(
−KRρt

)
− 1
]
≤ exp [−Kλt (θ)]−exp

[
−Kλ̃t (θ)

]
≤ exp

(
−Kλ̃t (θ)

) [
exp

(
KRρt

)
− 1
]
.

As exp
(
−Kλ̃t (θ)

)
≤ 1 and lim

t→+∞

[
exp

(
±KRρt

)
− 1
]
= 0, we deduce that

exp [−Kλt (θ)]− exp
[
−Kλ̃t (θ)

]
= o (1) , t → +∞.

Thus
{
exp [−Kλt (θ)]− exp

[
−Kλ̃t (θ)

]}
λt (θ) = o (1)

as, when t → +∞, λt is either a.s. bounded or tends a.s. to +∞, and λ̃t is asymptotically
equivalent to λt. Finally we may write

∣∣∣exp [−Kλt (θ)]− exp
[
−Kλ̃t (θ)

]∣∣∣ |λt (θ)| = o (1) , t → +∞.

As ϕ *→ mt (ϕ) is almost surely continuous and Θ× ]0,+∞[ is a compact set, a Poisson
QML estimator of ϕ0 is defined ([6]) as any measurable solution of
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ϕ̂n = arg max
ϕ∈Θ×]0,+∞[

L̃n (ϕ) , L̃n (ϕ) =
1

n

n∑

t=s+1

l̃t (ϕ) (4)

where l̃t (ϕ) = −m̃t (ϕ) + Zt log m̃t (ϕ) and s is an integer.

So, the conditions (1)-(6) of [1] are satisfied and we may state the following result
establishing the consistency of the Poisson conditional QML estimator of ϕ.

Theorem 3.1 Under the previous conditions and if the parameter ϕ is identifiable, the
Poisson conditional QML estimator ϕ̂n defined in (4) satisfies

lim
n

ϕ̂n = ϕ0 a.s.

We observe that when the parameter K is known the identifiability assumption

mt (θ) = mt (θ0) almost surely if and only if θ = θ0

is satisfied, which may be proved using the arguments of [1] (for their relation (10)) and
taking also into account that the function x

1−exp(−Kx) is injective, x > 0. So, in this case

the consistency of the Poisson conditional QML estimator of θ, lim
n

θ̂n = θ0 a.s., is stated.

In both cases, the study of the asymptotic distribution uses new conditions with non-
trivial analysis in this context but, like in [1], the asymptotic normality of this estimator
is expected when ϕ0 belongs to the interior of Θ× ]0,+∞[.

3.2. Zero truncated Poisson INGARCH process: Conditional maximum
likelihood estimation

Using the conditional maximum likelihood methodology we estimate in this subsection
the parameter vector of a stochastic process Z following a ZTCP-INGARCH(p, q) model
for which g(u) = u, that is, the conditional law is a ZT Poisson one.
The generating function of Zt conditioned on Zt−1 is then

GZt|Zt−1
(u) =

exp (λt (u− 1))− exp (−λt)

1− exp (−λt)

with λt = α0+
p∑

j=1
αjZt−j +

q∑
k=1

βkλt−k. Thus, the probability function of the conditioned

law is

P
(
Zt = k | Zt−1

)
=

G(k)
Zt|Zt−1

(0)

k! = exp(−λt)(λt)
k

(1−exp(−λt))k!
, k = 1, 2, ...

The conditional likelihood function associated to n observations Z1, ..., Zn conditionally
to the initial values is

L (θ) =
n∏

t=1

exp(−λt)(λt)
Zt

(1−exp(−λt))Zt!

where θ = (α0,α1, ...,αp,β1, ...,βq)
T = (θ0, θ1, ..., θp, θp+1, ..., θp+q)

T
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The log-likelihood function is given by

L (θ) = logL (θ) =
n∑

t=1

[Zt log (λt)− λt − log (Zt!)− log (1− exp (−λt))]

=
n∑

t=1

lt (θ)

with lt (θ) = Zt log (λt)− λt − log (Zt!)− log (1− exp (−λt)) .
To estimate the true value of θ, θ0, it is natural to maximize L (θ) but, as the estimates

has no closed form, numerical optimization methods have to be used, taking into account
the initial values to be considered in the computations.
In order to estimate the asymptotic covariance matrix of the conditional maximum

likelihood estimator, the first and second derivatives of lt in order to θi,
∂lt
∂θi

and ∂2lt
∂θi∂θj

,
0 ≤ i, j ≤ p+ q are deduced in Appendix A and the usual information matrix equality

−E
(

∂2lt
∂θi∂θj

)
= E

(
∂lt
∂θi

∂lt
∂θj

)
,

is stated.

