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Abstract

In this paper we present a mathematical model to describe the evolution of brain
tumour cells under the effect of a chemotherapy drug. A theoretical analysis on the total
mass of cells in the system provides useful information to design treatment protocols,
relating the frequency of treatments with the dosage of drug in each treatment. Their
efficiency is theoretically and numerically illustrated and discussed.
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1 Introduction

Cancer is a disease that involves abnormal cell growth which can spread to other parts of
the body. Many mathematical models have been introduced in the literature to simulate
the growth of this disease, incorporating different aspects of the phenomena, see [1, 2, 3, 6,
7, 8, 10, 14, 15].

One particular case of cancer are gliomas which are highly invasive brain tumours.
These tumours, if left untreated, give the patient a median survival time between 6 months
to 1 year. Even if treatment is applied (usually chemotherapy or radiotherapy), it can rarely
be cured. It is believed that the reason why treatments are ineffective lies with the high
mobility of glioma cells in the brain tissue.
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Modelling glioma growth has been a challenge from a mathematical point of view.
The first model to measure the growth of an infiltrating glioma was provided in [10]. The
approach considered a mass conservation principle for the cells. An equation of the type

∂w

∂t
= ∇ · (Dw ∇w) + f(w) in Ω× (0,∞) (1)

was deduced, where Ω ⊂ R
n, n = 1, 2, 3, is the glioma domain, w(x, t) denotes the tumour

cell density at location x and time t, f(w) denotes net proliferation of tumour cells and
Dw is the diffusion tensor.

To apply the modelling approach to specific patients, Swanson et al. [14] introduced
the complex geometry of the brain and allowed diffusion to be a function of the spatial
variable x to reflect the observation that glioma cells exhibit higher motility in the white
matter than in grey matter ([6]).

Treatment with chemotherapy involves the use of drugs to disrupt the cell cycle and
to block proliferation. The incorporation of this effect in the growth of glioma cells can be
considered by adding an extra equation for the concentration of drug that couples with the
equations for the cells. The chemical treatment effect can be included by introducing cell
death as a loss term. In [16] this term was considered independent of the concentration of
drug, being simply a on/off mechanism to control the death of cells (at constant rate). The
approach followed by [11], which considered a term for the death of cells dependent on the
concentration of drug, lead to an equation of the type

∂w

∂t
= ∇ · (Dw∇w) + f(w)− k(c)w in Ω× (0, T ] . (2)

where c denotes the concentration of the drug and k(c)w describes the rate of cell death
due to the exposure to a drug of concentration c. The behaviour of c was described by a
diffusion-reaction equation.

The aim of this paper is to establish a model that takes into account the evolution and
growth of glioma cells during a chemotherapy treatment. The novelty of this contribution
lies in the use of a cells’ mass estimation to design chemotherapy protocols. In Section 2
the total mass of cells is analysed providing a tool to devise protocols for the control and
treatment of glioma growth, relating the frequency of the treatments with the dose intensity
in each treatment. In Section 3, some numerical examples are given to illustrate different
protocols.Finally, in Section 4, the main outcome of the paper is summarized.

2 Chemotherapy: mathematical model and protocol analysis

In this section we study the behaviour of the glioma mass when chemotherapy is considered
and we establish criteria to define protocols that lead to control the tumour. Our goal
is to prove that for the same total dose a higher frequency of treatments leads to better
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results, i.e., we obtain a better glioma control if we use a protocol of m monthly sessions
with dosage d/m than if we use a one only monthly session with dosage d . Theoretically,
this means that if a patient is submitted to multiple monthly sessions we use a smaller
global drug dosage to obtain the same results that would be obtained with a single monthly
session.

