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Abstract

Based on a recently derived effective chiral meson Lagrangian from the extendedSU(2)⊗ SU(2)
Nambu–Jona-Lasinio (ENJL) model, in the linear realization of chiral symmetry, we extract to
leading order in the 1/Nc expansion all associated relevant three-point functionsρ → ππ , σ → ππ ,
a1 → ρπ , a1 → σπ , as well as the amplitude forππ scattering. We discuss the formal differences of
these amplitudes as compared with those derived in the literature and calculate the associated decay
widths and scattering parameters. The differences have two origins:

(i) new terms, which are proportional to the current quark mass and arise from taking the correct
NJL vacuum from the first steps in a proper-time expansion, are present in the Lagrangian;

(ii) an implemented chiral covariant treatment of the diagonalization in the pseudoscalar–axial-
vector sector induces new couplings between three or more mesonic fields.

Both effects have been derived from the chiral Ward Takahashi identities, which are fully taken into
account at each order of the proper-time expansion. 2001 Elsevier Science B.V. All rights reserved.

PACS: 12.39.Fe; 11.30.Rd
Keywords: Chiral meson Lagrangian; Correct vacuum and proper-time expansion

1. Introduction

The Nambu–Jona-Lasinio (NJL) model [1] and its several extensions (see, e.g., [2–14])
have been vastly studied as effective models of the strong interaction, based on the chiral
dynamics of four-quark interactions. By incorporating the main symmetries of QCD
and being reminiscent of the effective four-fermion interaction for QCD, obtained after
eliminating the gluonic degrees of freedom [15], the NJL model is a useful playground
for simulating relevant features of low-energy hadron physics. Its innumerous applications
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range from the calculation of the low-lying meson spectra, meson couplings, decay and
scattering amplitudes, diquark physics and extensions to the baryonic sector, to modeling
of finite density and temperature effects on chiral properties of hadrons.

In the present paper, we focus on the implications of a recently derivedSU(2) ⊗
SU(2) effective chiral Lagrangian [18,19], on the low-lying hadron phenomenology. The
Lagrangian has been constructed on the basis of the ENJL model by using the Schwinger
proper-time representation for the modulus of the one-loop quark determinant [16,17],
and the following long wavelength expansion of its heat kernel. This semiclassical WKB
expansion of the ENJL action is implemented by polynomial counterterms, which result
from requiring that the symmetry-breaking pattern of the fermionic Lagrangian in the
presence of the explicit chiral symmetry-breaking term be equivalent to the one of the
bosonized effective Lagrangian [19,20]. As a consequence of these symmetry requirements
we have shown how relevant and previously not considered current quark-mass terms
appear in the local action of the chiral mesonic fields. These terms allow to account for
the correct vacuum already at the first steps of the proper-time expansion and lead to a
resummation in the current quark mass. Furthermore, in the case of the linear realization
of chiral symmetry, the Lagrangian contains new meson couplings which derive from
a modified diagonalization of the axial-vector–pseudoscalar interaction, which we have
shown to be necessary in order to preserve the chiral transformation properties of the
vector mesons. We consider worthwhile understanding the consequences of such new
structures on relevant amplitudes and scattering processes. As we shall show, the effects of
the new current quark-mass terms will be manifest in all considered amplitudes, and may
appear both explicitly and implicitly through the coupling parameters. As for the covariant
diagonalization, we shall observe the following:

(1) theρππ coupling becomes a three-derivative type, contrary to the one-derivative
type obtained in the usual linear approaches. This is important, since the latter
violates chiral symmetry [21]. On the mass shell one recovers the one-derivative
structure.

(2) Thea1πσ coupling acquires also new three-derivative type of couplings. On the
mass shell it reduces in form to the known results of [12,22].

(3) The amplitudes,σππ and a1ρπ are not altered by the proposed covariant
diagonalization.

(4) The contact term with four pion fields gets modified with extra two- and four-
derivatives in the fields.

One expects therefore that when off-shell processes are at work, such as in form factors or
ρ exchange inππ scattering, the related amplitudes are affected correspondingly. We shall
show, however, that in the case ofππ scattering, one recovers old results (up to current
quark-mass terms), regardless of using the covariant diagonalization.