3.3. Zero truncated Geometric INGARCH process: Conditional maximum
likelihood estimation

Let us consider now the particular model previously referred, associated to a random
and dependent of t characteristic function, that is, the stochastic process Z following a

Zero Truncated geometric INGARCH model with λt = α0 +
p∑

j=1
αjZt−j +

q∑
k=1

βkλt−k.

Using the conditional maximum likelihood methodology we estimate in this subsection
the parameter vector of the stochastic process Z.
The probability function of the conditioned law is then

P
(
Zt = k | Zt−1

)
=

G(k)
Zt|Zt−1

(0)

k! = λk−1
t

(1+λt)
k , k = 1, 2, ...

Thus, the conditional likelihood function associated to n observations Z1, ..., Zn con-
ditionally to the initial values is

L (θ) =
n∏

t=1

1
λt

(
λt

1+λt

)Zt

where θ = (α0,α1, ...,αp,β1, ...,βq)
T = (θ0, θ1, ..., θp, θp+1, ..., θp+q)

T

The log-likelihood function is given by

L (θ) = logL (θ) =
n∑

t=1

[
− log λt + Zt log

(
λt

1 + λt

)]

=
n∑

t=1

lt (θ)

with lt (θ) = − log λt + Zt [log λt − log (1 + λt)] .
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The estimates are obtained, as previously, by numerical optimization methods consid-
ering convenient initial values. Moreover we deduce in Appendix B the first and second
derivatives of lt in order to θi,

∂lt
∂θi

and ∂2lt
∂θi∂θj

, 0 ≤ i, j ≤ p + q and state the usual
information matrix equality

−E
(

∂2lt
∂θi∂θj

)
= E

(
∂lt
∂θi

∂lt
∂θj

)
.

3.4. Simulation study

To implement the estimation methodology and analyze its performance in a concrete
situation we consider now a stochastic process Z following a ZT Poisson INGARCH(1,1)
model with λt = 0.8+0.5Zt−1+0.3λt−1. In this case we have K = 1 as defined in Section
3.1. We generate fifty model replications each one with 1100 observations and, in order
to minimize the effect of the initial conditions, we discard for each replication the first
100 observations.
In Table 1 we present the estimates of the model parameters using, respectively, the

conditional maximum likelihood and the conditional quasi-maximum likelihood estima-
tion methodologies. We point out that, in the first case, we take the true conditional
likelihood that is the corresponding to the ZT Poisson conditional law and, in the second
one, we consider a pseudo-conditional likelihood assuming that the conditional distribu-
tion is Poisson with parameter E(Zt/Zt−1) =

λt

1−exp(−Kλt)
and K unknown.

We have taken samples of sizes 600 and 1000 for each one of the replications, and we
observe, in both cases, an increasing proximity of the estimates and the true values of
the model parameter vector as in particular the standard errors reveal (in all tables, four
significant decimal digits are displayed).

Table 1. Maximum likelihood and quasi-maximum likelihood estimates
of the parameters of the ZT Poisson INGARCH(1,1) model with
λt = 0.8 + 0.5Zt−1 + 0.3λt−1, the root mean square error and the cor-
responding standard errors in brackets (n = 600 and 1000).

