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Abstract In this work we study the dynamic evolution of the time series descri-
bing the areas of plage regions observed daily at the Observatório Astronómico
da Universidade de Coimbra, in each one of the solar hemispheres during solar
cycles 21-23. The classical ARMA model turned out to be insufficient to describe
the time variations seen in the data, due to the presence of strong conditional
variability. We found that the data are well fitted by ARMA mixed with power-
δ TGARCH error models. The power index δ is non-integer; this property has
recently been introduced in the literature on time series analysis and indicates
the presence of strong volatility and long memory in the data series. We also
detected the presence of dynamic asymmetry in the plage region areas observed
in the two hemispheres, as two different temporal models are obtained to fit
them. This conclusion is also supported by the dynamic evolution of the daily
difference (north−south) time series that is significantly different from a white
noise. This statistical modeling of time series, taking into account new and differ-
ent characteristics of the solar activity, will be of great usefulness in subsequent
forecast developments.

Keywords: Conditional volatility · North-south asymmetry · Sun: activity ·
Sun: chromosphere

1. Introduction

The activity of the Sun and the solar cycle is, presently, among the hot topics in
astrophysics, not only for studies about the Sun itself but also for terrestrial and
human connections, namely, the Sun’s influence on the Earth climate changes
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and on the life time of artificial satellites (Hathaway, 2010). The study of solar
activity and its evolution is based on the regular observations of a variety of
solar features such as sunspots (number and area), plage regions, prominences,
total radio flux, flares, etc., including the geomagnetic activity. It is very well
known that solar activity shows an asymmetry between the northern and south-
ern hemispheres. Newcomb (1901) was probably the first one to point out this
asymmetry by the analysis: “There seems to have been an abnormal delay in
the increase of the spottedness of the southern hemisphere during the years
1880-1881.” After this seminal paper, the asymmetry between the northern and
southern hemispheres regarding the sunspot number was definitively established
by Newton and Milsom (1955). Since then, many papers have been published
showing that the claimed asymmetry is also observed in other solar activity
indices, and numerous properties of the north-south (N–S) asymmetry have been
revealed during the last several decades. Hereafter we briefly summarize some
of these results obtained during the last decade. A general overview on the
N–S asymmetry studies can be found e.g. in Duchlev (2001), Temmer et al.
(2006), Javaraiah (2008), Sýkora and Rybák (2010), Bankoti et al. (2010, 2011),
Gigolashvili et al. (2011), Li et al. (2010, 2011), Badalyan (2012), Deng et al.
(2013), and references therein.

Many authors studied particularly the N–S asymmetry in the solar rotation
rate, in relation to solar cycle predictions or Earth’s climate studies. For ex-
ample, Temmer et al. (2002) investigated the N–S asymmetry and differences
in the rotation rate of the two hemispheres, based on the hemispheric sunspot
numbers obtained at Kanzelhöhe Solar Observatory, Austria, and Skalnaté Pleso
Observatory, Slovakia. Gigolashvili et al. (2011) performed a statistical study of
the N–S asymmetry in solar differential rotation based on various solar features.
Xie et al. (2012) investigated temporal variation of the solar cycle length using
the hemispheric sunspot activity data through a method of continuous wavelet
transformation. McIntosh et al. (2013) studied the hemispheric asymmetry in
photospheric magnetic activity in relation to the abnormality of cycle 24. Vats
and Chandra (2011) showed an asymmetry in the solar coronal rotation using
radio (the Nobeyama Radio Heliograph) and X-ray (the Yohkoh Soft X-ray
Telescope (SXT)) data. Javaraiah (2008) and Sen (2009) applied the study
of the N–S asymmetry to solar cycle predictions. Georgieva et al. (2007) also
found a connection between the N–S asymmetry and the Earth’s atmospheric
circulation. Furthermore, the magnetic synoptic maps from Kitt Peak between
1975 and 2003 show clearly periodic oscillations in the hemispheric asymmetry
in magnetic flux (Knaack, 2004). Bzowski et al. (2003) studied the data taken
during 1996–2002 from the Solar Wind Anisotropies (SWAN) instrument on
the SOHO mission and found a N–S asymmetry in the solar wind mass flux
throughout the solar cycle. Zhang et al. (2002), using data from the Solar Wind
Ion Composition Spectrometer (SWICS) of Ulysses and synoptic charts derived
from Kitt Peak magnetograms, suggested a N–S asymmetry in the temperature
of the polar coronal holes.