We work in the leading 1/Nc approximation, that is, to fermion one-loop level. The
bosonized Lagrangian is correspondingly treated to tree-level order in the meson couplings.
Furthermore, we sum the proper-time series up to the third Seeley–DeWitt coefficient,
which amounts to keeping, out of the full momentum dependence of then-point functions,
only the quadratic and logarithmic divergent contributions. There are several reasons to
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stop at this order in the heat kernel expansion. First, once this is done, the masses and
coupling constants of the chiral fields are completely fixed in a way which guarantees that
the first and the second Weinberg sum rules are automatically satisfied. Second, truncating
the proper-time series at this order is substantiated by the results of [23], where an infinite
number of local counterterm operators were added to the ENJL Lagrangian, with couplings
fixed, such that the corresponding Adler function exhibited the properties of the “lowest
meson dominance” approximation to large-Nc QCD. For the vector and axial-vector two-
point functions this requirement was tantamount to removing the nonconfining terms and
guarantees their correct matching to the QCD short-distance behaviour. Third, one might
expect, except for amplitudes which are finite previous to regularization, the divergent
contributions to dominate over the finite ones.

The paper is structured as follows. In the second section, we set up the notation and
situate the problem, by giving a short review of the results obtained in [18,19]. In Section 3,
we derive the amplitudesρ → ππ , σ → ππ , a1 → ρπ anda1 → σπ and discuss the
differences with respect to similar amplitudes obtained from other models based on ENJL-
type Lagrangians. In Section 4, we derive the amplitude forππ scattering. In Section 5,
we present the numerical results. We conclude with a summary and outlook.

2. The Lagrangian: current quark-mass terms and covariant diagonalization

The starting point is the effective quark Lagrangian of strong interactions which is
invariant under a global colourSU(Nc) symmetry:

L = q̄
(
iγ µ∂µ −mc

)
q + GS

2

[
(q̄q)2 + (q̄ iγ5τiq)

2]
− GV

2

[(
q̄γ µτiq

)2 + (
q̄γ µγ5τiq

)2]
. (1)

Hereq is a flavor doublet of Dirac spinors for quark fieldsq̄ = (ū, d̄). Summation over the
colour indices is implicit. We use the standard notation for the isospin Pauli matricesτi .
The current quark-mass matrixmc = diag(m̂u, m̂d) is chosen in such a way that̂mu =
m̂d = m̂. Without this term the Lagrangian (1) would be invariant under global chiral
SU(2)⊗SU(2) symmetry. The coupling constantsGS andGV have dimensions(Length)2

and can be fixed from the meson-mass spectrum. The transformation law for the quark
fields is the following:

δq = i(α + γ5β)q, δq̄ = −iq̄(α − γ5β), (2)

where parameters of global infinitesimal chiral transformations are chosen asα = αiτi ,
β = βiτi . Under infinitesimal chiral transformations the LagrangianL exhibits, therefore,
the following explicit symmetry-breaking pattern:

δL = −2im̂(q̄γ5βq), (3)

which is to be kept intact at each stage of calculations (here we are not considering the
anomalous sector). The chiral effective Lagrangian which we obtain [19] from (1) as
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result of the heat kernel expansion up to and including the third-order Seeley–DeWitt
coefficient and taking into account the symmetry requirements has the following form in
the spontaneously broken phase:

Leff = v2
µi + a2

µi

2GV

− m̂(σ 2 + �π 2)

2(m− m̂)GS

− NcJ1

8π2

[
1

6
tr
(
v2
µν + a2

µν

)
− 1

2
tr
(
(∇µπ)

2 + (∇µσ)
2) + (

σ 2 + 2(m− m̂)σ + π2
i

)2
]
, (4)

where the trace is to be taken in isospin space. Here we have used the notation:

vµν = ∂µvν − ∂νvµ − i[vµ, vν] − i[aµ, aν], (5)

aµν = ∂µaν − ∂νaµ − i[aµ, vν] − i[vµ, aν], (6)

∇µσ = ∂µσ − i[vµ,σ ] + {aµ,π}, (7)

∇µπ = ∂µπ − i[vµ,π] − {aµ,σ +m− m̂}, (8)

with vµ = vµiτi , aµ = aµiτi, σ , π = πiτi designating the vector–isovector, axial-vector–
isovector, scalar–isoscalar and pseudoscalar–isovector fields, respectively, andm is the
constituent quark mass. In terms of these fields, the infinitesimal chiral transformation
laws read:

δσ = −{β,π}, δπ = i[α,π] + 2(σ +m− m̂)β, (9)

δvµ = i[α,vµ] + i[β,aµ], δaµ = i[α,aµ] + i[β,vµ]. (10)