ZT Poisson INGARCH(1,1) Estimates ML RMS

n = 600
α̂0 0.7727 (0.0842)
α̂1 0.5103 (0.0290)

β̂1 0.2989 (0.0412)
1.9578 (0.0318)

n = 1000
α̂0 0.8374 (0.0710)
α̂1 0.4804 (0.0111)

β̂1 0.3098 (0.0309)
1.9556 (0.0518)

Estimates Quasi-ML

n = 600

α̂0 1.0553 (0.2807)
α̂1 0.5540 (0.0188)

β̂1 0.1322 (0.0072)

K̂ 0.8926 (0.3166)

1.9765 (0.0587)

n = 1000

α̂0 1.1080 (0.2378)
α̂1 0.5072 (0.0156)

β̂1 0.2047 (0.0053)

K̂ 0.9929 (0.2502)

2.0926 (0.0272)

The natural better performance of the conditional maximum likelihood estimator is
observed, but the good results also obtained with the conditional quasi-maximum like-
lihood one reveal a robust estimation alternative with a huge field of application. Its
robustness is particularly observed taking into consideration the great proximity, in all
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cases, of the mean square error given by

RMS2 =
1

n

n∑

t=1

⎛

⎝Zt −
λ̂t

1− exp
(
−K̂λ̂t

)

⎞

⎠
2

.

In order to evaluate the finite distance performance of the conditional likelihood es-
timator of the parameter vector of a ZT Geometric INGARCH process we generate
now, within the same framework of sample sizes and replications, a stochastic process
Z following a ZT Geometric INGARCH(1,1) model with λt = 0.8 + 0.5Zt−1 + 0.3λt−1.
The estimates obtained for the parameters are presented in the Table 2. We stress the
closeness between the estimates and the true values of the model parameters, when the
number of observations increase, particularly assessed by the significant decrease of the
corresponding mean square error.

Table 2. Maximum likelihood estimates of the parameters of the ZT Geomet-
ric INGARCH(1,1) model with λt = 0.8 + 0.5Zt−1 + 0.3λt−1, the root mean
square error and the corresponding standard errors in brackets (n = 600 and 1000).

ZT Geometric INGARCH(1,1) Estimates ML RMS

n = 600
α̂0 0.6429 (0.0851)
α̂1 0.5177 (0.0337)

β̂1 0.3066 (0.0239)
9.2181 (0.9982)

n = 1000
α̂0 0.9607 (0.1378)
α̂1 0.4916 (0.0222)

β̂1 0.2703 (0.0418)
8.3807 (0.5430)

We study also the effect of modeling a sample of 1000 observations generated by the
same initial ZT Poisson INGARCH(1,1) process by other models of the ZT Poisson
INGARCH class with orders different from the true ones. For the comparison we use the
log-likelihood function and Akaike and Schwarz criteria values and we resume this study
in Table 3.
Comparing the results with those of the ZT Poisson INGARCH(1,1) model used to

generate the observations (line 2 of Table 3), we note that in the two ZT Poisson INARCH
models considered (lines 3 and 4 of Table 3) the log-likelihood function has smaller
values. Moreover the minimum values of the Akaike and Schwarz criteria are as expected
obtained for the ZT Poisson INGARCH(1, 1). However we note that the ZT Poisson
INARCH(2) model competes well with the true model which is certainly related with
the great coefficient of Zt−1 in the evolution of λt.
We also study the effect of modeling the same observations by the corresponding non

truncated INGARCH models and the results, reported in lines 5, 6 and 7 of Table 3,
although not strongly different from the previous ones, present the lowest values of the
log-likelihood function and the highest ones for Akaike and Schwarz criteria regarding
all the models considered.
The small differences between the standard and the zero-truncated Poisson models may

be explained by the value of the mean of the count response variable ([8]), greater than 4,
which corresponds to a negligible probability for the occurrence of zero values. In order to
see the influence of the mean, we repeat the analysis considering now 1000 observations
from a ZT Poisson INGARCH(1,1) model with a smaller mean by considering λt =
0.5 + 0.3Zt−1 + 0.2λt−1, whose results are detailed in Table 4.

We note that in this case the differences between the true model and the non trun-
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Table 3. Conditional maximum likelihood estimates of the parameters of the models, with the corresponding
standard errors and probabilities, the log-likelihood function and Akaike and Schwarz criteria.