Magnetic activity in polar regions and their N–S asymmetry have been ex-
tensively studied using polar faculae. Deng et al. (2013) analyzed the data of
polar faculae during the time interval of 1952-1998 and studied the hemispheric
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Figure 1. Calcium K-line spectroheliogram taken at the Observatório Astronómico da
Universidade de Coimbra (OAUC) on 23 July 2012.

asynchrony of polar faculae and its relationship with the low-latitude solar ac-
tivity. Li et al. (2009) studied the N–S asymmetry of high-latitude solar activity
including polar faculae of cycles 19 to 23, and found that the N–S asymmetry
in polar faculae counts is not simply related to the N–S asymmetry in sunspot
numbers.

Dorotovič et al. (2010) presented a statistical descriptive analysis of the areas
of plage regions (see Figure 1) between 1996 and 2006 measured on the Ca ii K3
spectroheliograms obtained at the Observatório Astronómico da Universidade de
Coimbra (OAUC), and concluded the existence of the N–S asymmetry. However,
their study did not explore the dynamic properties of data in time. In order
to analyze the dynamic nature of N–S asymmetry, it is essential to study the
temporal evolution of data series. With this aim in mind, we use the same Ca ii
spectroheliograms of OAUC and analyzed the areas of plage regions in the two
hemispheres during the period from March 1976 to December 2006 (covering the
solar cycles 21, 22, and 23).

Time series modeling has undergone an important development in recent
years. The linear formulation of the autoregressive moving average (ARMA)
models has been found to be insufficient to describe adequately some data, like
financial or physical ones. In fact, this kind of time series presents features of
non-linearity behavior; particularly its conditional volatility, that is, its instan-
taneous variability, depends strongly on the past. In order to best take into
account this property, several models describing the evolution of the conditional
variance of the corresponding process appeared in the literature following the
seminal paper of Engle (1982). This kind of models is known as autoregressive
conditional heteroscedastic (ARCH) models (variance depending on time t) and
their generalization (generalized ARCH, or GARCH, models).

Another property often found in those time series is the asymmetrical reaction
of the volatility according to the sign of past observations, namely the realization
of different behavior during a rising or falling period. This typical behavior is
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taken into account in the threshold ARCH (TARCH) models (for a recent survey,
see Francq and Zakoian, 2010) in which the conditional standard deviation of
the process at time t is a piecewise linear function of negative and positive values
of past observations. Similarly, the presence of long memory in the conditional
variance after a shock as input has led to the proposal of power-law GARCH
models (Ding, Granger, and Engle, 1993; Pan, Wang, and Tong, 2008).

A natural extension of the threshold ARCH processes that allows us to take
into account both long memory property and asymmetry in the stochastic volatil-
ity (Gonçalves, Leite, and Mendes-Lopes, 2012) is the TGARCH model with
non-integer power-law index δ. Moreover, the models of this general class are also
well adapted for heavy tail data (as in the present case), since they are in general
leptokurtic stochastic processes, that is, its kurtosis is greater than the standard
value (3) of normal distribution. The combination of ARMA models with an
error process following conditional heteroscedastic models greatly improves the
adequacy of the fitting and it has been extensively studied in the stochastic
literature and applied to real data (Weiss, 1984; Gonçalves and Mendes-Lopes,
2008).

In this study, the Calcium plage data of OAUC in the northern and southern
hemisphere series are analyzed using the classical Box-Jenkins methodology (Box
and Jenkins, 1976) and its generalization, in order to take into account the
features of conditional volatility if they are detected in the residual series of the
model firstly deduced by the classical procedure. The dynamic evolution of the
daily difference of the observations in the northern and southern hemisphere
data is analyzed by the same procedure.

The data studied here are generally leptokurtic, which means the presence of
heavy tail in the data. Thus, the presence of another feature often observed in
leptokurtic data, which is called the Taylor effect, is also analyzed in the same
data series.

All statistical analysis are performed using the statistical software Eviews.
Gouriéroux and Monfort (1995) is a general reference for statistical analysis and
related parameters, and for a recent survey on time series we refer to Francq and
Zakoian (2010).

2. Plage Region Areas: Estimation of Missing Observations and
Their Validation

Usually an analysis of time series requires observations equally spaced in time.
However, in the long series under study some observations are missing due to
weather and instrument conditions. In order to interpolate missing values, a
random average methodology was implemented (Gouriéroux and Monfort, 1990,
Chapter 3). The study is undertaken for daily data on the northern and southern
hemispheres of the Sun. In Figures 2 and 3 we present the observed plage region
areas (in blue) and the corresponding interpolated (completed) series (in red),
for the northern and southern hemispheres, respectively.