The variation of the second term of (4) yields the symmetry-breaking pattern of the
Lagrangian in terms of the collective fields, which is the equivalent of Eq. (3) in terms
of the fermionic variables:

δL = −2m̂

GS

(βiπi)= δLeff. (11)

All other terms in (4) are chiral invariant. The functionJ1 appearing in (4) is one of the set
of integralsJn emerging in the heat kernel expansion [19],

Jn
(
m2,Λ2) =

∞∫
0

dT

T 2−n
e−Tm2

ρ
(
T ,Λ2), n= 0,1,2, . . . . (12)

In the explicit evaluation of these integrals, we use as regulating kernel the Pauli–Villars
cutoff [24] with two subtractions

ρ
(
T ,Λ2) = 1− (

1+ TΛ2)e−T Λ2
. (13)

Prior to regularization, theJ1 integral is logarithmically divergent. The other characteristic
divergence of the ENJL model at one-loop order is the quadratic one, given byJ0, which
has been traded by the gap equation in writing down (4)

m− m̂

mGS
= NcJ0

2π2 , (14)

to establish the real vacuum of the spontaneously broken phase. As it stands, the effective
Lagrangian (4) still requires a diagonalization of the pseudoscalar–axial-vector fields
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appearing in the quadratic forms for the covariant derivatives. We have shown in [19] that
the simplest replacement of variables which fulfills the linear transformation property (10)
not only for old variables,vµ, aµ, but also for new ones,v′

µ, a′
µ, is

aµ = a′
µ + κ

2

({σ +m− m̂, ∂µπ} − {π, ∂µσ }),
vµ = v′

µ + iκ

2

([σ, ∂µσ ] + [π, ∂µπ]). (15)

For the case at hand, the commutator[σ, ∂µσ ] = 0. These redefinitions involve new
terms that are bilinear in the fields and induce changes at the level of couplings with
three or more fields, as compared to the noncovariant diagonalizations that have widely
been used previously in the linear chiral symmetry versions of the ENJL model. The
replacement (15) is identical to the field redefinition considered in [12,35] for the case
of nonlinear realization of chiral symmetry. The constantκ is fixed by the requirement that
the bilinear part of the effective Lagrangian becomes diagonal in the fieldsπ anda′

µ. We
find in this way that

1

2κ
= (m− m̂)2 + π2

NcJ1GV

. (16)

The physical meson fields are obtained as usual by bringing the kinetic terms to their
standard form. For the vector fields, one has:

v′
µ =

√
6π2

NcJ1
v(ph)µ ≡ gρ

2
v(ph)µ , a′

µ = gρ

2
a(ph)µ . (17)

Then we have

m2
ρ = 6π2

NcJ1GV

, m2
a =m2

ρ + 6(m− m̂)2. (18)

In particular, it implies the relations

gA = 1− 6(m− m̂)2

m2
a

= m2
ρ

m2
a

, κ = 3

m2
a

. (19)

We also have to redefine the spin-0 fields:

σ =
√

4π2

NcJ1
σ (ph) ≡ gσσ

(ph), π = gππ
(ph), gπ = gσ√

gA
. (20)

The mass formulae for spin-0 fields are

m2
π = m̂g2

π

(m− m̂)GS

, m2
σ = gAm

2
π + 4(m− m̂)2. (21)

As compared with previous calculations in [5,12], our mass formulae have a different
dependence on the current quark mass.

Let us also point out that after the field redefinitions the symmetry-breaking part takes
the form [25]

δLeff = −2m2
πfπβiπ

(ph)

i , (22)
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which leads to the well known PCAC relation for the divergence of the quark axial-vector
current

∂µ �J µ
A = 2fπm2

π �π (ph). (23)

We used the relation

gπ = m− m̂

fπ
(24)

to get (22).