Model Estimates Log L Akaike Schwarz
criterion criterion

ZT Poisson INGARCH(1,1)

Coeff. Std. Error Prob.
α̂0 0.7300 0.1974 0.0002
α̂1 0.4938 0.0367 0.0000
β̂1 0.3380 0.0570 0.0000

2672.787 -5.3396 -5.3249

ZT Poisson INARCH(1)
Coeff. Std. Error Prob.

α̂0 1.6435 0.1315 0.0000
α̂1 0.6210 0.0285 0.0000

2652.876 -5.3018 -5.2919

ZT Poisson INARCH(2)

Coeff. Std. Error Prob.
α̂0 1.2412 0.1454 0.0000
α̂1 0.5025 0.0360 0.0000
α̂2 0.2057 0.0342 0.0000

2672.180 -5.3384 -5.3236

Poisson INGARCH(1,1)

Coeff. Std. Error Prob.
α̂0 1.0080 0.2042 0.0000
α̂1 0.4698 0.0375 0.0000
β̂1 0.3201 0.0582 0.0000

2646.227 -5.2865 -5.2717

Poisson INARCH(1)
Coeff. Std. Error Prob.

α̂0 1.8666 0.1371 0.0000
α̂1 0.5910 0.0291 0.0000

2627.707 -5.2514 -5.2416

Poisson INARCH(2)

Coeff. Std. Error Prob.
α̂0 1.4903 0.1515 0.0000
α̂1 0.4778 0.0368 0.0000
α̂2 0.1953 0.0349 0.0000

2645.742 -5.2855 -5.2708

Table 4. Conditional maximum likelihood estimates of the parameters of the models, with the corre-
sponding standard errors and probabilities, the log-likelihood function and Akaike and Schwarz criteria
(λt = 0.5 + 0.3Zt−1 + 0.2λt−1).

Model Estimates Log L Akaike Schwarz
criterion criterion

ZT Poisson INGARCH(1,1)

Coeff. Std. Error Prob.
α̂0 0.4624 0.1944 0.0174
α̂1 0.2457 0.0503 0.0000
β̂1 0.2858 0.1461 0.0504

-498.9299 1.0039 1.0186

Poisson INGARCH(1,1)

Coeff. Std. Error Prob.
α̂0 1.1880 0.2695 0.0000
α̂1 0.1768 0.0662 0.0075
β̂1 0.2070 0.1972 0.2937

-751.0212 1.5080 1.5228

cated one are significant, namely in which concerns the closeness between the parameters
estimates and the true values as the standard errors reinforce. Moreover, taking into ac-
count all the criteria used, we verify that in this case the Poisson INGARCH(1,1) model
gives clearly worst results than the ZT Poisson INGARCH(1,1) one. In conclusion, the
standard model is not so adequate as the ZT one introduced in this paper to reproduce
the zero truncation characteristic of the initial observations.

4. Real-data example

In this section, we want to assess the improvement provided with real data when using a
model ZTCP-INGARCH instead of a standard CP-INGARCH. In order to do this let us
consider the time series of the quarterly counts of poliomyelitis cases in the United States
of America starting from January 1970 and ending in December 1983 (56 observations),
obtained in the Forecasting Principles site (http:// www.forecastingprinciples.com). Fig-
ure 3 presents the original series and its principal descriptive summaries. In Figure 4 the
empirical autocorrelations and partial autocorrelations are displayed.
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Figure 3. Quarterly poliomyelitis series: time plot and descriptive summaries

We have in fact a strictly positive integer-valued time series whose values are relatively
low. The empirical mean and variance of the series are 4.0357 and 13.4896. The empirical
analysis of autocorrelation functions seems to show a serial dependence to order 2 of this
time series.