Figure 4 gives descriptive summaries (histogram and numerical parameters)
and comparison tests of means, medians, and variances (Gouriéroux and Mon-
fort, 1995) of the original and completed series for the northern hemisphere.
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Figure 2. OAUC plage region areas of the northern hemisphere, in percent of the total area
of the hemisphere. The blue curve shows the original observation while the red curve shows
the completed time series.
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Figure 3. The same as Figure 2, but for the southern hemisphere.

We remark that the p-value of the Jarque-Bera test (< 10−6) and the kurto-
sis value greater than 3 indicate clear non-Gaussianity of data as well as its
leptokurtosis. This hypothesis is also supported by the estimated probability
densities obtained by the nonparametric kernel method (Silverman, 1998) using
the Epanechnikov kernel, which is optimal in a minimum variance sense, with
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bandwidth h = 0.3401 1, and is illustrated for the northern hemisphere in Figure
5. (Figures for the southern hemisphere data are not shown because they are
similar to Figures 4 and 5).

The chi-squared tests (Gouriéroux and Monfort, 1995) confirm the probabilis-
tic equivalence between the observed and the completed series. For the series
of the northern hemisphere data, the null hypothesis of equality of the two
distributions is clearly accepted (χ2-test, p-value 0.665 in Table 1); usually the
null hypothesis is rejected if the p-value is as small as 0.01 or 0.05. Similarly, for
the southern hemisphere the equality of the distributions is also accepted with
p -value equal to 0.32 (Table 2).
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Figure 4. Descriptive summaries of the observed and completed series of plage region areas
(northern hemisphere). The histograms show the number of data points per every 0.25 of the
plage region areas in percent of the hemisphere.
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Figure 5. Estimated probability densities for the observed (left) and completed (right) series
of plage region areas (northern hemisphere).

To discard a possible loss of information by aggregation, we repeated all these
analysis for the recorded and estimated observations, in each year. This study has
led to similar conclusions, namely that the random average methodology used to

1This parameter has the same units as the area of plage regions.
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Table 1. Chi-squared test of equality of the observed and
completed distributions of plage region areas (northern
hemisphere)2. Zero cells (0%) have expected frequencies less
than 5. The minimum expected cell frequency is 264.8.

Bin Observed N Expected N Residual

[0.0, 0.5] 2935 2958.3 −23.3

[0.5, 1.5] 2545 2580.0 −35.0

[1.5, 2.5] 1256 1218.1 37.9

[2.5, 3.5] 556 544.8 11.2

[3.5, 8] 274 264.8 9.2

Total 7566

Test statistics

Chi-squared 2.387

Degrees of freedom 4

p-value 0.665

Table 2. Chi-squared test of equality of the observed and
completed distributions of plage region areas (southern
hemisphere). Zero cells (0%) have expected frequencies less than

5. The minimum expected cell frequency is 151.3.

Bin Observed N Expected N Residual

[0.0, 0.5] 2591 2663.2 −72.2

[0.5, 1.0] 1478 1505.6 −27.6

[1.0, 1.5] 1208 1180.3 27.7

[1.5, 2.0] 824 802.0 22.0

[2.0, 3.0] 937 923.1 13.9

[3.0, 4.0] 359 340.5 18.5

[4.0, 6.0] 169 151.3 17.7

Total 7566

Test statistics

Chi-squared 7.005

Degrees of freedom 6

p-value 0.320

complete the series maintains the original probabilistic structure. For instance,

the equality of the observed and completed distributions of plage region areas,

in each year and each hemisphere, is always accepted with a p-value greater than

0.6, using the χ2-test.

2This test is an asymptotic one and the approximations are not valid if some cells have expected
frequency less than 5. The same footnote applies to Table 2 and Table 6.
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3. Temporal Evolution Modeling, Asymmetry, and Taylor Effect

In order to analyze the temporal evolution of the plage region areas, we consider
the general class of ARMA models with power-law index δ in the TGARCH
errors. Let us consider a real stochastic process η = (ηt, t ∈ Z) and, for any
integer t, let 3 η+t = ηtI{ηt≥0}, η−t = −ηtI{ηt<0} and let η

t
be the σ− field

generated by (ηt−i, i ≥ 0) .
The stochastic process η = (ηt, t ∈ Z) is said to follow a δ power threshold

generalized autoregressive conditional heteroscedastic (δ-TGARCH) model with
orders p and q (positive integers) if, for every t ∈ Z, we have