3. Three-meson vertices

3.1. The σππ interaction

After using the field redefinitions (15) in the effective Lagrangian (4) and collecting all
terms involving one scalar and two pseudoscalar fields, one gets

Lσππ = −2
gσ

gA
(m− m̂)σ

{[
1− m2

π(1− gA)

2(m− m̂)2

]
�π 2 + 1− g2

A

2(m− m̂)2
(∂µ �π)2

}
, (25)

where use has been made of the mass relation for the scalar field Eq. (21), the field
renormalizations (20) (here and henceforth we drop the index(ph) on the physical fields),
and the mixing parameterκ , Eq. (16). One obtains for the decayσ(q) → πa(p)πb(p

′)
(a, b are isospin indices) the amplitude

Mσππ

(
p,p′) = 1

4
Tr{τa, τb}fσππ

(
p,p′). (26)

fσππ
(
p,p′) = 4

gσ

gA
(m− m̂)

{
1− 1− gA

2(m− m̂)2

[
m2
π + pp′(1+ gA)

]}
. (27)

On the mass shell,m2
σ = 2(m2

π + pp′) and using (21) for theσ mass, one obtains

fσππ = 4gσ (m− m̂)

{
gA + m2

π (1− gA)
2

4(m− m̂)2

}
. (28)

This amplitude differs from previously calculated ones by the current quark-mass terms.
For instance in [13]: keeping only the logarithmically divergent integrals at zero squared
momentum, we find a correspondence to the considered order of the present heat kernel
expansion, after the substitutions ((lhs) are the notations of [13] and (rhs) the present)

m→m− m̂, δ = 1− 6m2

m2
a

→ gA, (29)

which lead to Eq. (28). The decay width is obtained in the standard way:

Γσππ = 3f 2
σππ

8πm2
σ

√(
m2
σ − 4m2

π

)
. (30)
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3.2. The ρππ interaction

Again by collecting all terms involving thevµ-meson field and two-pseudoscalar fields,
after the redefinition (15), one obtains the interaction Lagrangian:

Lρππ = igρg2
π tr

{
κ

8GV

vµ[π, ∂µπ] − NcJ1

16π2

[κ
3

(
1− κ(m− m̂)2

)
ṽµν [∂µπ, ∂νπ]

− (
2κ(m− m̂)2 − 1

)
∂µπ[vµ,π]

]}
, (31)

with ṽµν denoting the derivative terms of (5). The terms containingκ which are
not multiplying quark-mass factors stem from the proposed field bilinears in the
redefinition (15) for the vector fields and were therefore absent in previous analyzes. Also
all m̂ terms are new. Using Eqs. (16) and (19), one can recast the interaction in the form

Lρππ = −i
gρ(1+ gA)

8m2
ρ

tr
(
ṽµν[∂µπ, ∂νπ]). (32)

The interaction is of three-derivative type, as opposed to the usual one-derivative coupling.
This is a consequence of the chiral covariant diagonalization. On the mass shell, one
obtains, after partial integration in the action and discarding total derivatives:

Lρππ = −i
gρ

8
(1+ gA) tr

(
vµ[π, ∂µπ]). (33)

The Lagrangian becomes on-shell equivalent in form to the standard expression, for the
nonlinear as well as linear cases, see, e.g., [12,13]. In order to make these comparisons, one
should again keep only the logarithmically divergent contributions in the cases considered
in [12,13], to be compatible with the order of the heat kernel expansion considered in the
present approach. Starting from the LagrangianLρππ of [12],

Lρππ = −igV

2
√

2
tr
(
Vµν

[
ξµ, ξν

])
,

ξµ = i
(
ξ+∂µξ − ξ∂µξ

+) → 1

fπ
∂µπ + · · · , ξ = exp

( −i

2fπ
λiφi

)
, (34)

one has the following correspondence between the notation of [12] (lhs) and the present
one (rhs):

gV = Nc

48π2fV

(
1− g2

A

)
Γ (0, x)→ 1− g2

A

2gρ
, f 2

V = NcΓ (0, x)

24π2 → 1

g2
ρ

,

Γ (0, x)→ J1, gA → m2
ρ

m2
a1

, (35)

wherex = m2/Λ2
χ . In the expression forgV of [12] we have already dropped a term

proportional toΓ (1, x), which would correspond to aJ2 integral in our notation and
therefore be of higher order than the one considered in the heat kernel expansion of
the present work. Note that, although there is a formal equivalence to the standard
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result, hidden information stemming from the current quark-mass terms is carried by the
expressions relatingmρ toma1 and bygA, Eqs. (18) and (19).

The amplitude for the processρaµ(q)→ πb(p)πc(p′) is

Mρππ

(
p,p′) = 1

4
Tr

(
τa[τb, τc]

)(
p − p′)

µ
εµ(q)fρππ , (36)

whereεµ(q) is the polarization of the vector particle and

fρππ = gρ

2
(1+ gA), (37)

for on-shell particles. The decay width is then

Γρππ = | �pc|3
6πm2

ρ

f 2
ρππ , (38)

with �pc being the center of mass momentum of the pions,| �pc| =
√
(m2

ρ − 4m2
π)/2.

