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Abstract

A two dimensional coupled model of drug delivery in the cardiovascular tissue using

biodegradable drug eluting stents is developed. Qualitative behavior, stability analysis as

well as simulations of the model have been presented. Numerical results computed with an

implicit explicit finite element method show a complete agreement with the expected physical

behaviour.
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1 Introduction

A stent is a metallic scaffold that is inserted in a restricted part of a narrowed blood vessel. A

drug eluting stent (DES) consists of a stent coated with a polymeric layer that encapsulates a

therapeutic drug to reduce smooth muscle cell growth and to prevent an inflammatory response.

These are the predominant causes of neointimal proliferation and in-stent restenosis that is the

re-narrowing of blood vessels after stent implantation. Application of DES for prevention of

restenosis is a promising technology which combines the mechanical support of the vessel with

local drug delivery.

Drug release depends on many factors, such as the geometry and location of the vessel, the

geometry of the stent, the coating properties as its chemical composition and porosity, and

drug characteristics as for example its diffusivity. Due to the involvement of so many factors,

prediction of drug release represents an important issue and mathematical models are a useful

tool to design an appropriate drug delivery system [3, 11]. The use of mathematical models and

numerical simulation can give further insight on the pharmacokinetics of cardiovascular drug
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Figure 1: Drug Eluting Stent (DES) implanted in the blood artery,
http://www.michaelrowecardiologist.com.au/coronary-stenting-michael-rowe.html.

release leading to optimized clinical results.

During the last years, a number of studies have proposed mathematical models to describe drug

delivery in the cardiovascular tissues. We refer without being exhaustive [3−10, 13] and also [11]

as a review paper. Most of these studies address the release of drug and its numerical behavior

in one dimension, while the behaviour of the biodegradable materials is disregarded.

Pontrelli and de Monte [7 − 9] developed a mathematical model for drug release through a

drug eluting stent in contact with the vessel wall as a coupled cardiovascular drug delivery

system. They analyzed numerically and analytically the drug release from the coating into

both an homogeneous mono-layer wall [7] and an heterogenous multi-layered wall [9] in one

dimension. Despite their interesting results, the biodegradation process of the carrier polymer,

the penetration of the biological fluid into the coating and the egression of materials from the

coating have not been taken into account.

Prabhu and Hossainy [10] developed a mathematical model to predict the transport of drug with

simultaneous degradation of the biodegradable polymer in the aqueous media. These authors

use a simplified wall-free condition, in which the influence of the arterial wall is modeled through

the coupling with a Robin boundary condition. An important feature of this model, which

differentiates it from other models, are the conditions used to represent the polymer degradation.

It is assumed that a set of oligomers can be identified as one compartment, characterized by a

certain molecular weight range, whose their diffusion characteristics and degradation kinetics can

be considered to be identical. Furthermore, the model in [10] takes into account the underlying

chemical reactions responsible for degradation in a more detailed form than the models presented

by other researchers. It also accounts for the increase of diffusivity of the different species involved

as time evolves. In this paper, while following the approach in [10], we have completed the model

with the dynamics of the drug in the arterial vessel.

The geometrical and mechanical effects of the metalic part of the stent in degradation and drug

release as well as the penetration of the oligomer and lactic acid into the vessel wall are considered
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negligible. As the transport properties through the glycocalyx (the coverage of endothelium) are

unknown, we have considered the values of the parameters in the endothelium layer. A perfect

sink condition at the interface between the vascular wall and the vascular lumen are considered.

The paper is organized as follows. Section 2 is devoted to the description of the model and its

initial, boundary and interface conditions. In Section 3 we briefly explain the mass behaviour

of the materials. In Section 4 we present a variational formulation and we establish a stability

result for the continuous model and in Section 5, using an implicit explicit finite element method,

we establish a discrete variational form of the problem. Numerical simulations are discussed in

Section 6.

2 Description of the model

We consider a stent S coated with polylactic acid (PLA) containing the drug and in contact with

the vessel wall V (Figure 2). In the stent S, Γ1 is the boundary between the coated stent and

the metalic part of the stent that is stent structure while Γ2 and Γ3 are the boundaries which

separate the coated stent and the lumen. Γ4 is an interface boundary which separates the coated

stent from the arterial wall. In the vessel wall V , Γ5 and Γ6 are the boundaries between the

vessel wall and the lumen while Γ7 is the boundary between the vessel wall and the tissue (outer

part of the vessel wall). Finally Γ8 and Γ9 are virtual boundaries where symmetry conditions

are imposed to simplify the model.