{
ηt = σtεt

σδ
t = ω +

∑p
i=1

[
αi

(
η+t−i

)δ
+ βi

(
η−t−i

)δ]
+
∑q

j=1 γjσ
δ
t−j

(1)

for some real constants δ ̸= 0, ω > 0, αi ≥ 0, βi ≥ 0 (i = 1, ..., p), γj ≥ 0 (j =
1, ..., q), and where ε = (εt, t ∈ Z) is a sequence of independent and identically
distributed real random variables such that εt is independent of ηt−1

, for every
t ∈ Z. If δ < 0 we consider the following convention:

(
η+t

)δ
= 0 if ηt ≤ 0,

(
η−t

)δ
= 0 if ηt ≥ 0,

for every t ∈ Z. If γj = 0 (j = 1, ..., q), the δ-TGARCH(p, q) model is simply
denoted δ-TARCH(p).

Moreover, we recall that the stochastic process V = (Vt, t ∈ Z) follows an
ARMA(r,s) model with error process η if

Vt =
r∑

i=1

ϕiVt−i + ηt +
s∑

j=1

θjηt−j (2)

where ϕi (i = 1, ..., r) and θj(j = 1, ..., s) are real numbers. The case of s = 0 is
the AR(p) model.

3.1. Temporal Evolution of the Two Series

To characterize the temporal evolution of several series in study, the Box-Jenkins
methodology as well as its generalization are often used; therefore, we begin by
analyzing the autocorrelation and partial autocorrelation 4 functions of the series
(Francq and Zakoian, 2010).

Figure 6 shows the autocorrelation and partial autocorrelation functions of the
northern hemisphere series. As we can see, the autocorrelation function decreases

3The indicatrix function is defined as IA =

{
1, if A happens
0, otherwise.

4The partial autocorrelation of lag k is the correlation between observations Xt and Xt−k
after removing the linear relations among Xt−1, . . . , Xt−k+1.
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exponentially and the partial autocorrelation is significantly null for lags greater
than 2 (these values are, with 95% of confidence, in the neighborhood of zero).
Therefore, we may estimate that the data are represented by an AR(2) model.
A similar conclusion was obtained for the southern hemisphere series.

The estimation of this AR model leads to a heteroscedastic residual series.
In fact, applying the Lagrange multiplier ARCH test to this residual, the null
hypothesis of homoscedasticity is rejected with p-value < 10−4 (Table 3). A
generalization of the Box-Jenkins methodology must be used.

Therefore, we reanalyze the northern hemisphere series considering the class
of AR(2) models with general δ-TGARCH error processes. We assume that the
temporal evolution of the northern hemisphere series is described by the process
N = (Nt, t ∈ Z) such that

Nt = 0.073 + 0.765Nt−1 + 0.226Nt−2 +Xt (3)

with a TARCH(1) error process X = (Xt, t ∈ Z) defined by

{
Xt = σtεt,

σ0.108
t = 0.659 + 0.304

(
ε+t−1

)0.108
+ 0.289

(
−ε−t−1

)0.108
,

(4)

where (εt, t ∈ Z) are independent real random variables with a centered and
reduced Gaussian distribution 5.

The associated residual series has properties of homoscedastic error process,
that is, conditional variance independent of t. In fact, the residual correlogram
(Figure 7) is compatible with that of a white noise as all the autocorrelations are
significantly null (with 95% of confidence in a neighborhood of zero). Moreover,
the Lagrange multiplier ARCH test applied to that series accepts the null hy-
pothesis of homoscedasticity with p-value 0.81 (Table 4). These facts validate the
previous model, and therefore we conclude that the northern hemisphere series
is well fitted by a non-centered AR(2) model with a TARCH(1) error process
with power index δ = 0.108.

Table 3. Output of ARCH test after model AR(2) estimation for
the northern hemisphere series.

Heteroscedasticity test: ARCH

F -statistics 487.5138 Prob. F (1, 11258) < 10−4

Obs*R-squared6 467.3619 Prob. chi-square (1) < 10−4

5We note that the AR parameter values are estimated by the classical least squares method,
while in the δ-TGARCH parameters the maximum likelihood estimation is used (Francq and
Zakoian, 2010).
6The statistics labeled Obs*R-squared is the Lagrange multiplier test statistic for the null
hypothesis of non serial correlation. The same footnote applies to Table 4 and Table 5.
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Figure 6. Autocorrelation and partial autocorrelation coefficients for the plage region area
series from the northern hemisphere.