Figure 4. Quarterly poliomyelitis series: the sample autocorrelations and partial autocorrelations

The data are thus firstly fitted by the ZT Poisson INARCH(2) and Poisson INARCH(2)
models. Regarding the general good performance of the GARCH(1,1) modeling, we get
also the ZT Poisson INGARCH(1,1) and Poisson INGARCH(1,1) fittings. Conditional
maximum likelihood parameter estimates, their standard errors and the three criteria
previously used are summarized in Table 5. Despite the better values for the three cri-
teria in the INGARCH(1,1) model we note the non significance of β1 estimate. So the
parsimonious principle lead us to consider an INARCH(1) modeling (lines 6 and 7) and
we verify that the ZT Poisson INARCH(1) model presents the best results.
To analyze in practice the alternative of replacing a zero truncated model Z by the

corresponding shifted model Z − 1, the fitting of a Poisson INARCH(1) model to the
shifted series is considered (last line of Table 5). We note that, according to the criteria,
this model gives the worst fitting. A ZT geometric INARCH(1) model was also fitted to
this data. The results obtained (Table 6 in Appendix D) also show clearly that this is
not the right model.
As an overall appreciation of the results of the Table 5, we point out that taking

into consideration the Akaike and Schwarz criteria and the values of the log-likelihood
function, the better performance of the ZT models is evident.
Finally, we observe that the improvement achieved with this ZT models related to

Poisson distribution in the quarterly poliomyelitis data fitting is naturally due to the
nature of this data that describe a rare phenomenon which occurs effectively with some
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Table 5. Conditional maximum likelihood estimates of the parameters, with the corresponding standard
errors and probabilities, the log-likelihood function and Akaike and Schwarz criteria for the quarterly
poliomyelitis cases.

Model Estimates Log L Akaike Schwarz
criterion criterion

ZT Poisson INARCH(2)

Coeff. Std. Error Prob.
α̂0 1.7785 0.3232 0.0000
α̂1 0.2822 0.0520 0.0000
α̂2 0.2245 0.0545 0.0000

89.5949 -3.2072 -3.0967

Poisson INARCH(2)

Coeff. Std. Error Prob.
α̂0 2.0432 0.3449 0.0000
α̂1 0.2646 0.0529 0.0000
α̂2 0.2071 0.0567 0.0003

87.5311 -3.1308 -3.0882

ZT Poisson INGARCH(1,1)

Coeff. Std. Error Prob.
α̂0 3.0840 0.4070 0.0000
α̂1 0.2558 0.0534 0.0000
β̂1 -0.0223 0.1072 0.8351

97.6241 -3.4409 -3.3314

Poisson INGARCH(1,1)

Coeff. Std. Error Prob.
α̂0 3.3869 0.4454 0.0000
α̂1 0.2387 0.0540 0.0000
β̂1 -0.0581 0.1150 0.6135

96.3856 -3.3958 -3.2863

ZT Poisson INARCH(1)
Coeff. Std. Error Prob.

α̂0 2.9808 0.2118 0.0000
α̂1 0.2591 0.0501 0.0000

97.6201 -3.4771 -3.4041

Poisson INARCH(1)
Coeff. Std. Error Prob.

α̂0 3.1156 0.2180 0.0000
α̂1 0.2472 0.0507 0.0000

96.3591 -3.4312 -3.3582

Z-1: Poisson INARCH(1)
Coeff. Std. Error Prob.

α̂0 2.3505 0.1329 0.0000
α̂1 0.2514 0.0407 0.0000

27.6519 -0.9328 -0.8598

regularity.

5. Conclusion

Compound Poisson INGARCH processes are a wide family of integer-valued models,
recently introduced, that are able to describe simultaneously characteristics of count
data like different kinds of conditional heteroscedasticity or overdispersion. But, these
kind of processes all assume that the count data in analysis have zero counts. Many times
the count systems to be modeled structurally exclude zeros. So, in order to model such
data properly, the underlying probability distribution should preclude null outcomes.
The potential of compound Poisson probability distributions to describe huge different
characteristics of count data justify the introduction of the new class of zero truncated
models inspired in the CP-INGARCH ones but amended to exclude zeros. We point out
that the main subfamily of models here studied, namely the class of ZTCP-INGARCH
processes with ϕt deterministic and independent of t, may accommodate a significant
number of models useful in applications. As relevant examples we should refer the ZT
Poisson and the ZT Neyman Type A ones, corresponding respectively to ϕt(u) = exp(iu)
and ϕt(u) = exp (φ (exp(iu)− 1)).
In conclusion, the probabilistic and statistical study developed is enough consistent for

using these models in applications related to rare phenomena but with effective occur-
rences. We hope to have illustrated these facts with the simulation and real data studies
presented.
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Appendix A. Conditional ML estimation of ZT Poisson INGARCH models