Figure 2: Polymeric stent S in contact with the vessel wall V .

When the coated stent is immersed in the artery and enters in contact with the vessel wall,

a mass transport process and a series of chemical reactions occur. We assume that two main

reactions are responsible for the degradation of PLA into lactic acid and oligomers. The first

reaction is the hydrolyzing of the PLA, producing molecules with smaller molecular weights,

2× 104 g/mol ≤ MW ≤ 1.2× 105 g/mol for oligomers and MW ≤ 2× 104 g/mol for lactic acid.

The second reaction is the hydrolyzing of the oligomers giving lactic acid. These reactions are
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represented by

Reaction 1: C1,S + C2,S
κ1,S−−−→ C3,S + C4,S,

Reaction 2: C1,S + C3,S
κ2,S−−−→ C4,S ,

(1)

where C1,S, C2,S , C3,S and C4,S represent the concentrations of the fluid, PLA, oligomers and

lactic acid in the coating respectively, that are defined in (x, y, t) ∈ S̄ × IR+. The constants κ1,S

and κ2,S stand for the reaction rates of the first and second reactions respectively.

In the coating, the problem is described by the following nonlinear reaction diffusion equations

∂Cm,S

∂t
= ∇.

(

Dm,S∇Cm,S

)

+ Fm,S(C1,S , . . . , C4,S) in S × IR+, m = 1, . . . , 5, (2)

where C5,S denotes the concentration of the drug in the coating, and the reaction terms are

defined by

Fm,S(C1,S , . . . , C4,S) =















































−
∑

i=1,2
Fi(C1,S , . . . , C4,S), m=1,

−F1(C1,S , . . . , C4,S), m=2,
∑

i=1,2
(−1)i−1Fi(C1,S , . . . , C4,S), m=3,

∑

i=1,2
Fi(C1,S , . . . , C4,S), m=4,

0, m=5.

(3)

In (3), F1 and F2 are defined by

F1(C1,S , . . . , C4,S) = κ1,SC1,SC2,S

(

1 + αC4,S

)

,

F2(C1,S , . . . , C4,S) = κ2,SC1,SC3,S

(

1 + βC4,S

)

,
(4)

where α and β are positive dimensional constants (see the Annex for more details).

The diffusivities of the fluid, oligomers, lactic acid and drug will evolve with time. This variation

occurs due to the progressive degradation of the polymer as well as to the swelling of the polymer.

The diffusivities Dm,S of the species in the stent coating, will attain a lower bound in the PLA

and an upper bound in the fluid. It is therefore assumed that the diffusion coefficients increase

exponentially with the extent of the hydrolysis of PLA. We represent these diffusivity coefficients

in the coated stent by

Dm,S = D0
m,Se

αm,S

C0

2,S
−C2,S

C0
2,S in S̄ × IR+, m = 1, . . . , 5,

(5)

where D0
m,S is the diffusivity of the specie m in the unhydrolyzed PLA and C0

2,S is the unhy-

drolyzed polymer concentration at the initial time.
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For the vessel wall, a diffusion equation with constant diffusion coefficient DV is considered

∂CV

∂t
= ∇.

(

DV ∇CV

)

in V × IR+, (6)

where CV stands for the drug concentration in the vessel wall. Although the concentrations

depend on time and space, we will consider often explicitly the time variable, omitting the space

variable. Since the degradation starts at t = 0, we assume there is no initial concentration of

oligomers and lactic acid in the coating and that the drug and PLA are uniformly distributed.

In the coated stent and the vessel wall, the initial conditions are defined by

{

C1,S(0) = C3,S(0) = C4,S(0) = 0, C2,S(0) = C5,S(0) = 0 in S,

CV (0) = 1 in V.
(7)

We also assume that the boundary Γ1, interface between the coating and the stent structure, is

impermeable to the materials which means that no mass flux crosses it, that is

Dm,S∇Cm,S.ηS = 0 on Γ1 × IR+, m = 1, . . . , 5, (8)

where ηS is the exterior unit normal to Γ1.

We assume that the blood flow in the arterial lumen does not significantly influence the drug

release and the transport in the arterial wall tissue. In Γ2 and Γ3, the boundary conditions are

defined by

{

D1,S∇C1,S .ηS = γ1,S(1− C1,S) on (Γ2 ∪ Γ3)× IR+,

Dm,S∇Cm,S.ηS = −γm,SCm,S on (Γ2 ∪ Γ3)× IR+, m = 2, . . . , 5,
(9)

where γm,S , m = 1, . . . , 5, represent partition coefficients.