According to [3] and [4] we will consider the following assumptions: glioma cells are of
two phenotypes - proliferation (state 1) and migratory (state 2); in state 2 cells randomly
move but there is no cell fission; in state 1 cancer cells do not migrate and only proliferation
takes place with rate ρ; a cell of type 1 remains in state 1 during a time period and then
switches to a cell of type 2; β1 is the switching rate from state 1 to 2; a cell of type 2 remains
in state 2 during a time period and then switches to a cell of type 1; β2 is the switching
rate from state 2 to 1. Let u(x, t) and v(x, t) represent the density of migratory and
proliferation cells at x and t, respectively. Then the dynamics of glioma cells is described
by the following system:











∂u

∂t
= ∇ · (Dm ∇u)− β1u+ β2v − k(c)u in Ω× (0, T ] ,

∂v

∂t
= ρ v + β1 u− β2 v − k(c) v, in Ω× (0, T ] .

(3)

where

Dm(x) =

{

Dg, x in grey matter
Dw, x in white matter ,

(4)

and Dg and Dw are constants such that Dw > Dg . In system (3), k(c) represents the
concentration dependent rate of cell’s death. Estimates of the difference in the diffusion
coefficients in grey and white matter can range from 2 to 100 fold ([14]).

In this context, the interaction of glioma mass with the drug concentration, c(x, t) , is
described by

∂c

∂t
= ∇ · (D∇c)−

k(c)

α
(u+ v) + g(t)−M c in Ω× (0, T ] , (5)

where D stands for the diffusion coefficient associated with the drug. In equation (5), 1
α

represents the part of drug concentration per unit time consumed by tumour cells; the term
g(t) stands for the concentration rate of drug inoculated and M measures how the drug is
consumed per unit time by the metabolic activity.

System (3)-(5) is completed by the initial conditions

u(x, 0) = c(x, 0) = 0, x ∈ Ω

v(x, 0) = v0(x), x ∈ Ω
(6)

and no flux boundary conditions.
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The fully dynamics of glioma mass is now described by the system (3), (5) and (6).
Let us define

Mass(t) =

∫

Ω

(

u+ v
)

dΩ , (7)

as the total mass of tumour cells at time t .
From equations of system (3) and the no flux boundary conditions, we can prove that

Mass′ = ρ

∫

Ω
v dΩ− k

∫

Ω
c (u+ v) dΩ (8)

where we have taken k(c) as a linear function of c ([11]). Assuming the positivity of the
solution of (3), we have

Mass(t) ≤ Mass(0) e
∫
t

0
(ρ−k·c(s)) ds . (9)

When chemotherapy is applied, condition (9) can be used to determine an effective
dosage such that the total amount of tumour cells do not increase. In fact, if

∫ t

0

(

ρ− k · c(s)
)

ds ≤ 0 , (10)

then we can conclude that Mass(t) ≤ Mass(0), at any time t .
For simulation purposes we use system (3),(5) to describe the dynamics of glioma mass

and drug delivery. However, for estimation purposes we considerer some simplifications.
Firstly we admit that drug dynamics will be dominated by delivery. In fact, brain is a
densely irrigated organ so drug diffusion is less significative compared with drug delivery
through the circulatory system. Secondly, and according to real data, k

α
≈ 0 . Consequently,

the dynamics of the drug is described by the simplified equation

∂c

∂t
= g(t) −M c in Ω× (0, T ] , (11)

which account for the drug injection and the drug wash-out effects.
From equation (11) we can easily conclude that drug concentration is space independent

and that

c(t) =

∫ t

0
e−M(t−s)g(s) ds + c(0) e−M t . (12)

The typical bang-bang protocol corresponds to a treatment which alternates maximum
doses of chemotherapy with rest periods when no drug is administered. According to this
scheduling, the function g(t) is defined by

g(t) =

{

d, when chemotherapy is being administered

0, otherwise .
(13)

To design chemotherapy protocols we assume that the following conditions are verified
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- each treatment cycle (chemotherapy sessions and rest period) has Pt days

- the patient is submitted to m chemotherapy sessions during each treatment cycle, on
the first m (≤ Pt) consecutive days of the latter;

- each chemotherapy session has a time duration ∆t (≤ 24h) ;

- in each chemotherapy session the patient receives a drug dose d ;

- the chemotherapy protocol will be repeated for n months.

In Figure 1 we present an example of a protocol with m = 6 chemotherapy sessions
each month.

0 28 56

m days

drug dosage d

∆t

time t0
Pt 2Pt

Figure 1: Chemotherapy protocol.