3.3. The a1ρπ and a1σπ interactions

These processes are interesting in relation to the branching ratio Br(a1 → π(ππ)s).
According to Weinberg [26], chiral symmetry arguments lead to the prediction Br(a1 →
π(ππ)s)= 10–15%, in conflict with the value quoted in Particle Data until 1996 [27]. The
main source of the(ππ)s pairs is the scalar particle decay and the main decay channel
for a1 is a1 → ρπ . The ratio of these two decay modes for thea1 should then represent a
reasonable estimate of the branching ratio.

The Lagrangians for the couplingsa1ρπ anda1σπ are obtained in a similar way as in
the previous cases:

La1ρπ = i fπ
g2
ρ

4gA
tr
{κ

3

(
aµ[∂νπ, ṽµν ] + vµ[∂νπ, ãµν]

) + aµ[vµ,π]
}
, (39)

La1σπ = gρ
1− gA√

gA
tr

{
σaµ∂µπ + 1

12(m− m̂)2
ãµν(∂µπ∂νσ − ∂νπ∂µσ)

}
, (40)

with ãµν the derivative terms contained in (6). Contrary to the case ofLρππ interaction, the
terms bilinear in the fields in Eq. (15) do not contribute toLa1ρπ . The terms proportional
to κ stem only from the linear combinationκ(m− m̂)∂µπ of the shift in theaµ field. On
the mass shell, the interaction Lagrangians reduce to

La1ρπ = i fπ
g2
ρ

4
tr
(
aµ[vµ,π]), (41)

which coincides in form with the results in [12,22,28] and to

La1σπ = −gρ
√
gA tr(σaµ∂µπ), (42)

which corresponds to the result of [12,22]. Let us note, however, that the couplingsgA

and fπ depend, in the present approach, on extra current quark-mass terms, Eqs. (19)
and (24).
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The decay amplitudes for the processesaa1µ(q) → ρbν (p)π
c(p′) and aa1µ(q) →

σ(p)πb(p′) on-shell are

Ma1ρπ

(
p,p′) = − i

4
Tr

(
τa[τb, τc]

)
εµ(q)ε

∗
ν (p)f

µν
a1ρπ

, (43)

Ma1σπ

(
p,p′) = i

4
Tr{τa, τb}εµ(q)p′µfa1σπ , (44)

with

f µν
a1ρπ

= fπg
2
ρg

µν and fa1σπ = 2gρ
√
gA. (45)

Finally, the decay widths are calculated to be

Γa1ρπ = f 2
πg

4
ρ

12πm3
a

(
2+ (qp)2

m2
am

2
ρ

)√
(qp)2 −m2

am
2
ρ (46)

with 2qp =m2
a +m2

ρ −m2
π and

Γa1σπ = ma

192π
|fa1σπ |2

{[
1−

(mσ +mπ

ma

)2
][

1−
(mσ −mπ

ma

)2
]}3/2

. (47)

4. ππ scattering

The scattering amplitudeTab;cd for the processπa(p1)+ πb(p2)→ πc(p3)+ πd(p4)

has the well-known isotopic structure:

Tab;cd(s, t, u)= δabδcdA(s, t, u)+ δacδbdA(t, s, u)+ δadδcbA(u, t, s). (48)

Here, the standard Mandelstam variables for two-particle elastic scattering,s, t andu, are
defined by

s = (p1 + p2)
2, t = (p1 − p2)

2, u= (p1 − p4)
2. (49)

Amplitudes with definite isospin(I), T I , are then

T 0(s, t, u)=A(t, s, u)+A(u, t, s)+A(s, t, u),

T 1(s, t, u)=A(t, s, u)−A(u, t, s),

T 2(s, t, u)=A(t, s, u)+A(u, t, s). (50)

After the redefinitions (15), the Lagrangian (4) contributes with scalar andρ-meson
exchange as well as with a contact term to the scattering amplitude. First, we evaluate
the scalar-exchange amplitudeAσ (s, t, u) using the interaction Lagrangian (25) for the
σππ vertex:

Aσ (s, t, u) = 16g2
π(m− m̂)2

gA(m2
σ − s)

{[
1− m2

π(1− gA)

2(m− m̂)2

]2

−
[
1− m2

π(1− gA)