To couple the transport od drug in the coated stent and the vessel wall, the continuity of the

mass flux and the concentration are assumed, that is

{

D5,S∇C5,S .ηS = −DV ∇CV .ηV on Γ4 × IR+,

C5,S = CV on Γ4 × IR+,
(10)

where ηS = −ηV . We also assume that Γ4 is impermeable to other compounds.

In what concerns the interface layer between intima and media, a Robin condition of type

DV ∇CV .ηV = −γvCV on Γ7 × IR+, (11)

is considered.

On Γ8 and Γ9, a homogeneous Neumann boundary condition DV ∇CV .ηV = 0 is assumed which
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represents a no flux condition. The flux of drug from the arterial wall to the blood is given by

DV ∇CV .ηV = −γbCV on (Γ5 ∪ Γ6)× IR+, (12)

where γb is such that the endothelium offers a small resistance to the drug transport.

Summarizing, the boundary and interface conditions of the problem are defined by the following

set of equations:












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




















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



























Dm,S∇Cm,S .ηS = 0 on Γ1 × IR+, m = 1, . . . , 5,

D1,S∇C1,S .ηS = γ1,S(1− C1,S) on (Γ2 ∪ Γ3)× IR+,

Dm,S∇Cm,S .ηS = −γm,SCm,S on (Γ2 ∪ Γ3)× IR+, m = 2, . . . , 5,

Dm,S∇Cm,S .ηS = 0 on Γ4 × IR+, m = 1, . . . , 4,

C5,S = CV on Γ4 × IR+,

D5,S∇C5,S .ηS = −DV ∇CV .ηV on Γ4 × IR+,

DV ∇CV .ηV = −γbCV on (Γ5 ∪ Γ6)× IR+,

DV ∇CV .ηV = −γvCV on Γ7 × IR+,

DV ∇CV .ηV = 0 on (Γ8 ∪ Γ9)× IR+.

(13)

The meaning and units of all variables and parameters used in the model are presented in Table

2 (Annex).

3 Qualitative behaviour of the total mass of the system

In what follows we analyse the time behaviour of the total mass

M(t) =

5
∑

m=1

∫

S

Cm,S(t)dS +

∫

V

CV (t)dV,

where S and V stand for the stent and the vessel wall domains.

As we have

M′(t) =

5
∑

m=1

∫

S

∂Cm,S

∂t
(t)dS +

∫

V

∂CV

∂t
(t)dV,

considering (2) and (6), and taking into account the boundary conditions we obtain

M′(t) = γ1,S

∫

Γ2∪Γ3

(1− C1,S(t))ds −
4

∑

m=2

γm,S

∫

Γ2∪Γ3

Cm,S(t)ds − γb

∫

Γ5∪Γ6

CV (t)ds

+

∫

Γ4

D5,S∇C5,S(t).ηSds+

∫

Γ4

DV ∇CV (t).ηV ds− γ5,S

∫

Γ2∪Γ3

C5,S(t)ds − γv

∫

Γ7

CV (t)ds

−
∫

S

κ2,SC1,S(t)C3,S(t)
(

1 + βC4,S(t)
)

dS,
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where the measures of the boundaries are defined by the length.

The coupling conditions (10) lead to

M′(t) = −∆MΓ(t)−∆MH(t) + γ1,S

∣

∣

∣

∣

Γ2 ∪ Γ3

∣

∣

∣

∣

,

where

∆MΓ(t) =
5

∑

m=1

γm,S

∫

Γ2∪Γ3

Cm,S(t)ds + γv

∫

Γ7

CV (t)ds+ γb

∫

Γ5∪Γ6

CV (t)ds,

and

∆MH(t) =

∫

S

κ2,SC1,S(t)C3,S(t)
(

1 + βC4,S(t)
)

dS.

We note that ∆MΓ(t) represents the mass of molecules that enters, per unit time, in the lu-

men; ∆MH(t) stands for the mass of lactic acid produced by unit time, and resulting from the

hydrolysis of oligomers. Finally, integrating in time we deduce

M(t) = M(0) + γ1,S

∣

∣

∣

∣

Γ2 ∪ Γ3

∣

∣

∣

∣

t−
∫ t

0

∆MH(µ) dµ −
∫ t

0

∆MΓ(µ) dµ.

This equality means that the total mass in the system at time t is given by the difference between

the initial mass added with the mass of fluid that enters in the system until time t and the mass

of hydrolyzed oligomers until time t, the mass of the components that are on the boundary until

time t: fluid (C1,S), PLA (C2,S), oligomers and lactic acid (C3,S , C4,S) respectively, and drug,

C5,S , and CV .

