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Abstract

The 't Hooft six-quark flavor mixing interactionVy = 3) is bosonized by the path integral method. The considered complete
Lagrangian is constructed on the basis of the combined 't Hooft &l x U (3) extended chiral four fermion Nambu—Jona-
Lasinio interactions. The method of the steepest descents is used to derive the effective mesonic Lagrangian. Additionally to the
known lowest order stationary phase (SP) result of Reinhardt and Alkofer we obtain the contribution from the small quantum
fluctuations of bosonic configurations around their stationary phase trajectories. It affects the vacuum state of hadrons at low
energies: whereas without the inclusion of quantum fluctuations the vacuum is uniquely defined for a fixed set of the model
parameters, fluctuations give rise to multivalued solutions of the gap equations, marked at instances by drastic changes in the
qguark condensates. We derive the new gap equations and analyze them in comparison with known results. We classify the
solutions according to the number of extrema they may accommodate. We find up to four solutions<4vihe®s < 3 GeV
region.0 2002 Elsevier Science B.V. All rights reserved.

PACS: 12.39.Fe; 11.30.Rd; 11.30.Qc

1. Introduction 2Ny quark interactions arise, which are known as
't Hooft interactions. In the case of two flavors

The globalt;, (3) x Ug(3) chiral symmetry of the they are four-fermion interactions, and the resulting
QCD Lagrangian (for massless quarks) is broken by Iow—.epergy theory resembles the old Nambu—Jona-
the U4 (1) Adler—Bell-Jackiw anomaly of th&U(3) Lasinio model [3]. In the case of three flavors they
singlet axial currenty,ysq. Through the study of ~ are six-fermion interactions which are responsible
instantons [1,2], it has been realized that this anomaly for the correct description of and n’ physics, and
has physical effects with the result that the theory additionally lead to the OZI-violating effects [4,5],
contains neither a conservéd(1) quantum number, _ _
nor an extra Goldstone boson. Instead the effective Ldet= K (d€% Prq + detg PLg), @)

where the matrice®r ;. = (1+ y5)/2 are projectors

E-mail address: alexguest@teor.fis.uc.pt (A.A. Osipov). and determinant is over flavor indices.

1 On leave from the Joint Institute for Nuclear Research, Labora- The physical degrees of freedom of QCD at low-
tory of Nuclear Problems, 141980 Dubna, Moscow Region, Russia. energies are mesons. The bosonization of the effective
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quark interaction (1) by the path integral approach has Lint, consisting of the free field part
been considered in [6], where the lowest order station- . R
ary phase approximation (SPA) has been used to es-£0 = q(iy" o, —)q, @)
timate the leading contribution from the 't Hooft de-  and thet/ (3); x U(3) chiral symmetric four-quark
terminant. In this approximation the functional inte- interaction
gral is dominated by the stationary trajectoriggx), G
determined by the extremum conditié§(r) = O of Lint = E[(Ejkaq)z + (Qiyskaq)z]. (4)
the actionS(r). The lowest-order SPA corresponds to
the case in which the integrals associated W#5i(r),
for the pathrsi(x) are neglected and onl§(rsy) con-
tributes to the generating functional. The next natural
step in this scenario is to complete the semiclassical
result of Reinhardt and Alkofer by including the con-
tribution from the integrals associated with the second
functional derivative2S(rs), and this is the subject of
our Letter.

An glternative method if_ boson_izing the 't Hooft_ Sa = —Ghaq, Do = Givshaq,
determinant has been reviewed in [7]. The special
path integral representation for the quark determi- * = Saka P = Pata ®)
nant has been obtained by consideriigas an alge- yields
braically large parameter. One should not forget that K
the 't Hooft's determinant interactions are induced Edet=—@[d61(s+ip)+det(s —ip)] (6)
by instantons and only can be written in the sim-
ple determinantal from (1) in the limit of large num-
ber of colours—otherwise the many-fermion interac-
tions have a more complicated structure. For our cal-
culations it means, in particular, that the terms of the
bosonized Lagrangian induced by the 't Hooft's de-
terminant interaction (1) should be of order 1, corre-
sponding to the standard rules 8f counting. In this _ ) 4
respect it is worthwhile to note that we have found that £ Z/Dq 7 exp(z/d xz)' )
the meson vertices, induced by the 't Hooft's determi-
nant interactions in the lowest order SPA and the lead-
ing term from the integral associated with the second

functional derivatives2S(rs;) have the samé/.-order _ G ) 4
and should be considered on the same footing. Z= / Dq'DqDoa Dpa Dry Dra Xp i /d xL