2(m− m̂)2

](
1− g2

A

)(
s − 2m2

π

)
(m− m̂)2

+
(
1− g2

A

)2(
s − 2m2

π

)2

16(m− m̂)4

}
. (51)
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The scalar propagator is expanded up to a desired order in(m− m̂)−2,

1

m2
σ − s

= 1

4(m− m̂)2

[
1+ gAm

2
π − s

4(m− m̂)2

]−1

= 1

4(m− m̂)2

{
1− gAm

2
π − s

4(m− m̂)2
+ (gAm

2
π − s)2

16(m− m̂)4
+ · · ·

}
, (52)

leading to

Aσ (s, t, u)= 4
g2
π

gA
+ gA

f 2
π

[
s

(
2− 1

g2
A

)
−m2

π

(
4− 3

gA

)]
+ · · · . (53)

Next, we obtain theρ-exchange amplitudeAρ(s, t, u) using the interaction La-
grangian (31) for theρππ vertex. Theρ-propagator has the conventional form

∆ab
µν(x1 − x2)= −i δab

∫
d4k

(2π)4

(
kµkν

m2
ρ

− gµν

)
e−ik(x1−x2)(

m2
ρ − k2 − i ε

) (54)

and the amplitude reads

Aρ(s, t, u)= g2
ρ

m4
ρ

(1+ gA)
2
{
t2(s − u)

m2
ρ − t

+ u2(s − t)

m2
ρ − u

}
. (55)

This amplitude starts atO(p6) in chiral counting and therefore does not contribute to the
Weinberg result. It can be compared to theρ-meson-exchange contribution to theππ -
scattering amplitude derived by Gasser and Leutwyler [21], in spite of the fact that theirρ

meson has origin in an antisymmetric tensor field. This is because in the evaluation of the
respectiveS-matrix element,M4π , with ρ exchange

M4π = −i g2
ρ

(
1+ g2

A

)
128m2

ρ

(δilδjm − δimδjl)

∫
d4x1 d4x2

〈
πc(p3)π

d(p4)
∣∣∂µπi(x1)

× ∂νπj (x1)∂απl(x2)∂βπm(x2)Uµναβ
∣∣πa(p1)π

b(p2)
〉
, (56)

one encounters the termUµναβ :

Uµναβ =
∫

d4k

(2π)4
e−ik(x1−x2)(
m2
ρ − k2

) [−kµkαgνβ +kνkαgµβ −kνkβgµα + kµkβgνα], (57)

which is identical to a piece of the Green’s function for theρ meson in [21] and leads
to the contribution proportional to(m2

ρ − k2)−1 for the correspondingππ -scattering
amplitude.

Finally, we evaluate the contact term, by collecting all terms with four pseudoscalar
fields:

Lc = g4
π tr

{ −κ2

16GV
[π, ∂µπ]2 + NcJ1

8π2

[
κ2

6

(
1− κ(m− m̂)2

)2[∂µπ, ∂νπ]2 − π4

2

+ κ2

2
(m− m̂)2{∂µπ,π}2 + κ

2
∂µπ

[[π, ∂µπ],π]
+ κ2(m− m̂)2∂µπ

[
π, [π, ∂µπ]]]}

. (58)
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All terms containing powers ofκ as factors (except the ones multiplying quark masses)
derive from the covariant diagonalization and were not present in previous schemes. After
some rearrangement, one can write the contact term as

Lc = − g2
π

2gA

(�π 2)2 + (1− gA)

2gAf 2
π

[
(�π∂µ �π)2 − gA �π 2(∂µ �π)2]

− (
1− g2

A

)
(1+ gA)

(∂µ �π × ∂ν �π)2
4f 2

πm
2
ρ

, (59)

which leads to the contact amplitude

Ac(s, t, u) = −4
g2
π

gA
+ (1− gA)

f 2
πgA

[
s + 2gA

(
s − 2m2

π

)]
+

(
1− g2

A

)
(1+ gA)

4f 2
πm

2
ρ

[
(s − t)u+ (s − u)t

]
. (60)

Now we obtain the complete amplitudeA(s, t, u) for ππ scattering, by assembling the
scalar- and vector-exchange amplitudes and contact terms. We give here explicitly the
result top4th order:

A(s, t, u) = 1

f 2
π

(
s −m2

π

) + 1

24gAf 2
π (m− m̂)2

{(
1− g2

A

)2[
(s − t)u+ (s − u)t

]
+ 6g2

A

[(
s − 2m2

π

)
gA +m2

π

]2} +O
(
p6). (61)