4 Weak formulation of the coupled problems

In this section, we introduce a variational problem induced by the initial boundary value problem

(IBVP) (2) − (6) and (13). We start by introducing some notations.

Let Ω be a bounded domain in IR2 with boundary ∂Ω. By L2(Ω), H1(Ω) and L2(∂Ω) we

denote the usual Sobolev spaces endowed with the usual inner products (., .), (., .)1, and (., .)∂Ω,

respectively, and norms ‖.‖L2(Ω) and ‖.‖H1(Ω), ‖.‖L2(∂Ω), respectively. By L∞(Ω) we represent

the space of functions v : Ω → IR such that

∥

∥v
∥

∥

L∞(Ω)
= ess sup

Ω
|v| < ∞.

Let T > 0 be fixed. The space of functions v : (0, T ) −→ H1(Ω) such that

∫ T

0

∥

∥v(t)
∥

∥

2

H1(Ω)
dt < ∞,
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will be denoted by L2(0, T ;H1(Ω)) and L∞(0, T ;L∞(Ω)) represents the space of functions v :

(0, T ) −→ L∞(Ω) such that

ess sup
(0,T )

∥

∥v(t)
∥

∥

L∞(Ω)
< ∞.

Let ΩS,V = S ∪ V ∪ Γ4 and C, γ, D and C∗ be defined by

C =

{

C5,S in S̄ × [0, T ],

CV in V̄ × [0, T ],
(14)

γ =















γ5,S on Γ2 ∪ Γ3,

γb on Γ5 ∪ Γ6,

γv on Γ7,

(15)

D =











D0
5,Se

α5,S

C0

2,S
−C2,S

C0

2,S in S̄ × (0, T ],

DV in V̄ × (0, T ],

(16)

and C∗ = (C1,S , C2,S , C3,S , C4,S).

In what follows we consider the weak solution of the initial boundary value problem (IBVP)

(2)− (6) and (13) defined by the variational problem:

VP: Find (C∗, C) ∈
(

L2(0, T ;H1(S))

)4

×L2(0, T ;H1(ΩS,V )) such that ∂C∗

∂t
∈
(

L2(0, T ;L2(S))

)4

,

∂C
∂t

∈ L2(0, T ;L2(ΩS,V )) and















































































4
∑

m=1

(

∂Cm,S

∂t
(t), vm

)

S

+

(

∂C
∂t

(t), w

)

ΩS,V

= −
4

∑

m=1

(

Dm,S∇Cm,S(t),∇vm

)

S

−
(

D∇C(t),∇w

)

ΩS,V

+

4
∑

m=1

(

Fm,S(C
∗(t)), vm

)

S

+γ1,S

(

1− C1,S(t), v1

)

Γ2∪Γ3

−
4

∑

m=2

γm,S

(

Cm,S(t), vm

)

Γ2∪Γ3

−
(

γC(t), w

)

Γ

a.e. in (0, T ), for all vm ∈ H1(S), m = 1, . . . , 4, w ∈ H1(ΩS,V ),

Cm,S(0) = 0, m = 1, 3, 4, Cm,S(0) = 1, m = 2, 5, CV (0) = 0,

(17)

where Γ = Γ2 ∪ Γ3 ∪ Γ5 ∪ Γ6 ∪ Γ7.

In what follows we study the behaviour of the solution of the initial value problem VP. Let the
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energy functional E∇(t) be defined by

E∇(t) =

4
∑

m=1

(
∥

∥

∥

∥

Cm,S(t)

∥

∥

∥

∥

2

L2(S)

+ 2

∫ t

0

∥

∥

∥

∥

√

Dm,S∇Cm,S(s)

∥

∥

∥

∥

2

L2(S)

ds

)

+

∥

∥

∥

∥

C(t)

∥

∥

∥

∥

2

L2(ΩS,V )

+2

∫ t

0

∥

∥

∥

∥

√
D∇C(s)

∥

∥

∥

∥

2

L2(ΩS,V )

ds, t ∈ [0, T ],

(18)

where E∇(0) is the initial mass of PLA and drug. In the following, the space L∞(0, T, L∞(Ω))

will be represented by L∞(L∞).