©)

We assume that quark fields have color and fla-
vor indices running through the seét= 1,2, 3; A,

are the standard@ (3) Gell-Mann matrices withu =
0,1,...,8. The current quark masg, is a nondegen-
erate diagonal matrix with elements digg,, m4, ),

it explicitly breaks the global chiral/ (3); x U(3)g
symmetry of theCnj. Lagrangian. The second term
in (2) is given by (1). Letting

with determinants written in terms of the mesonic
type quark bilinears. This identity is a first step to the
bosonization of the theory with Lagrangian (2).

The dynamics of the system is described by the
vacuum transition amplitude in the form of the path
integral

By means of a simple trick, suggested by Reinhardt
and Alkofer, it is easy to write down this amplitude as

. N with
2. Path integral bosonization

L'=q(iy*o, —m—o+iysp)q

To be definite, let us consider the theory of the 1 5 5 “ _
quark fields in four-dimensional Minkowski space, - E[(Ua) +(¢a)] + 11 (0a + GGhaq)
with dynamics defined by the Lagrangian density + 7% (¢a — GGivshaq)
K . .
L= LaiL+ Ldet ) - W[del{o +i¢)+detloc —ig)]. 9)

The first term here is the extended version of the Eq. (8) defines the same expression as Eq. (7). To
Nambu—-Jona-Lasinio (NJL) Lagrangi@fng. = Lo + see this one has to integrate first over auxiliary
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fields r{, 5. It leads tos-functionals which can be
integrated out by taking integrals ovey, and ¢,,
and which bring us back to the expression (7). From
the other side, it is easy to rewrite Eq. (8) in a form
appropriate to finish the bosonization, i.e., to calculate
the integrals over quark fields and integrate out from
Z the unphysical part of the auxiliany, r5 scalar
fields. Indeed, introducing new variables— o +
Gri, ¢ — ¢ + Grp, and after that; — 2r1 — 0/G,

ro — 2r2 — ¢/ G we have

z= / Do, Dga Dg Dj exp(i / d*xLy(G.q.0, ¢>>)

X fDrla Dro, exp(ifd4x E,(a,q&,rl,rz)),

(10)
where
Eq ZQ(iVMaM —m—o +iysp)q, (11)
Ly =2G[(r1a)* + (r2a)°] = 2011404 + r2a6ha)
— %[del(rl +irp) + detiry — irp)]. (12)

The Fermi fields enter the action bilinearly, we can

always integrate over them, because in this case we ., ~ £, (rg) + % Zf" cl 5(rs07s.

deal with the standard Gaussian type integral. At this
stage one should also shift the scalar fietds—
0. + A, by demanding that the vacuum expectation
values of the shifted fields vanis{®|o,|0) = 0. In

other words, all tadpole graphs in the end should sum

to zero, giving us gap equations to fix paramet#ys
HereA, = m, —m,, with m, denoting the constituent
quark masse$To evaluate path integrals ovar, one

has to use the method of stationary phase, or, after

the formal analytic continuation in the time coordinate
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This integral is hopelessly divergent evenkif= 0.
One should say at this point that we are not really
interested in (13) but only in its analytic continuation.
Let us suppose we analytically chan§igo, ¢, r1, r2)

in some way such that we go from this situation back
to the one of interest. To keep the integral convergent,
we must distort the contour of integration into the
complex plane following the standard procedure of the
method of the steepest descents. This method gives the
first term in an asymptotic expansion Hfo, ¢), valid

for i — 0. We lead the contour along the straight line
which is parallel to the imaginary axis and crosses the
real axis at the saddle poirg. It is in the sense of this
continuation that the integral(o, ¢) of (13) is to be
interpreted as