This result can be compared with the one obtained using the noncovariant diagonalization
in [13] after keeping there only the logarithmic divergent contributions at zero squared
momentum, again to relate to the order of heat kernel expansion considered in the present
work. To orderp2, we obtain the Weinberg result [29]. In fact we find that for anyp2

order ofA(s, t, u) one recovers the previous result, except for the current quark-mass
terms (i.e., if one puts everywhere in (61)m− m̂ →m). It turns out that in the case of the
usual noncovariant diagonalization and induced linear derivativeρ coupling to the pions,
a judicious combination of the chiral noncovariant terms emerging in the vector channel
and the contact term simulates the correct structure of the contact term obtained in the
case of the covariant diagonalization, up top4 order (the vector-exchange only starts at
p6 order). Starting fromO(p6), the vector-exchange term coincides in the two approaches
and the contact term does not contribute in both cases, at the considered order of the heat
kernel expansion.

In the next section, we analyze the numerical effects due to the present heat kernel
expansion onππ threshold parameters, as compared to the studies where the full
momentum expansion of Feynman amplitudes was considered [13]. We do not expect
large deviations, since, at least to the order of the heat kernel expansion considered here,
theππ amplitude does not get modified by the covariant diagonalization, and the current
quark mass may not be large enough to make the new terms in the amplitude numerically
significant. However, it is worthwhile measuring the numerical effects related to the
momentum expansions in the two approaches, since they differ by finite nonvanishing
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contributions present in [13], due to differences of logarithmic divergent integrals of
different arguments and other finite terms.

5. Numerical results

We start the numerical section by calculating the decay widths of the heavy mesons. The
four parameters of the model,GS , GV , Λ andm̂, are obtained by fixingmπ = 139 MeV,
fπ = 92 MeV,mρ = 770 MeV and the ratiogA = m2

ρ/m
2
a , which we take at two different

ma values. ForgA = 0.5, in accordance with the choice of [26], we obtainma = 1089 MeV,
m = 314 MeV,m̂ = 1.7 MeV, GS = 3.22 GeV−2, GV = 14.77 GeV−2, Λ = 1.536 GeV,
and forgA = 0.374, which corresponds to the empiricalma = 1260 MeV, we getm =
408 MeV, m̂ = 1.4 MeV, GS = 3.40 GeV−2, GV = 18.49 GeV−2, Λ = 1.544 GeV. In
Table 1 we display the mesonic observables, set I corresponding to the smallerm value
and set II to the large one. Some comments are in order here. The decay widthΓσππ and
Γρππ turn out to be smaller than the empirical values by roughly a factor two, if one insists
on keeping the correct empirical fit formπ andfπ . This trend did not change as compared
to the calculations in a full momentum scheme, for the cases in which theρ meson is a
well-defined bound state below the quark–antiquark pair threshold; theσ meson in the
latter case is always slightly embedded in the continuum (with a very small decay width in
quark–antiquark pairs [14]). The results for the branching ratio

Br
[
a1 → π(ππ)s

] ∼ Γa1→σπ

Γa1→σπ + Γa1→ρπ

∼ 14%(I);5%(II) (62)

are in fair agreement to the 10–20% obtained by Weinberg. The rather large change
observed in the widthΓa1→ρπ from set II of parameters to I is mainly dictated by the
square root term in Eq. (46), which is reduced by roughly a factor two and the change in
the couplingg2

ρ , which gets smaller by∼ 25%.

Table 1
Some meson properties calculated in the present version of the NJL model are compared to
experimental data [34]

[MeV] Model (set I) Model (set II) Experiment

fπ 92∗ 92∗ 93.3
mπ 139∗ 139∗ 139
mσ 633 818 400–1200
mρ 770∗ 770∗ 770
ma1 1089∗ 1260∗ 1260

Γσ→ππ 409 394 600–1000
Γρ→ππ 82 86 150
Γa1→ρπ 192 420 seen; fullΓ = 250–600
Γa1→σπ 31 23 seen

∗ The asterisks indicate quantities which served as input to determine the model parameters.
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Table 2
The calculatedππ -scattering lengths and effective ranges are compared to Soft Meson Theorems
(SMT) [29] and experimental data (taken from [30,31], see text please)

aI
l

O
(
p4)

[I] O
(
p6)

[I] O
(
p4)

[II] O
(
p6)