Theorem 4.1 If (C∗, C) is a solution of the variational problem VP such that Cm,S(t) ∈
H2(S), m = 1, . . . , 4, then there exists a positive constant K depending on

‖C∗‖L∞(L∞) = max
m=1,...,4

‖Cm,S‖L∞(L∞) such that the following holds

E∇(t) ≤ e2KtE∇(0) + γ1,S
2K

∣

∣

∣

∣

Γ2 ∪ Γ3

∣

∣

∣

∣

(

e2Kt − 1
)

, t ∈ [0, T ], (19)

where |Γ2 ∪ Γ3| is the length of the boundary Γ2 ∪ Γ3.

Proof. Taking in (17), vm = Cm,S(t) and w = C(t) we obtain

1

2

d

dt
E∇(t) ≤

4
∑

m=1

(

Fm(C∗(t)), Cm,S(t)

)

S

+ γ1,S

(

1− C1,S(t), C1,S(t)

)

Γ2∪Γ3

−
4

∑

m=2

γm,S

∥

∥

∥

∥

Cm,S(t)

∥

∥

∥

∥

L2(Γ2∪Γ3)

− γ

∥

∥

∥

∥

C(t)

∥

∥

∥

∥

L2(Γ)

,

(20)

that leads to

1

2

d

dt
E∇(t) ≤

4
∑

m=1

(

Fm,S(C
∗(t)), Cm,S(t)

)

S

+
γ1,S
4

∣

∣

∣

∣

Γ2 ∪ Γ3

∣

∣

∣

∣

. (21)

As H2(S) is embedded in the space of continuous bounded functions in S ([1]), it can be shown

that there exists a positive constant K, that depends on ‖C∗‖L∞(L∞) = max
m=1,...,4

‖Cm,S‖L∞(L∞),

such that

4
∑

m=1

(

Fm,S(C
∗(t)), Cm,S(t)

)

S

≤ K
4

∑

m=1

∥

∥

∥

∥

Cm,S(t)

∥

∥

∥

∥

2

L2(S)

. (22)

Inequality (21) leads to the differential inequality

d

dt
E∇(t) ≤ 2KE∇(t) + γ1,S

2

∣

∣

∣

∣

Γ2 ∪ Γ3

∣

∣

∣

∣

,
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and consequently we deduce (19). �

In order to simplify the presentation, we assume in what follows that the diffusion coefficients

Dm,S , m = 1, . . . , 5, are constant. To study the stability of the initial value problem VP, we

consider two solutions C = (C∗, C) and C̃ = (C̃∗, C̃) with different initial conditions C(0) and

C̃(0). To establish an inequality of form

∥

∥

∥

∥

C∗(t)− C̃∗(t)

∥

∥

∥

∥

2

L2(S)

+

∥

∥

∥

∥

C(t)− C̃(t)

∥

∥

∥

∥

2

L2(ΩS,V )

≤ B(t)
(

∥

∥

∥

∥

C∗(0) − C̃∗(0)

∥

∥

∥

∥

2

L2(S)

+

∥

∥

∥

∥

C(0)− C̃(0)

∥

∥

∥

∥

2

L2(ΩS,V )

)

, t ∈ [0, T ],

(23)

where B(t) must be bounded in time, that leads to the stability a system of quasi-linear reaction-

diffusion equations, it is sufficient to assume that the reaction terms have bounded partial deriva-

tives. As reaction terms (3) are nonlinear functions unbounded partial derivative, an estimate

of type (23) can not be established. To gain some insight on the stability behaviour of the

initial value problem VP, we study in what follows the stability of a linearization of VP in the

neighborhood of a soloution C(t).

We recall that C∗(t) =

(

Cm,S(t)

)

m=1,...,4

, and C(t) and D are defined by (14) and (16) respec-

tively. Then, the system of equations (2) and (6) can be rewritten in the following form







dC
dt

(t) = F(C(t)), t > 0,

C(0) is given,
(24)

where C(t) =
(

C∗(t), C(t)
)

, F(C(t)) =
(

Fm(C(t))
)

m=1,...,5

is defined by

{

Fm(C(t)) = ∇.
(

Dm,S∇Cm,S(t)
)

+ Fm,S(C
∗(t)), m = 1, . . . , 4,

F5(C(t)) = ∇.
(

D∇C(t)
)

,
(25)

and Fm,S(C
∗(t)),m = 1, . . . , 4, are given by (3) and (4).