+i0o+rst
J(o,¢) = Dri1q Drro,
—i00+7st
% exp(/ d*x L, (o, ¢,r1, rz)). (14)
Near the saddle poing;,
(15)

a’/B

where the saddle point;, is a solution of the
equations’,. (r1, r2) = 0 determining a flat spot of the
surfacel, (r1, r2)

2Gr{ — (o 4+ A)q — %‘Aabc(rfrf — ré’rg) =0,
2Grg — ¢ + 3T"Aabcr]l’rg =0.
(16)
This system is well known from [6]. The totally

x4 = ixg, the method of steepest descents. Let us symmetric constantsi,;., come from the definition

consider this task in some detail.
The Euclidean (imaginary time) version of the path
integral under consideration is

+00
J(o,¢) = fDrm Draq
x exp(/ d*x L, (o, ¢, 11, rz)). (13)

2 The shift by the current quark mass is needed to hit the correct
vacuum state, see, e.g., [8].

of the flavor determinant: det= A,p.r*r’r¢, and
equal to

1
Agpe = geijkemnl (Aa)im ()\b)jn Akt (17)

They are closely related with tH&(3) constantsi,..
We use in (15) symbolg? for the differencegr® —
r&). To deal with the multitude of integrals in (14) we
define a column vectof with eighteen components
Fq = (], 75) and with the matrixcgﬁ (rst) being equal

to

Egﬁ (rsv = 4G Qaﬂ s
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%Aabcrgst )
Sap + %Aabcrfst
(18)

3k c
%A“bc T1st

Sab -

Qaﬂ = ( 3k
8G

Eqg. (14) can now be concisely written as

J(o,¢) = exp( / d*x L, (rst)>

+ioo

x / Dry exp(ZG / d*x ?tQ(rst)F>

—ioo

Aabcl st

x [1+0Mm)]. (19)

Our next task is to evaluate the integrals oxgr
Before we do this, though, some comments should be
made about what we have done so far.

(1) The first exponential factor in Eq. (19) is not
new. It has been obtained by Reinhardt and Alkofer in
[6]. A bit of manipulation with expressions (12) and
(16) leads us to the result

2
Ly(rsp) = é{G[(”fst)z + (rgst)z]
—2[(0 + A)arig+ arss] }- (20)

One can try to solve Egs. (16) looking for solutions
r{g andr;, in the form of increasing powers b, ¢4

@

abc

ris=ha +hS)op +h
2
+h )¢b¢c

abc
riq=h0dy +h50
2st= b+ NapcPbOc +

0p0e
(21)
(22)

Putting these expansions in Egs. (16) one can obtain <
the series of selfconsistent equations to determine the

constantss,, h}), andh?

2Gha — Ay — — Aapchphe = 0, (23)
3k

2G (8ac - _GAacbhb)hg) = dge, (24)
3K %))

2G| 84 + %Aacbhb hyg = dae. (25)

The other constants can be obtained from these ones,

for instance, we have

W _ 3K, @@, M ,
habc 8haahbb hcc abe:
@ _ 3% 10,2,
habc haa hbb hCL Aabc’

8
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K _

abc —

_3,@,@,0
4 haa hbb hcc
As a result the effective Lagrangian (20) can be ex-

panded in powers of meson fields. Such an expansion
(up to the terms which are cubic i, ¢,) looks like

Azpe (26)

L, (rs) = —2ha04 — h o0 — hD ap
+ O(field®).

(2) Our result (19) has been based on the assump-
tion that all eigenvalues of matrig are positive. It
is true, for instance, ik = 0. It may happen, how-
ever, that some eigenvalues@fare negative for some
range of parameteiG andx. In these cases there are
no conceptual difficulties, for from the very beginning
we deal with well defined Gaussian integrals and the
integration over the correspondifg simply does not
require analytic continuation.

(27)

We now turn to the evaluation of the path integral
in Eg. (19). In order to define the measupé, more
accurately let us exparig in a Fourier series

]

T (x) = ch,a(pn(x),

n=1

(28)
assuming that suitable boundary conditions are im-

posed. The set of the real functiofig, (x)} form an
orthonormal and complete sequence

/d4x On(X)Pm (x) = 8uim s

an(xm(y) =5(x — ). (29)
Therefore
/ Dr, exp(ZG / d*x FtQ(rst)F)

— /dcw exp{ZG ch,akzﬁlcm,ﬁ}

- ° (30)

v del(ZGAnm

The normalization constanﬁ is not important for the
following. The matrlxk is equal to

Azﬁ, = /d4x On(X) Qo (X) @ (X). (32)
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From (18) and (29) it follows that proposing that the undetermined dimensionless con-
pD-1 0 stanta will be fixed by confronting the model with
).