In order to estimate the asymptotic covariance matrix of the conditional maximum like-
lihood estimator, we begin by deriving the first and second derivatives of

lt (θ) = Zt log (λt)− λt − log (Zt!)− log (1− exp (−λt))

in order to θi, i = 0, ..., p+ q. The first derivatives of lt are

∂lt
∂θi

= Zt
∂λt

∂θi

1

λt
− ∂λt

∂θi
−

− exp (−λt)
(
−∂λt

∂θi

)

1− exp (−λt)

=
∂λt

∂θi

(
Zt

λt
− 1

1− exp (−λt)

)
(2)

and the second derivatives are

∂2lt
∂θi∂θj

=
∂2λt

∂θi∂θj

(
Zt

λt
− 1

1− exp (−λt)

)
+

∂λt

∂θi

[
−Zt

λ2
t

∂λt

∂θj
+ (1− exp (−λt))

−2 exp (−λt)
∂λt

∂θj

]

=
∂2λt

∂θi∂θj

(
Zt

λt
− 1

1− exp (−λt)

)
+

[
−Zt

λ2
t

+
exp (−λt)

(1− exp (−λt))
2

]
∂λt

∂θi

∂λt

∂θj
(3)

for 0 ≤ i, j ≤ p+ q. Moreover,

∂λt

∂α0
= 1 +

q∑

k=1

βk
∂λt−k

∂α0
;

∂λt

∂αi
= Zt−i +

q∑

k=1

βk
∂λt−k

∂αi
, i = 1, ..., p;

∂λt

∂βj
= λt−j +

q∑

k=1

βk
∂λt−k

∂βj
, j = 1, ..., q.

Let us consider

W T
t = (1, Zt−1, ..., Zt−p,λt−1, ...,λt−q)

and let ∇f denote the gradient of any function f . We have

∇λt = Wt +
q∑

k=1
βk∇λt−k.
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The equation (2) may now be written as

∇lt =
(
Zt

λt
− 1

1−exp(−λt)

)
∇λt

and the equation (3) becomes

Ht =
(
Zt

λt
− 1

1−exp(−λt)

)
∇
(
∇Tλt

)
−
[
Zt

λ2
t
− exp(−λt)

(1−exp(−λt))
2

]
∇λt∇Tλt.

Taking expectations in both sides of the equation (3) we obtain

E
(

∂2lt
∂θi∂θj

|Zt−1

)
=

= E

[
∂2λt

∂θi∂θj

(
Zt

λt
− 1

1− exp (−λt)

)
−
(
Zt

λ2
t

− exp (−λt)

(1− exp (−λt))
2

)
∂λt

∂θi

∂λt

∂θj
|Zt−1

]

=
∂2λt

∂θi∂θj
E

(
Zt

λt
− 1

1− exp (−λt)
|Zt−1

)
− E

(
Zt

λ2
t

− exp (−λt)

(1− exp (−λt))
2 |Zt−1

)
∂λt

∂θi

∂λt

∂θj
.

But from E
(
Zt|Zt−1

)
= λt

1−exp(−λt)
we deduce

E

(
Zt

λt
|Zt−1

)
=

1

1− exp (−λt)

and

E

(
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λ2
t
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)
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1
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.

So

E
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)
= −
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1
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2

)
∂λt
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Consequently

−E
(

∂2lt
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)
= E
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1
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− exp(−λt)
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2

)
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]
.

In an analogous way, from (2) we get

E
(

∂lt
∂θi

∂lt
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)
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(
∂λt

∂θi
∂λt

∂θj

(
Zt

λt
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)2
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)
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Taking into account that E
(
Z2
t |Zt−1

)
= λ2

t+λt

1−exp(−λt)
we deduce
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]
.
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Consequently

E

(
∂lt
∂θi

∂lt
∂θj

)
= E

[
∂λt

∂θi

∂λt

∂θj

(
λt + 1

λt (1− exp (−λt))
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(1− exp (−λt))
2

)]

= E

[
∂λt

∂θi
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(
1
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1

λt (1− exp (−λt))
− 1
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2

)]
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[
∂λt

∂θi

∂λt

∂θj

(
− exp (−λt)

(1− exp (−λt))
2 +

1

λt (1− exp (−λt))

)]
.