The linearization of the initial value problem (24) in C(t) is then written in the following form







dC̃
dt

(t) = LC̃(t) , t > 0,

C̃(0) is given,
(26)

where LC̃(t) =
(

LmC̃(t)
)

m=1,...,5

is defined by

{

LmC̃(t) = ∇.
(

Dm,S∇C̃m,S(t)
)

+ FJ,m(C(t))C̃(t), m = 1, . . . , 4,

L5C̃(t) = ∇.
(

D∇C̃(t)
)

,
(27)
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with C̃(t) = (C̃∗(t), C̃(t)), C̃∗(t) =

(

C̃m,S(t)

)

m=1,...,4

and

FJ,m(C(t))C̃(t) =







































− ∑

i=1,2
FJ,i(C(t))C̃(t), m=1,

−FJ,1(C(t))C̃(t), m=2,
∑

i=1,2
(−1)i−1FJ,i(C(t))C̃(t), m=3,

∑

i=1,2
FJ,i(C(t))C̃(t), m=4.

(28)

In (28), FJ,i(C(t))C̃(t), i = 1, 2, represent Fréchet derivatives defined by























FJ,1(C(t))C̃(t) = κ1,SC2,S(t)(1 + αC4,S(t))C̃1,S(t) + κ1,SC1,S(t)(1 + αC4,S(t))C̃2,S(t)

+κ1,SαC1,S(t)C2,S(t)C̃4,S(t),

FJ,2(C(t))C̃(t) = κ2,SC3,S(t)(1 + βC4,S(t))C̃1,S(t) + κ2,SC1,S(t)(1 + βC4,S(t))C̃3,S(t)

+κ2,SβC1,S(t)C3,S(t)C̃4,S(t).

(29)

Let C̃ and ˜̃C be solutions of the variational problem associated with the initial boundary value

problem defined by (26) and the conditions (13), with initial conditions C̃(0) and ˜̃C(0). We

suppose that C̃(t), ˜̃C(t) ∈
(

H2(S)

)4

.

We establish in what follows an upper bound for the functional EW(t) defined by

EW(t) =

4
∑

m=1

∥

∥

∥

∥

Wm,S(t)

∥

∥

∥

∥

2

L2(S)

+

∥

∥

∥

∥

W (t)

∥

∥

∥

∥

2

L2(ΩS,V )

, t ∈ [0, T ], (30)

where Wm,S = C̃m,S − ˜̃Cm,S , m = 1, . . . , 4, and

W =

{

C̃5,S − ˜̃C5,S in S̄ × [0, T ],

C̃V − ˜̃CV in V̄ × [0, T ].
(31)

It can be shown that

1

2

d

dt
EW(t) ≤ −

4
∑

m=1

∥

∥

∥

∥

√

Dm,S∇Wm,S(t)

∥

∥

∥

∥

2

L2(S)

−
∥

∥

∥

∥

√
D∇W (t)

∥

∥

∥

∥

2

L2(ΩS,V )

+

4
∑

m=1

(

FJ,m(C(t))Wm,S(t),Wm,S(t)
)

S
.

(32)

Consequently, there exists a positive constant K′ depending on
∥

∥C∗
∥

∥

L∞(L∞)
such that

d

dt
EW(t) ≤ 2K′EW(t), t > 0. (33)
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This inequality leads to

EW(t) ≤ e2K
′tEW(0), (34)

which allow us to conclude the stability of the linearization of VP for bounded time intervals.

5 Finite dimensional approximation

To define a finite dimensional approximation for the solution of VP we fix h > 0 and we intro-

duce in ΩS,V an admissible triangulation Th, depending on h > 0, such that the corresponding

admissible triangulations induced in S and V , respectively ThS
and ThV

, are compatible on Γ4

(see Figure 3).

To compute the semi-discrete Ritz-Galerkin aproximation Ch = (C∗
h, Ch) for the weak solution

C = (C∗, C) defined by VP, we introduce the finite dimensional spaces

Pn
Q =

{

u ∈ C0(Q̄) : u
∣

∣

∆
= Pn, ∆ ∈ ThQ

}

,

where Q = S,ΩS,V and Pn denotes a polynomial with degree at most n.