26128 = ( ”‘0 @1 experiment afterwards.
ac

x (aaﬂanm +/d4x ¢n(x)Fnﬂ(x)§0m(x)>
3. Theground state

(32)
with Let us study the ground state of the model under
3 consideration, then properties of the excitations will
Fop = ZAeba follow naturally. To make further progress let us note
(1) D0 — hg) hg)rgst that Egs. (23) have nontrivial solutions fbg, 3, hs,
X ( @ o @ ) corresponding to the spontaneous breaking of chiral
hee'rost ¢ (rist—ha) symmetry in the physical vacuum state with order

(33) parametersA; # 0 (i = u,d,s). We may then use
Only the matrix F,s depends here on fields, ¢. this fact to rewrite Egs. (23) as a system of only three
By absorbing inC the irrelevant field independent equations to givé;
part of ZGAnm, and expanding the logarithm in the «
representation dét + F) = exptrin(1 + F), one can 2Gh; — A; = <tijihjhg, (37)
obtain finally for the integral in (19) 8
where the totally symmetric coefficients, are equal

J(o.¢)=C'e", to zero except for, ;s = 1. They are related to coeffi-
1 (- cientsA,p. by the embedding formula:8, Aapcep; x
Sy = /d4x{[”(r5t) +3 Z —tr[Fgﬂ(rSt)] eck = tijx Where matriceso;,, ande,; are define]d as
n=1 follows
o
X Zwm(x)wm(x)}. (34) L (V2 V2 V2
n=1 wi==—=|v3 —v3 0.
The sum ovemn in this expression, however, is not 2//3 1 1 _2
well defined and needs to be regularized. One can NN 1
regularize it by introducing a Gaussian cutoff 1 V2 -3 1 (38)
damping the contributions from the large momeittta @ia = V3 ’
V2. 0 -2
o0
Z Om (X))@ (x) =8(0) Here the index: runsa = 0, 3, 8 (for the other values
m=1 of a the corresponding matrix elements are equal to
0 ) 4 zero). We have als@, = eyhi, and h; = wj hy.
~ f ﬂexp<_k_) _ M (35) Similar relations can be obtained fat; and A,.
) (2m)4 m2)  16r? In accordance with these notations we will use, for

. S instance, thah( D = wighly
This procedure does not decrease the predictability of A tadpole graphs calculation gives for the gap
the model, for anyway one has to regularize the quark equations the following result
loop contributions in (10). Alternatively, following
ideas presented in [9], one can introduce the ansatz 3ak N,
p [9] oh; + S_Gz(h@) 1) Agpch® = gczmijo(mlz),

Sy = /d4x {Er(rst) (39)

where the left-hand side is the contribution from (36)
Z (— )” (rst)] (36) and the right-hand side is the contribution of the
2G2 quark loop from (10) with a regularized quadratically
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divergent integralio(m?) being defined as

OQd
t_zteftmzp(t’ AZ)’

Jo(mz) =
0
p(t, A%) =1~ (1+1A%) exp(—14?). (40)
The second term on the left-hand side of Eq. (39)
is the correction resulting from the Gaussian integrals

of the steepest descent method, comprising the effects

of small fluctuations around the stationary path. If one
puts for a moment = 0 in Eq. (39), and combines
the result with Egs. (37), one finds gap equations
which are very similar to the ones obtained in [4] (see
Eqg. (2.12) therein). At fixed input paramete¥sk, A
of the model, the gap equations can be solved giving
us the constituent quark massesas functions of the
current quark masses,; = m; (i1 ;). Alternatively, by
fixing m;, one can obtain from the gap equations the
nontrivial solutionsm; = m; (G, k, A). In particular,
whenm, = my, these equations can be solved &or
andx, giving expressions

mEJg(mﬁ) — m?Jg(mg)