Figure 8 shows our results on the plage region areas of the northern hemi-
sphere. The completed series is in red, the series estimated by the model men-
tioned above is in green, and the corresponding residues are in blue. We observe
that the temporal model captures well the evolutionary characteristics of the
observed series.

A similar analysis on the southern hemisphere series led to the process S =
(St, t ∈ Z) with the form

St = 0.211 + 0.721St−1 + 0.262St−2 + Yt (5)

with the TARCH(1) error process Y with power index δ = 0.081 given by

{
Yt = σtεt,

σ0.081
t = 0.68 + 0.2932

(
ε+t−1

)0.081
+ 0.2814

(
−ε−t−1

)0.081
,

(6)

where (εt, t ∈ Z) are independent real random variables with a centered and re-
duced Gaussian distribution. The residual is also compatible with a homoscedas-
tic error process; the Lagrange multiplier ARCH test accepts the null hypothesis
of homoscedasticity with p−value 0.80.
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Figure 7. Residual correlogram for the northern hemisphere series after model AR(2) with
δ-TGARCH error.

We emphasize that ARMA-TGARCH models with integer power δ do not
capture well the heteroscedasticity of the residual series, which indicates a long
memory property in the volatility (Ding, Granger, and Engle, 1993) of the plage
region area data.

3.2. N-S Asymmetry

The study developed in the previous section also reveals an asymmetry of activity
in the northern and southern solar hemispheres, in line with Dorotovič et al.
(2010), as two different models were obtained for the two hemispheres. In order to
validate this conjecture we describe the dynamic nature of the series of differences
(northern hemisphere − southern hemisphere) between the values obtained on
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Figure 8. The daily northern hemisphere time series after model fitting. The red curve shows
the completed data, while the green curve shows the fitted model. The blue indicates the
residuals.

Table 4. Output of ARCH test after model AR(2) with
δ-TGARCH error for the northern hemisphere series.

ARCH test

F -statistics 0.057522 Prob. F (1, 11258) 0.810460

Obs*R-squared 0.057532 Prob. chi-square (1) 0.810440

the same day in each one of the hemispheres, through the process Dt, t ∈ Z. The
generalized Box-Jenkins methodology applied to this series leads to the following
model

Dt = −0.03 + 0.736Dt−1 + 0.251Dt−2 + Zt (7)

with
{

Zt = σtεt,

σ0.44
t = 0.481 + 0.377

(
ε+t−1

)0.44
+ 0.377

(
−ε−t−1

)0.44
,

(8)

where (εt, t ∈ Z) are independent real random variables with a centered and
reduced Gaussian distribution. This model is clearly distinct from a white noise.
In fact, the daily difference time series is modeled by a non-centered AR(2)
process, D. Moreover, the error process follows an absolute value TARCH(1)
model with power index 0.44 [Equation (8)].

The analysis of the residual series of this process D shows its compatibility
with a homoscedastic error process; namely, the Lagrange multiplier ARCH test
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Table 5. The ARCH test for the residual series of Dt

(north−south differences).

ARCH test

F -statistics 0.468926 Prob. F (1, 11257) 0.493496

Obs*R-squared 0.468990 Prob. chi-square (1) 0.493452

Table 6. Test of equality of the northern and southern
hemisphere series. Zero cells (0%) have expected frequencies less

than 5. The minimum expected cell frequency is 431.3 .

Bin Observed N Expected N Residual

[−2,−1] 1201 870.1 330.9

[−1,−0.5] 1910 2360.6 −450.6

[−0.5, 0] 1398 1399.7 −1.7

[0, 0.5] 1085 998.7 86.3

[0.5, 1] 740 680.9 59.1

[1, 2] 783 824.7 −41.7

[2, 8] 449 431.3 17.7

Total 7566

Test statistics

Chi-squared 227.277

Degrees of freedom 6

p-value < 10−3

applied to this residual series accepts its homoscedasticity with p−value equal
to 0.49 (Table 5).

It is interesting to observe that these two series, north and south, not only have
different evolution, but their probability distributions are also clearly different.
In fact, the chi-squared test applied to the north and south series, centered in
advance, clearly rejects the null hypothesis of equality (p-value < 10−3, Table
6).