For t = nPt, let us represent the first member of (10) by Pe(n). We have

Pe(n) =

∫ nPt

0

(

ρ− k

∫ s

0
g(τ)eM(τ−s)dτ

)

ds.

A straightforward calculation of the protocol efficiency leads to

Pe(n) = Pt ρn− d k

(

n∆tm

M
−

emM − 1

ePt M − 1

e∆tM − 1

eM − 1

1− e−Pt mM

M2

)

. (14)

To guarantee that Pe(n) ≤ 0, we can use (14) to determine an effective dosage d and
the frequency of treatments that allows to control the total tumour mass. Obviously the
value of d depends on the chemotherapy protocol.

3 Numerical results

In this section we illustrate numerically the behaviour of solutions of system (3),(5) using
the domain described in Figure 2 (approximately 14.4 cm×9.2 cm). The coordinate system
has its origin at the lower left corner of the image.
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Figure 2: Computational representation of the brain: white matter (dark grey) and grey
matter (black) and initial gaussian profile for tumour cells (v0).

We consider a growth rate ρ = 0.012 /day and switching parameters β1 = 10−6/day
and β2 = 0.036/day . These values are physiological and have been obtained from [12].

According to [9] the initial condition is defined by a Gaussian profile with a maximum
105 cells/cm2 , centered at (7.2, 4.6) . The diffusion coefficients are Dw = 0.026 cm2/day
and Dg = 0.0052 cm2/day .

Finally, according to [11], k(c) = µ c
c0

, where µ is a measure of the efficiency of the
drug and c0 is the maximum external drug concentration. For simulation purposes we took
α = 24× 1010 ml/(g cm2) .

In what follows we compare three different treatment protocols, for treatment cycles of
length Pt = 28days:

m d

protocol I 1 0.1197

protocol II 5 0.0239

protocol III 28 0.0040

Using equation (14), we compute the protocol efficacy after three months, Pe(3), con-
sidering three different values for drug efficiency, µ. We display, in Table 1, the obtained
values, considering the same treatment window ∆t = 0.05 days.
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Pe(3) µ = 1.5552 µ = 7.7760 µ = 15.5520

protocol I 0.3354 −1.0108 −2.6935

protocol II −1.0108 −7.7418 −16.1555

protocol III −8.7514 −46.4450 −93.5619

Table 1: Protocol efficiency after 3 months, Pe(3) .

From the data gathered in Table 1 we observe that protocol III with more frequent
treatments (even with a smaller dosage of drug) is more effective in controlling (and reduc-
ing) the glioma mass. This observation is further strengthened with the plots from Figure 3.
Protocol I does not lead to an effective control of the glioma growth, while protocols II and
II do. Indeed, protocol III is where the reduction of the tumour mass is more meaningful
(whatever the drug efficiency we consider). We must observe that in protocol III there are
very short rest periods. This corresponds to a new modality of drug administration called
metronomic chemotherapy, see [13], characterised by equally spaced administration of low
doses of drug without rest periods.

Figure 3: Total masses for protocols I (top left), II (top right) and III (bottom).
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All protocols were simulated with a numerical method using piecewise linear finite
elements in space and an implicit-explicit approach in time. We plot, in Figure 4, the contour
levels of the concentration c for two patients, one untreated (black) and another submitted
to protocol II and protocol III (grey). These results are consistent with the respective
protocol efficiency. Furthermore, simulation suggests that the tumour area decreases.

Figure 4: Total masses using µ = 7.7760 , for protocol II (top) and protocol III (bottom).

We observe in the white matter a deviation from the radial symmetry of the initial
gaussian profile of the tumour. This deviation is explained by a more intensive spreading
in the white matter.
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4 Conclusions

In this paper we proposed and studied a mathematical model to describe the evolution of
glioma cells with and without chemotherapy. We deduced estimates that allowed to define
sufficient conditions on the parameters that lead to control the glioma mass.

Our numerical results suggest that more frequent chemotherapy sessions with less ag-
gressive dosages are preferable. These results are in agreement with new medical research
in metronomics chemotherapy, based on more frequent treatments with low doses adminis-
tration.
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