(%)
G=|(=
Nc
872\%  myA,Jo(m?) — my Ay Jo(m2)

K=\N 22 12m2y — 2 12(m2)]

¢ myJo(mg)mgJy(mg) — meJ§(ms)]

(41)

In Fig. 1 we plot the curves off and« versusm,,
keeping constantA = 0.87 GeV, my; = 572 MeV,

my; =200 MeV,m, = 6 MeV. One can readily see that
at given values fokm,, ms) the curves yield unique

myAy JO(mE) —my A JO(mE)

2000

fee]
k Gev®

4 —4000

—2000

81

values of(G, k), i.e., the vacuum state is well-defined
in this case.

Let us consider now the general case which we have
whena > 01in Eq. (39). To illustrate the qualitative dif-
ference with the previous case we put for definiteness
a =1 and look again for the solutios= G (m,) and
k = k (my) with the same set of fixed parameters. The
corresponding curves are plotted in Fig. 2. If the mass
my is sufficiently low thatm, <m{™™ (in the figures
denoted by the region left the turning pointor suffi-
ciently high thatn ™ < m, < m (in the figures de-
noted by the region right to the turning poist, then
there exists again a single solution with unique values
of (G, k). However, there is now a region far, in
which m{™" < 1m, < m{™ where three values of
couplings(G, «) are possible.

Conversely, one can study the solutions, =
myu(G,«), mg = m; (G,«) at fixed values of input
parametersA, i, = mq,my). As starting input val-
ues for the coupling& and« in the gap equations
we take the ones already determined along the path
abed shown in Fig. 2, obtained at a constant value of
the strange quark mass; = 572 MeV. For a chosen
value of the setG, k) we then search for further so-
lutions (m,,, my) of the Eq. (39), displaying results in
Fig. 3 form, and in Fig. 4 form, correspondingly.
The dashed curves are the repetition of the solutions
encountered in Fig. 2. The bold dashes in Fig. 3 indi-
cate that we only find this one solution at fixed values
of G, k. Combining the information of Figs. 3 and 4,
one sees that one has up to four solutions at f&eed.
Indeed, travelling along the original pathcd one ob-

0.2
m, GeV

0.3 0.4

Fig. 1. The couplingss (left panel) andc (right panel) as functions of,, at fixed values ofny =572 MeV and other parameters in Eq. (41).
These curves show the typical, -dependence of the functions if one neglects the fluctuations term in Eg. (39).
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14

12

10

0.26 0.28 0.3 0.32 0.34 0.26 0.28 0.3 0.32 0.34
m, GV m, GV

Fig. 2. The coupling€ (left panel) andc (right panel) as functions ofi,, for the same (as in Fig. 1) values of other fixed parameters and for
the case when the fluctuations term in Eq. (39) is taken into account.

12} \ — 800 | c D
Clr\ }
10l 600 | N
400 | E
o~ 8— ‘\
= 7 200 1
O 6r R |\d
10} N 0
al c 200 X c
AN |
5 —400 | B
~600 B
0 025 05 075 1 1.5 1.5 0 025 0.5 075 1 1.25 1.5
m, G&V m, GV

Fig. 3. Different classes ofi,, solutions of the gap equations, including fluctuations, at fied values. Four branches of solutions, B, C

anda — b stretch have negative. Three branchesp, E and alonge — d arm correspond to positive. Bold dashes indicate that only one
solution exists in this region dafi, . See further details in text.

serves the following: the branckb is accompanied  been considered in connection with generalized chi-
by three other branches, markedasB andC which ral perturbation theory (see, e.g., Section 4 in [10]).
belong to the same class of solutions. One sees thatWe give here only a few examples. AG =
these solutions have negatiwevalues. From the turn-  4.54 GeV 2, k = 15304 GeV > we have three so-
ing pointb until the maximum value ot; (and cor- lutions. The solutiom:,, = 346 MeV,m; =572 MeV,
respondingc) (bold dashes) we have no other solu- on thecd arm has the quark condensatas)!/® =
tions to the gap equations, as already stated. From this—2368 MeV, (55)/2 = —1835 MeV and the ra-
maximumaG value to the turning point and further tio R = ((55)/(au))*’® = 0.775; the second solu-
along thecd arm we encounter further two branches, tion, on the E branch withm, = 535 MeV, my; =
denoted byD andE to the solutions of Egs. (39) with 732 MeV has condensategu)l/® = —249 MeV,
sameG, k. They are positive solutions. (55)1/3 = —183 MeV and the ratiaR = 0.738; the
This very rich structure of the vacuum solutions third solution, located at thé branch withm, =
implies the possibility of having several different val- 46 MeV, m, = 418 MeV has condensatésu)/3 =
ues of the quark condensates for the sathe pa- —131 MeV, (55)/3 = —172 MeV andR = 1.313.
rameters, embracing also the possibility which has We chose the next example &t = 8.126 GeV 2,
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12+

