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Abstract

In this paper we consider a linear damping wave equation with a memory effect
using exponential kernels. We establish a bound for an energy function that is shown
to converge to zero. Numerical waves that mimic their continuous counterpart are
also introduced using the finite element approach and the qualitative behaviour of the
solutions is explored.
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1 Introduction

In this paper we consider the following wave equation with memory

d2u

dt2
(t) + c

du

dt
(t)−D1∆u(t) = −D2

∫ t

0
Ker(t− s)∆u(s)ds+ f(t), t ∈ R+, (1)

where Ker(s) =
1

τ
e−

s
τ , τ > 0, u(t) denotes a function defined from Ω ⊂ Rn into R, c is

a function depending only on spatial variables and accounts for the damping of the wave,
D1, D2 and τ are positive constants and f denotes a source term.

Equation (1) can be used to model the displacement of a viscoelastic material under
the action of an external force when the stress tensor σ(t) and the strain tensor ε(t) are
related by the following constitutive equation

σ(t) = E(0)Dε(t)−
∫ t

0

∂

∂s
E(t− s)Dε(s) ds, (2)

where D is an elastic tensor and the stress relaxation function, E, is nonnegative and
monotone decreasing. Assuming that the viscoelastic behaviour is described by Maxwell-
Wiechert model (with only one Maxwell arm), then E(t) = E0 + E1e

−α1t, where E0 is the
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Young modulus of the spring arm, E1 is the Young modulus of the Maxwell arm and α1 = E1
µ1

being µ1 the associated viscosity. The relation between the displacement u, the stress σ
and the external force f is given by Newton’s second law

ρ
d2u

dt2
= ∇ · σ + f, (3)

where ρ is the mass density of the body and ∇ · σ =

 n∑
j=1

∂σij
∂xj

n
i,j=1

. Assuming that the

strain and the displacement is given by ε(t) =
1

2

(
∇u(t) +∇u(t)t

)
, from (3) we obtain for

the displacement the following second order integro-differential equation

ρ
d2u

dt2
(t)−D1∆u(t) = −D2

∫ t

0
Ker(t− s)∆u(s) ds ds+ f, (4)

with D1 = D(E(0) + E1), D2 = E1
2 and τ = α−1

1 .
In what follows we consider homogeneous Dirichlet boundary conditions and the fol-

lowing initial conditions

u(0) = u0,
du

dt
(0) = u1. (5)

A quasilinear problem of the type of (1) was also introduced for instance in [5], [9] and
[11] to describe a viscoleasticity physical problem. Without being exhaustive we mention
[1], [2], [], [7], [8],[10] and [12] for the study of qualitative properties of partial differential
problems defined by equations of the type of (1).

The initial boundary value problem (IBVP) (1), (5) with homogeneous Dirichlet bound-
ary conditions is now replaced by its weak formulation. To define such formulation we in-
troduce the functional context needed. Let L2(Ω), L∞(Ω) and H1

0 (Ω) be the usual Sobolev
spaces. In L2(Ω) we consider the usual inner product (·, ·) and the norm induced by
this inner product is denoted by ‖·‖0. In H1

0 (Ω) we consider the usual norm ‖·‖1 . Let

L2(R+;H1
0 (Ω)) be the space of functions v : R+ → H1

0 (Ω) such that

∫ T

0
‖v(t)‖21 dt <

∞, ∀T > 0. Let H1(R+;H1
0 (Ω)) be the subspace of L2(R+;H1

0 (Ω)) of all functions v such

that its weak derivative
dv

dt
: R+ → H1

0 (Ω) belongs to L2(0,∞;H1
0 (Ω)). By L∞(R+;L2(Ω))

we represent the space of all functions v : R+ → L2(Ω) such that

ess sup
t∈[0,T ]

‖v(t)‖0 <∞,∀T > 0.