Let C∗
h = (C1,S,h, C2,S,h, C3,S,h, C4,S,h) and

Ch =

{

C5,S,h in S̄ × [0, T ],

CV,h in V̄ × [0, T ],
(35)

The Ritz-Galerkin approximation Ch = (C∗
h, Ch) for the weak solution C = (C∗, C) defined by

VP, is computed solving the following variational problem:

FEVP: Find (C∗
h(t), Ch(t)) ∈

(

Pn
S

)4 × Pn
ΩS,V

such that















































































4
∑

m=1

(

∂Cm,S,h

∂t
(t), vm,h

)

S

+

(

∂Ch

∂t
(t), wh

)

ΩS,V

= −
4

∑

m=1

(

Dm,S,h∇Cm,S,h(t),∇vm,h

)

S

−
(

D∇Ch(t),∇wh

)

ΩS,V

+

4
∑

m=1

(

Fm,S(C
∗
h(t)), vm,h

)

S

+γ1,S

(

1− C1,S,h(t), v1,h

)

Γ2∪Γ3

−
4

∑

m=2

γm,S

(

Cm,S,h(t), vm,h

)

Γ2∪Γ3

−
(

γCh(t), wh

)

Γ

in (0, T ], for all vm,h ∈ Pn
S ,m = 1, . . . , 4, and wh ∈ Pn

ΩS,V
,

Cm,S,h(0) = 0, m = 1, 3, 4, Cm,S,h(0) = 1, m = 2, 5, CV,h(0) = 0.

(36)

In (36), Dm,S,h = D0
m,Se

αm,S

C0

2,S
−C2,S,h

C0

2,S in S̄ × (0, T ], m = 1, . . . , 4, and

Dh =











D0
5,Se

α5,S

C0

2,S
−C

2,S,h

C0

2,S in S̄ × (0, T ],

DV in V̄ × (0, T ].

Following the proof of Theorem 4.1 it can be shown that E∇(t) defined with the Ritz-Galerkin

12



approximation Ch = (C∗
h, Ch) satisfies an inequality analogous to (19). Moreover, for the lin-

earization of FEVP around Ch = (C∗
h, Ch) it can be shown an inequality analogous to (34).

6 Numerical Experiments

In this section, we analyse the material behavior and the influence of the parameters of the model

in the release rate. All experiments have been done with the open source partial differential

equation solver freeFEM++ with 10096 elements (5224 vertices) for ΩS,V and 3250 elements

(1751 vertices) for the stent S, and using IMEX backward integrator with time step size ∆t =

10−3. Several choices of finite element spaces can be made, but we consider here the piecewise

linear finite element space P1.

Figure 3: Triangulation in the stent and in the vessel wall.

The IMEX method is defined by integrating (36) with an implicit Euler method where the diffu-

sion terms are considered implicitly with implicit diffusion coefficients explicit. The discretization

of the reaction terms, is explicit which convert each nonlinear reaction into a linear one.

The following parameters have been used in the simulation of the drug release from the drug

eluting stent into the arterial wall:

γm,S = 105 cm/s, m = 1, . . . , 5, γv = 105 cm/s, γb = 1010 cm/s, αm,S = 9, m = 1, . . . , 4,

α5,S = 0.9, κ1,S = 1 × 10−6 cm2/g.s, κ2,S = 1 × 10−8 cm2/g.s, α = 1 s/cm2, β = 10 s/cm2,

D0
1,S = 5×10−7 cm2/s, D0

2,S = 1×10−15 cm2/s, D0
3,S = 5×10−12 cm2/s, D0

4,S = 3×10−12 cm2/s,

D0
5,S = 2× 10−8 cm2/s, DV = 5× 10−8 cm2/s.
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(a) 1 day.

(b) 7 days.

(c) 14 days.

Figure 4: Evolution of drug distribution in the coating and in the vessel wall.

In Figure 4, we plot the drug distribution in the stent and in the arterial wall after 1 day, 7

and 14 days. When the drug reaches Γ4 (See Figure 2), it crosses the arterial wall through the

interface boundary as mathematically described by (10). When the drug reaches the boundary

Γ7, it enters the media as described by Robin boundary conditions (11).
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(a) 1 day.

(b) 7 days.

(c) 14 days.

Figure 5: Evolution of concentration of fluid in the coating.

In Figure 5, we exhibit the penetration of the fluid into the coated stent. We observe that the

fluid penetrates into the PLA until it reaches a steady state level.
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(a) 1 day.

(b) 7 days.

(c) 14 days.

Figure 6: Evolution of concentration of PLA in the coating.

In Figure 6, the degradation of PLA into smaller molecules which are released into the lumen is

shown. It is assumed that the penetration of the PLA and also its reaction products, oligomers

and lactic acid, into the arterial wall is negligible. The evolution of PLA concentration is com-

patible with erosion during degradation.
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Figure 7: Diffusion of fluid, drug, lactic acid and PLA, D1,S = 5 × 10−8 cm2/s,D5,S =
2 × 10−9 cm2/s,DV = 5 × 10−9 cm2/s (Case A) and D1,S = 5 × 10−7 cm2/s,D5,S =
2× 10−8 cm2/s,DV = 5× 10−8 cm2/s (Case B).