10+

G Gev?

0 0.25 0.5 0.75 1 1.25 1.5
ms GeV

k Gev™®

800 |
600 |
400 | D

200 ¢

—200

-400 t

-600

0 0.5 1 1.5 2 2.5 3
m, GeV

s

Fig. 4. The same as in Fig. 3 for the; solutions. The dashes are the constapttorresponding to thebcd curve of Figs. 2 and 3.

k = —544.81 GeV>, where there are four solu-
tions. The solutionn,, = 316 MeV, m; = 572 MeV,
on theab arm has the quark condensatas)/3 =
—233 MeV, (55)1/3 = —184 MeV andR = 0.787;
the second solution, on th& branch withm, =
624 MeV,m; = 205 MeV has condensatésu)/3 =
—249 MeV, (55)1/3 = —56.7 MeV and R = 0.227;
the third solution, located at thel branch with
m, = 421 MeV, my; = 1.84 GeV has condensates
(au)Y3 = —-14.4 MeV, (55)¥/3 = —86 MeV andR =
0.353. The fourth solution, on th€ branch, with
m, = 1.394 GeV,m; = 1.594 GeV has condensates
(au))1/3 = —230 MeV, (55)/3 = —120 MeV and
the ratio R = 0.524. As a final example we take
the solutions atG = 11.96 GeV 2 ~ Gmax, k =
371491 GeV°, where the branches and E emerge
and are very close to each other with) = 1.56 GeV,

These findings must be further analyzed in order to
establish which of the extrema correspond to minima
or maxima of the effective potential. This step will be
done elsewhere in conjunction with the determination
of the meson mass spectrum, as it also requires dealing
with the terms with two powers of the meson fields
in the ansatz of solutions Eg. (21) and in the related
Lagrangian (27).

4. Concluding remarks

The purpose of this work has been twofold. Firstly
we have developed the technique which is necessary
to go beyond the lowest order SPA in the problem of
the path integral bosonization of the 't Hooft six quark
interaction. We have shown how the pre-exponential

ms = 1.72 GeV. The corresponding condensates are factor, connected with the steepest descent approach

(au)l/3 = —224 MeV, (55)1/3 = —105 MeV and
R = 0.467. The other solution is at the path with
m, = 290 MeV, my; = 572 MeV with condensates
(au)Y/3 = —229 MeV, (55)1/3 = —184 MeV andR =
0.8.

and which is responsible for the quantum fluctuations
around the classical path, can be treated exactly,
order by order, in a scheme of increasing number of
mesonic fields, while preserving all chiral symmetry
requirements. This technique is rather general and can

To summarize, we have found that in the presence be readily used in other applications. Second, we have
of the 't Hooft interaction, treated beyond the lowest explored with considerable detail the implications of
order SPA, several solutions to the gap equations aretaking the quantum fluctuations in account in the
possible at some range of input parameters, i.e., thedescription of the hadronic vacuum. A very complex

same values of7, k, A, m; lead to different sets of
constituent quark massés:,,, m;) and, therefore, to

multivalued vacuum emerges at fixed values of the
input parameterss, «, A and current quark masses.

different values of the quark condensates. A quite We encountered several classes of solutions. Searching
different scenario emerges for the hadronic vacuum, in an interval of constituent quark masses from zero
which can now be multivalued. It makes our result to ~ 3 GeV, we foundG, «, regions characterized
essentially different from the ones obtained in [4,6]. by one, three and four solutions. The multiple vacua
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may have very interesting physical consequences and

applications.
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