Let V = L2(Ω) or V = H1
0 (Ω). By Cm(R+;V ), m ∈ N, we represent the space of

function v : R+
0 → V with continuous derivatives

djv

dtj
: R+

0 → V , for j = 0, . . . ,m.
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Let u ∈ H1(R+;H1
0 (Ω)) be such that

d2u

dt2
∈ L∞(R+;L2(Ω)) and, for all T > 0, holds

the following

(
d2u

dt2
(t) + c

du

dt
(t), w

)
+D1(∇u(t),∇w) =

D2

τ

∫ t

0
e−

t−s
τ (∇u(s),∇w) ds+ (f(t), w),

a. e. in (0, T ), ∀w ∈ H1
0 (Ω),

du

dt
(0) = u1,

u(0) = u0.
(6)

In (6) the inner products in L2(Ω) and (L2(Ω))n are denoted indifferently by (., .). Their
norms will be also represented indifferently by ‖.‖.

The main objective of this paper is the analysis of an energy functional under general
assumptions and the illustration of the qualitative behaviour of numerical solutions under
several different choices for the parameters. We shall prove that a suitable energy func-
tional converges to zero as t → ∞. Numerical wave equations that mimic their continuous
counterpart will be also considered and their behaviour will be explored.

The paper is organized as follows. In Section 2 we introduce the new energy functional
and we prove that under convenient assumptions we have

lim
t→∞

du

dt
= 0 in L2(Ω), lim

t→∞
u(t) = 0 in H1(Ω),

and

lim
t→∞

∫ t

0
Ker(t− s)∇u(s)ds = 0 in L2(Ω).

A finite element method is introduced in Section 3 that mimics energy behavior of the
IBVP studied in this paper. The behavior of the IBVP (1), (5) with homogeneous Dirichlet
boundary conditions and in Section 5 we summarize some conclusions.

2 Energy behaviour

The energy functional that we introduce here extend several definitions introduced before
in the literature. For instance, in [4] and [16] the authors considered the classical energy
functional

E(u)(t) = ‖u(t)‖0 + ‖∇u(t)‖20,

while in ([10]) a term was added to the last energy functional induced by the boundary
conditions. Also in ([3]), for a quasilinear problem, a term related with the reaction term
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was also added. In [12] the energy functional

E(u)(t) =
1

2
‖du
dt
‖20 +

1

2

(
1−

∫ t

0
Ker(t− s)ds

)
‖∇u(t)‖20 +

∫ t

0
Ker(t− s)‖∇u(t)−∇u(s)‖20ds,

(7)
was introduced. A similar definition to (7) was considered in [16] but with the last term of

(7) replaced by

∫ t

0
Ker(t− s)‖u(t)− u(s)‖20ds.

In the first result that we present we establish an estimate for the usual energy for the
wave equation

E(u)(t) =

∥∥∥∥dudt (t)

∥∥∥∥2

0

+ ‖u(t)‖21 +

∥∥∥∥∥
∫ t

0

e−
t−s
τ

τ
∇u(s) ds−∇u(t)

∥∥∥∥∥
2

0

+

∥∥∥∥∥
∫ t

0

e−
t−s
τ

τ
∇u(s) ds

∥∥∥∥∥
2

0

,

(8)

for t > 0, where u is a solution of (6). Under suitable regularity conditions, it can be shown
the following result.

Theorem 1. Let u ∈ C2(0,∞, L2(Ω))
⋂
C1(0,∞, H1

0 (Ω)) be a solution of (6) for D1 > D2,
Ker(s) = Ke−βs, c ∈ L∞(Ω) satisfying

c ≥ c0 > 0 on Ω. (9)

and f = 0. If there exists a positive constant γ such that γ > min {‖c‖∞ , β +K}, and

max
{

2(2γ − c0), 2D2
(γ−β)2

K

}
min

{
1, γ2 − γ ‖c‖∞ , D1 −D2, D2, D2

γ−β−K
K

} − 2γ < 0, (10)

then

lim
t→∞

(∥∥∥∥dudt (t)

∥∥∥∥2

0

+ ‖u(t)‖21 +

∥∥∥∥∫ t

0
Ker (t− s)∇u(s) ds−∇u(t)

∥∥∥∥2

0

)
+

∥∥∥∥∫ t

0
Ker (t− s)∇u(s) ds

∥∥∥∥2

0

+

∫ t

0
e−2γ(t−s) ‖∇u(s)‖20 ds = 0.