In Figure 7, we exhibit the mass of drug both in the coating and in the vessel wall as well as

the mass of the fluid, PLA and lactic acid in the coating during the first 12 hours using different

diffusion coefficients. We observe in Figure 7 (a) that small diffusion coefficients will increase

accumulation of the drug in the vessel wall resulting in higher drug residence time and also will

increase the mass of fluid and lactic acid in the stent. In Figure 7 (b), an increase in the PLA

degradation and drug release is observed when the diffusion coefficients of the drug and the fluid

decrease.

We compute the mass fractions retained in the coating by

Mm,S(t) =
1

|S|

∫

S

Cm,S(t)dS, m = 1, . . . , 5, (37)

where |S| represents the area of S. The mass of drug in the vessel is defined by

MV (t) =
1
|V |

∫

V

CV (t)dV, (38)

where |V | stands for the area of the vessel wall.
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Figure 8: Mass of fluid, drug, lactic acid and PLA during 7 days with different reaction rates
κ1,S and κ2,S (cm2/g.s) . 18



Figure 8 shows the influence of reaction rates on the release process. In Figure 8 (a) we observe

that when the reaction rate κ1,S decreases, more fluid enters the stent. A little increment will

also accur when we decrease κ2,S . As it is seen in Figure 8 (b), when both the values of the

reaction rates κ1,S and κ2,S are decreased, some reduction in lactic acid production is observed.

Figures 8 (c)− (e) indicate that the changes in κ2,S do not have any effect on the masses of drug

in the stent and the vessel wall. The same insensitivity occurs with PLA. The decrease of κ1,S

will decelerate the speed of drug release and PLA degradation in the stent and will accelerate

slightly the speed of drug in the vessel wall.

α and β Fluid PLA Oligomers Polylactic Acid
α = 0, β = 0 2.1177 99.9631 0.0309 0.0313
α = 1, β = 1 2.1176 99.9629 0.0311 0.0315
α = 10, β = 1 2.1171 99.9612 0.0328 0.0332
α = 1, β = 10 2.1176 99.9629 0.0311 0.0315
α = 10, β = 10 2.1170 99.9612 0.0328 0.0332
α = 100, β = 10 2.1060 99.9322 0.0608 0.0616

Table 1: Behaviour of the mass of the fluid, PLA, oligomers and lactic acid for different valuse
of α and β (s/cm2) after 24 hours.

Table 1 shows the effect of the autocatalysis coefficients on the degradation of the polymer. As

it can be observed, the polymer degrades slightly faster at higher values of the autocatalysis

coefficients α. The amounts of oligomers and lactic acid are also influenced by α. The mass does

not seem very sensitive to changes in β.

7 Conclusion

In recent years, mathematical modeling has become an effective tool to simulate drug delivery

processes in DES leading to a deeper understanding of the drug release mechanism both in

biodegradable polymers and in the arteries.

In this paper, a two dimensional mathematical model of in vivo drug delivery from an eluting stent

has been developed. Numerical simulations as well as a sensitivity analysis of the parameters

have been done using freeFEM++. The degradation of the PLA into oligomers and lactic acid

has been taken into account. The process of penetration of the fluid into a biodegradable polymer

as well as the process of drug diffusion into the blood and the vessel wall have been analyzed

from a numerical viewpoint. The sensitivity of the model to the perturbations of the effective

parameters such as diffusion coefficients, reaction rates and autocatalytic parameters is also

analyzed. The interplay between these parameters can be used as an efficient tool in the design

of the coating polymer in such a way that a predefined drug delivery profile can be obtained.

The cardiovascular drug delivery process is not well understood because it depends on a huge

number of complex biochemical and physical phenomena. However a simplified release model as
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the one presented in this paper can help to give some insight of the dependence of the release

profiles on the parameters involved. The introduction of the mechanical properties of the stent

and the vessel wall as the coupling with blood flow in the vessel are important aspects that we

plan to consider in the near future.

Annex

Parameter/Variable Unit Equation

κ1,S , κ2,S cm2/g.s (1)
α, β s/cm2 (4)

Cm,S , CV g/cm2 (2), (6)
D0

m,S ,DV cm2/s (5), (6)

γm,V cm/s (9)
γb, γv cm/s (11), (12)

Table 2: Parameters of the model in the drug eluting stent and vessel wall.

In the column Equation, we indicate the first equation in the paper where the parameter or

variable appear.
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