[II] Full [13] SMT Experiment [30]

a0
0 0.166 0.167 0.161 0.162 0.17 0.16 0.26± 0.05

b0
0 0.188 0.192 0.178 0.179 0.19 0.18 0.25± 0.03

a2
0 −0.0454 −0.0454 −0.0454 −0.0454 −0.047 −0.0454 −0.028± 0.012

b2
0 −0.0875 −0.0875 −0.0875 −0.0875 −0.090 −0.089 −0.082± 0.008

a1
1 0.0336 0.0347 0.0338 0.0351 0.038 0.030 0.038± 0.002

a0
2 × 104 5.92 8.198 5.034 7.476 6.9 17± 3

a2
2 × 104 −0.74 −1.93 −1.96 −3.16 −2.5 1.3± 3

Next we present in Table 2 the results for threshold parametersaI
l , bI

l from the
representation (61) of theππ -scattering amplitude, as compared to the data of [30]. The
more recent analysis of [31] yieldsa0

0 = 0.288± 0.012± 0.003 anda2
0 = −0.036± 0.009.

Let us note that since we are working at meson tree level, thep2 expansion in our case
reveals the subjacent quark–antiquark compositeness of the amplitudes and therefore we
do not compare it to the meson loop orders related momentum expansion of CHPT (for
recent reviews see [32,33]).

At p2 order (not shown in the table), the quantitiesa0
0, b0

0, a2
0, b2

0, a1
1 reproduce the soft

pion theorem values. The observed trend ofππ -scattering lengths and effective ranges is
congruent with the results of the full momentum expansion [13] (included in the table, for
the larger value of the constituent quark mass considered there (m = 390 MeV)). Some
deviations are observed in the D-wave scattering lengths. We have checked that atp8 order
there are no significant changes for any of the calculated scattering lengths and effective
ranges, from which we infer that the differences in the higher partial waves are related
to the presence of finite terms in [13], not existent in the heat kernel expansion (see also
discussion at the end of previous section).

In the present calculation, the vector exchange has still a noticeable contribution fora1
1

(the scalar-exchange and contact contributions stabilize atp4 order), as well as ina0
2

anda2
2.

The case of rather small quark mass (� 200 MeV) also considered in [13] (since it
describes better the scalar form factor of the pion) was calculated as well with the present
method, leading to similar conclusions as for the large-mass case. Nevertheless, we do not
consider further this case here, since the corresponding parameter set yields worse results
for the heavy-meson decays.

In the light of the numerical results, the present heat kernel expansion yields comparable
results and trends in the momentum expansion for the scattering parameters calculated
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from Feynman amplitudes with a full momentum dependence in the vertices [13], for the
S and P waves. Some sizeable effects are observed in the higher partial waves.

6. Summary and outlook

The main concern of this work was to show the formal and numerical implications of
a recently derived effectiveSU(2) ⊗ SU(2) chiral Lagrangian with linear realization of
chiral symmetry on mesonic observables: mass spectra, strong decays andππ -scattering
parameters. The considered Lagrangian was constructed on the basis of the Schwinger–
DeWitt proper-time method applied to the ENJL model. The resulting semiclassical WKB
expansion of the ENJL action has been done around the correct NJL vacuum state,
defined by the corresponding Schwinger–Dyson equation in the case with explicit chiral
symmetry breaking. We derive that the amplitudes carry the signature of this vacuum: the
amplitudes get relevant current quark-mass corrections, not present in previous approaches.
Furthermore, we also derive that amplitudes with three or more fields are affected by
the diagonalization in the pseudoscalar–axial-vector sector which was implemented to
correctly describe the vector meson chiral transformations for the linear realization of
chiral symmetry. We have studied in detail the structure of the amplitudesσππ , ρππ ,
a1ρπ anda1σπ as well asππ scattering. Theρππ , a1σπ amplitudes and the contact four-
pion interaction get modified by the covariant diagonalization and all studied amplitudes
depend on current quark-mass terms. On the mass shell, we obtain that all studied processes
are not affected by the covariant diagonalization, becoming structurally identical (except
for current quark-mass terms) to the ones obtained in the nonlinear as well as linear
realizations of chiral symmetry, at the same order of the heat kernel expansion. In this
study, the current quark-mass effects are numerically negligible, as expected for theSU(2)
case. From the formal point of view, however, the way the new structures appear in the
amplitudes hints at possible large numerical deviations for theSU(3) case. The extension
to theSU(3) case is presently under study.
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