(11)

3 Decay decreasing of numerical waves

The study of numerical methods to solve numerically the IBVP (1), (5) with homogeneous
Dirichlet boundary conditions was presented for instance in [6], [14], [13], [15] and some of
the references of these papers.
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In this section we establish that numerical approximations for the solution of the
IBVP(1), (5) with homogeneous Dirichlet boundary conditions presents the same quali-
tative behaviour of the solution of this problem. Let Ω ⊂ R2 be a bounded polygonal
domain and let h > 0 be a fixed parameter and let Th be an admissible triangulation of Ω
with diameter h, that is,

h = max
∆∈Th

diam(∆),

where diam(∆) denotes the diameter of ∆. Let Vh be the space of piecewise polynomials of
degree m defined in Th, that is

Vh = {v ∈ C0(Ω) : v = 0 on ∂Ω, v = pm in ∆, ∆ ∈ Th},

where pm denotes a polynomial of degree at most m. By P∂Ω and PΩ we represent the set
of nodes of Th on ∂Ω and Ω, respectively. Let {φP , P ∈ PΩ} be a basis of Vh. The finite
element approximation for the solution of the IBVP (1), (5) with homogeneous Dirichlet

boundary conditions is uh(x, t) =
∑
P∈PΩ

αP (t)φP (x) that satisfies the following



(
d2uh
dt2

(t) + c
duh
dt

(t), wh

)
+ (∇uh(t),∇wh) =

D2

τ

∫ t

0
e−

t−s
τ (∇uh(s),∇wh) ds+ (f(t), wh),

a. e. in (0, T ), ∀wh ∈ Vh,
duh
dt

(0) = u1,h,

uh(0) = u0,h.
(12)

In (12) u1,h and u0,h are approximations of u1 and u0 in Vh. To compute uh(t) we need to
solve the following system of second order integro-differential equations

Mhα
′′(t) + Chα

′(t) +Ahα(t) =

∫ t

0
e−

t−s
τ Bhα(s) ds+ Fh(t), t > 0,

α′(0) = U1,h,
α(0) = U0,h,

(13)

where α(t) = [(αP (t))P∈PΩ
] , Ui,h, i = 0, 1, are the vectors whose components are the coor-

dinates of ui,h, i = 0, 1, with respect to the basis {φP , P ∈ PΩ}, and

Mh = [((φP , φQ))P,Q∈PΩ
] , Ch = [((cφP , φQ))P,Q∈PΩ

] , Ah = [((∇φP ,∇φQ))P,Q∈PΩ
] ,

Bh =

[
D2

τ
((∇φP ,∇φQ))P,Q∈PΩ

]
, Fh(t) = [((f(t), φQ))Q∈PΩ

].
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Introducing the new variable Z(t) = (z1(t), z2(t)) where z1(t) = α(t), z2(t) = α′(t), then the
initial value problem (13) of second order is equivalent to Z ′(t) = AhZ(t) +

∫ t

0
Ker (t− s)BhZ(s) ds+ Fh(t), t > 0,

Z(0) = Uh,
(14)

where

Ah =

[
0 I

−M−1
h Ah −M−1

h Ch

]
,Bh =

[
M−1
h Bh 0
0 0

]
,Fh(t) =

[
0

M−1
h Fh

]
,Uh =

[
U0,h

U1,h

]
.

As the unique solution of the IVP (14) is smooth enough, then for the unique solution
uh(t) ∈ Vh of (12) it can be shown the following results:

Theorem 2. Under the assumptions of Theorem 1 we have

lim
t→∞

(∥∥∥∥duhdt (t)

∥∥∥∥2

0

+ ‖uh(t)‖21 +

∥∥∥∥∫ t

0
Ker (t− s)∇uh(s) ds−∇uh(t)

∥∥∥∥2

0

)
+

∥∥∥∥∫ t

0
Ker (t− s)∇uh(s) ds

∥∥∥∥2

0

+

∫ t

0
e−2γ(t−s) ‖∇uh(s)‖20 ds = 0.

(15)

4 Numerical results

In this section we illustrate the qualitative behaviour of numerical solutions of (13). We now
introduce the specifics of our test problems. Given the weak formulation (6), we specify

the domain Ω = (−1, 1)2 and the initial data u(x, y, 0) = e−
x2+y2

0.1 ,
du

dt
(x, y, 0) = 0 for

(x, y) ∈ Ω.