In conclusion, with this study we have shown that the evolution of plage
region areas observed in the northern hemisphere is different from that of the
southern hemisphere, having neither static nor dynamic symmetry.

3.3. Taylor Effect

The Taylor effect is a property detected in several empirical studies, often ob-
served in real data sets with conditional volatility, in which the autocorrelations
of the absolute value time series are larger than those of the squared time series
(Taylor, 1986; Granger and Ding, 1995). This property is also a characteristic of

SOLA: gonetal_rev5.tex; 13 October 2013; 22:31; p. 13

MBP Retina 13
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Figure 9. The Taylor effect in the northern hemisphere series. The upper blue curve shows
the autocorrelation of the absolute value time series while the lower red curve corresponds to
the squared time series.

leptocurtik data which are the case of the present topic (as the curtosis of our
series is always greater than 3; see Figure 4). Figure 9 shows clear existence of
the Taylor effect in the northern hemisphere data series. A similar plot can be
obtained for the southern hemisphere series. Theoretical studies on this property
have been carried out in some conditional heteroscedastic models, particularly
in threshold ones (Gonçalves, Leite, and Mendes-Lopes, 2009).

4. Conclusions

In this paper we analyzed the plage region areas during solar cycles 21-23, using
daily spectroheliograms obtained at the Observatório Astronómico da Universi-
dade de Coimbra. As the analysis requires data equally spaced in time, we in-
terpolated the missing observations (due to weather and instrument conditions),
preserving the same statistical properties as the original series.

We found that the time series of plage region areas in the northern hemi-
sphere is clearly different from that in the south hemisphere. This conclusion
was obtained from the difference time series and also from the analysis of the
temporal evolution of the two series. In fact, these studies led to quite different
probabilistic properties in the northern and southern hemispheric data.

Moreover, the performed statistical analysis revealed the presence of heavy
tail with high volatility. The residuals from the ARMA model fitted to these
series showed strong conditional heteroscedasticity. Furthermore, we observed
that TGARCH models with integer power δ do not capture well such volatility.
On the contrary, we found that these series have a temporal evolution well
characterized by AR models with errors following power TARCH formulations,
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with non-integer power index δ. This allows us to conjecture that these series of
observations have asymmetric stochastic volatility and long memory.

Further, we pointed out that the presence of the Taylor effect in these series
is certainly justified by their leptokurtosis and strong conditional volatility. This
feature was introduced by Taylor (1986) after observing its presence in several
financial time series. With the present study we showed that this property usually
associated with financial data is also clearly present in astronomical data. The
results obtained here are in coherence with the conclusions deduced for solar
activity from several studies of the classical sunspot series (R.Gonçalves, Pinto,
and Stollenwerk, 2009). Recently, Pop (2012) and Noble and Whealtland (2013)
pointed out that daily sunspot numbers follow a Laplace distribution, which is a
heavy tail distribution. Moreover they discussed strong variability in that data
series, justifying it from the complicated local processes associated with sunspot
formation, evolution, and decay.

Finally, we would like to emphasize our results in the context of the solar cycle
prediction. Although the prediction of solar cycles has been studied using differ-
ent formalisms and approaches, it is clear that the absence of a full explanation
(and a mechanism) to understand the solar cycle introduces a strong limitation in
the prediction. The statistical approach remains of the most reliable ones (Hath-
away, Wilson, and Reichmann, 1999), namely a time series model is pursued
which is well-fitted to data. In addition, taking into account different behavior
of solar activity in the northern and southern hemispheres, the development of
models describing each one of these series is a positive contribution to prediction
improvement. With this kind of models the precision of forecast can be expressed
as a function of current and past states of the process. This approach will allow,
in particular, the detection of sub-periods of stronger or weaker volatility. The
estimation of the probability distribution of these processes, like in Pop (2012) for
sunspots, is also an open question and can contribute, in particular, to measure
the quality of the produced forecasts.

Acknowledgements We are grateful to an anonymous reviewer for advice that helped us

to improve significantly this paper.

References

Badalyan, O. G.: 2012, Astron. Lett. 38, 51.
Bankoti, N. S., Joshi, N. C., Pande, S., Pande, B., Pandey, K.: 2010, New Astron. 15, 561.
Bankoti, N. S., Joshi, N. C., Pande, B., Pande, S., Uddin, W., Pandey, K.: 2011, New Astron.

16, 269.
Box, G.E.P., Jenkins, G.M.; 1976, Time Series Analysis: Forecasting and Control, Holden-Day,

San Francisco, 285.
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