We deduce that this ZT model satisfy the information matrix equality

−E
(

∂2lt
∂θi∂θj

)
= E

(
∂lt
∂θi

∂lt
∂θj

)
.

Appendix B. Conditional ML estimation of a ZT geometric INGARCH
model

Let us consider the estimation of the asymptotic covariance matrix of the conditional
maximum likelihood estimator, θ̂, of a ZT geometric INGARCH model. The first deriva-
tives of lt (θ) = − log λt + Zt [log λt − log (1 + λt)] in order to θi, i = 0, ..., p+ q, are

∂lt
∂θi

= − 1

λt

∂λt

∂θi
+ Zt

[
1

λt

∂λt

∂θi
− 1

1 + λt

∂λt

∂θi

]

=
∂λt

∂θi

[
− 1

λt
+ Zt

1

λt (1 + λt)

]
(2)

and the second derivatives

∂2lt
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=
∂2λt

∂θi∂θj

[
− 1

λt
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1
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]
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1
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∂θj
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∂λt

∂θj

λ2
t (1 + λt)

2

]

=
∂2λt
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+ Zt

1
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]
+

∂λt

∂θi

∂λt

∂θj

[
1

λ2
t

− Zt
1 + 2λt

λ2
t (1 + λt)

2

]
(3)

for 0 ≤ i, j ≤ p + q. Moreover, ∂λt

∂α0
, ∂λt

∂αi
, i = 1, ..., p, and ∂λt

∂βj
, j = 1, ..., q, satisfy the

relations presented in Appendix A. Setting

W T
t = (1, Zt−1, ..., Zt−p,λt−1, ...,λt−q)

and denoting ∇f the gradient of any function f , we have

∇λt = Wt +
q∑

k=1
βk∇λt−k.

The equations (2) and (3) may now be written as

∇lt =
(
− 1

λt
+ Zt

1
λt(1+λt)

)
∇λt

Ht =
(
− 1
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1
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∇
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−
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1
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2

]
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Like in the previous Appendix we obtain
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and so
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)
= E

[
1

λt (1 + λt)
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.

We also get

E
(
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)
= E
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∂λt

∂θi
∂λt
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and taking into account that E
(
Z2
t |Zt−1

)
= (2λt + 1) (1 + λt) we deduce
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∂θi
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The usual information matrix equality

−E
(

∂2lt
∂θi∂θj

)
= E

(
∂lt
∂θi

∂lt
∂θj

)
,

also follows in the conditional maximum likelihood estimation of a ZT geometric IN-
GARCH model.

Appendix C. Algorithm of generating the data in Figures 1 and 2

series lambda= 1, x=1, lambdaz=2, z=2
scalar aux1, aux2, u, j, p, f
for !i=2 to 1100

lambda(!i)= 0.2+0.5*x(!i-1)+0.3* lambda(!i-1)
x(!i)=@rpoisson(lambda(!i))

next
for !i=2 to 1100

lambdaz(!i)= 0.2+0.5*z(!i-1)+0.3* lambdaz(!i-1)
aux1= lambdaz(!i)
aux2=exp(-aux1)
u=@runif(0,1)
j=1
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p=aux1*aux2/(1-exp(-aux1))
f=p
while u ≥ f
p=p*aux1/(j+1)
f=f+p
j=j+1

wend
z(!i)=j

next

Appendix D. Quarterly poliomyelitis data and the ZT geometric
INARCH(1) model

Table 6. Conditional maximum likelihood estimates of the parameters of the ZT geometric
INARCH(1) model for the quarterly poliomyelitis data, with the corresponding standard errors and
probabilities, the log-likelihood function and Akaike and Schwarz criteria.

Model Estimates Log L Akaike Schwarz
criterion criterion

ZT G INARCH(1)
Coeff. Std. Error Prob.

α̂0 2.0456 0.6172 0.0009
α̂1 0.2268 0.2156 0.2137

-123.7018 4.5710 4.6440
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