Following the spatial discretisation in (12), we introduce the time step ∆t and a uniform
partition tj = j∆t, j = 0, 1, 2, . . . , N = [ T∆t ]. Applying standard centered finite differences
schemes in time and the composite trapezoidal rule to the formulation (13), the following
second order in time method is obtained:(

un+1
h − 2unh + un−1

h

∆t2
, v

)
+ c

(
un+1
h − un−1

h

2∆t
, v

)
+D1

(
∇un+1

h ,∇v
)

=

=
D2∆t

2τ

n∑
j=0

(
e−

tn+1−tj+1
τ ∇uj+1

h + e−
tn+1−tj

τ ∇ujh,∇v
) (16)

where ujh is an approximation for u(tj), j = 0, 1, . . . , N .
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Let In+1 =
D2∆t

2τ

n∑
j=0

(
e−

tn+1−tj+1
τ ∇uj+1

h + e−
tn+1−tj

τ ∇ujh

)
. It is straightforward that

In satisfies 
In+1 = e−

∆t
τ In +

D2∆t

2τ

(
e−

∆t
τ ∇unh +∇un+1

h

)
, n > 1

I1 =
D2∆t

2τ

(
e−

∆t
τ ∇u0

h +∇u1
h

)
.

(17)

With this new notation, method (16) can be rewritten as((
1

∆t2
+

c

2∆t

)
un+1
h , v

)
+

(
D1 −

D2∆t

2τ

)(
∇un+1

h ,∇v
)

=

(
2

∆t2
unh +

(
c

2∆t
− 1

∆t2

)
un−1
h , v

)
+ e−

∆t
τ (In,∇v) .

(18)

Remark 1. For efficiency reasons, the right hand side term should not be computed as
it is in formula (16) but rather as recursion formula (17) to avoid the computational cost
induced by the sum.

The discrete energy obtained from Eh,n by applying the same integration schemes as in
(16), for a selection of parameters τ and D2. For clarity, the discrete energy is calculated

as Eh,n =

∥∥∥∥∥unh − un−2
h

2∆t

∥∥∥∥∥
2

0

+ ‖unh‖21 + ‖In −∇unn‖
2
0 , n > 2.

4.1 Solution’s behaviour with damping

In the presence of a positive damping factor c, the numerical solutions tend to zero over
time. This behaviour is clearly illustrated by Figure ??, which plots the discrete energy
function, for different values of D2 and τ . It can be observed also that the larger the
damping factor, the faster the energy approximates zero.

A similar result is observed when analysing the numerical solution at the central point
(0, 0) of the square [−1, 1]2. As expected from the previous results, the solution at this
point approximates zero. In Figure ?? we plot the numerical solution at this point, for the
same profiles as in Figure ??. It is observed that the smaller the value D2 is, the closer the
solutions are, for different values of τ , to the solution of the limit case D1 = 1 and D2 = 0.

4.2 Limiting case as τ tends to zero

For a fixed value of D2, the variation of τ appears to induce a different time scale on the
oscillations of the solutions (for smaller values of D2 such difference is reduced due to the
previous conclusions). To further investigate the behaviour of the numerical solution for
varying τ , we calculated the restriction of the numerical solutions, at time t = 4, in the set
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[−1, 1]×{0}. These results are plotted in Figure ??. Combining the information from Fig-
ures ??, ?? and ?? it seems apparent that as τ approaches zero, the corresponding numerical
solution approximates the numerical solution obtained taking the pure wave equation (with
damping effect included) with wave coefficient D1 −D2. In fact, if we consider the differ-

ential term I(t; τ) :=
D2

τ

∫ t

0
e−

t−s
τ ∆u(s) ds it can be shown that for a sufficiently smooth

function u and fixed t > 0 , lim
τ→0+

I(t; τ) = D2∆u(t) which sheds some light into the observed

behaviour. However, we do not have, at this point, a rigorous proof to analytically support
this statement.

5 Conclusions

This paper establishes bounds for an energy function associated with the solution of a linear
wave equation with a memory term. Under certain conditions, the energy converges to zero
as t −→ ∞. It was also shown that a semi-discrete counterpart of the equation (obtained
by discretisation in space with finite elements) inherits the same property.

The numerical waves studied also exhibit the same convergence to zero of a discretised
energy function. It is moreover noticeable that as the coefficient D2 approximates zero, the
solutions approximate the solution of a pure wave equation (with no memory). Also, as τ
approximates zero, a similar behaviour is observed.
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