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Abstract: This paper addresses the impact of the CO2 opportunity cost on the 
wholesale electricity price in the context of the Iberian electricity market 
(MIBEL), namely on the Portuguese system, for the period corresponding to 
the Phase II of the European Union Emission Trading Scheme (EU ETS).  
In the econometric analysis a vector error correction model (VECM) is 
specified to estimate both long-run equilibrium relations and short-run 
interactions between the electricity price and the fuel (natural gas and coal) and 
carbon prices. The model is estimated using daily spot market prices and  
the four commodities prices are jointly modelled as endogenous variables. 
Moreover, a set of exogenous variables is incorporated in order to account for 
the electricity demand conditions (temperature) and the electricity generation 
mix (quantity of electricity traded according the technology used). The 
outcomes for the Portuguese electricity system suggest that the dynamic  
pass-through of carbon prices into electricity prices is strongly significant and a 
long-run elasticity was estimated (equilibrium relation) that is aligned with 
studies that have been conducted for other markets. 

Keywords: European Union Emission Trading Scheme; EU ETS; Iberian 
electricity market; cointegration; vector error correction model; VECM; 
European climate policy; Kyoto Protocol; carbon cost pass-through. 
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1 Introduction 

The European Union (EU) has implemented a cap-and-trade system – emission trading 
scheme (EU ETS) on January 2005 as a tool to reach the emissions targets set forth by 
the Kyoto Protocol, which aimed reducing carbon emission by 8% by 2012. In this 
regard, it is designed to operate in two phases, the first from 2005 to 2007, while the 
second spans the period from 2008 to 2012. Each of these phases corresponds to a 
national allocation plan (NAP) which specifies the total number of emissions allowances 
allocated (grandfathered1) to the individual installations covered by the scheme. 
Transactions of such allocated allowances are then made possible through an EU 
emissions allowances (EUA) market that provides a price for the CO2. The scheme 
covers several industry sectors of which electricity sector is the largest one. Therefore, 
the performance of EU ETS depends on environmental effectiveness (inducing electricity 
industry to cut CO2 emissions) and economic efficiency (ensure that the cuts would be 
made by those firms that could achieve the most efficient abatement costs) (European 
Commission, 2003). Furthermore, the EU ETS might also have a considerable 
distributive and welfare implications, impacting on consumer’s surplus and firm’s profits 
and competitiveness. Either the performance of the EU ETS or its distributive and 
welfare implications depends on what extent the CO2 emission allowances prices are 
passed through into electricity prices. This study focuses on this latter issue, analysing the 
impact of EUA prices on electricity pricing in the short and long run. 

Economic theory explains why, under a cap-and-trade system, the price of emissions 
ought to be treated as a marginal cost. As a producer holds allowances, the electricity 
production, and CO2 emitting, competes with the possibility to sell those allowances in 
the market. This so-called CO2 opportunity cost equals the CO2 market price. While 
electricity producers may fully recognise the opportunity costs of CO2 allowances in their 
marginal production costs, these costs might not be totally passed through to electricity 
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prices. Sijm et al. (2005) and Gullì (2008) give a set of reasons for the pass-through rate 
(PTR) of CO2 costs into electricity prices to be different from 100%, including demand 
responses (price elasticity), level of power demand (peakload vs. off-peakload) market 
structure (degree of market concentration), technology mix (fuel used in production), or 
available generation capacity. 

In this paper we empirically study the dynamic interaction between carbon prices, 
electricity prices and fuel prices (natural gas and coal) for the Iberian Electricity Market 
(MIBEL), in particular the Portuguese division for the Phase II of EU ETS (January 2008 
to August 2011). 

Estimating this interaction presents several challenges which we tried to address. First 
it is becoming well-known that dynamic interactions between power, carbon and fuel 
prices, which include feedback in a non-ceteris paribus environment, may play a 
fundamental role in the price formation process of electricity wholesale markets. To 
address this issue, a multivariate analysis has been developed with a vector 
autoregressive (VAR) model, treating all variables (electricity price, fuel prices and EUA 
prices) as jointly endogenous. Second, as we are working on economic data there are 
strong beliefs that prices series are non-stationary, demanding a careful analysis of 
incurring in the risk of spurious regression. Because all variables in the analysis are 
cointegrated, we focus on this issue by modelling the problem in an error correction form. 

According to our knowledge, this is the first work trying to empirically estimate the 
PTR of CO2 emissions costs to electricity prices in the Portuguese electricity market. 
Further, we believe the methodological approach herein presented additionally introduces 
some innovation in the state of the art (empirical research in measuring pass-through of 
CO2 costs into commodities or products prices) in respect to the treatment given to the 
exogenous variables (temperature and quantity of electricity traded according the 
technology used in electricity production). 

The remainder of the paper is organised as follows. Section 2 presents a brief 
literature review. Section 3 describes the functioning of MIBEL. Section 4 describes the 
methodological approach. Section 5 presents the data used for the empirical estimation. 
Section 6 presents the empirical findings. Section 7 concludes. 

2 Literature review 

The interaction between carbon prices and electricity prices has been examined in several 
other studies. Prior to the emergence of actual carbon trading in practice, extensive 
theoretical (equilibrium analysis) and simulations analysis had speculated upon its 
effectiveness. Regarding the EU ETS impact in the European power sector in particular, 
Wals and Rijkers (2003) and Sijm et al. (2005) simulated with the COMPETES2 model 
the setting for Germany, Netherlands, Belgium and France markets. Using the same 
model, Chen et al. (2008) comment upon the northwest Europe region and Lise et al. 
(2010) simulated the effect on several European countries, including the Iberian countries 
(Portugal and Spain) which is particularly relevant for our study. Hauch (2003) 
comments upon the Nordic circumstances, Linares et al. (2006) on Spanish case, Neuhoff  
et al. (2006) on the UK case, Kara et al. (2008) on the NordPool market (Denmark, 
Finland, Sweden and Norwegian) and Frondel et al. (2008) in German market. Burtraw 
and Palmer (2008) discuss the case of the USA. Empirical evidence provided from  
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phase I of EU ETS, ended at the end of 2007, has been discussed extensively on two 
directions: 

1 econometric studies on price formation of EUA: (Mansanet-Bataller et al., 2007; 
Alberola et al., 2008, 2009; Hintermann, 2010; Rickels et al., 2010) which also use 
data from the first years of the second phase, and (Chevallier, 2010), in that case for 
the Australian market 

2 econometric studies on the pass through rate of emission allowance prices into 
product prices, notably electricity and energy intensive materials. 

Concerning the electricity sector several studies have been examining the influence of 
carbon pricing on electricity prices: (Levy, 2005; Sijm et al., 2006; Reinaud, 2007; 
Zachmann and von Hirschhausen, 2007; Sijm et al., 2008; Keppler and Mansanet-
Bataller, 2010) which already use data from the first year of phase II of EU TS, and 
(Daskalakis and Markellos, 2009), which consider the particular case of futures. 

Most of published analyses conducted in order to estimate the PRT of CO2 cost into 
electricity prices have not yet reflected the mutual interactions between electricity price, 
fuel prices (natural gas, coal, fuel, oil) and carbon prices. In general, the bulk of those 
studies have solely relied on univariate analysis, which explain the price of one of these 
commodities (the endogenous variable) as a function of the prices of the others  
(the exogenous variables), without considering possible reciprocal causalities 
(endogeneities). One of the first studies taking into account those interdependencies was 
the analysis by Fezzi (2006), extended later in Bunn and Fezzi (2007) and Fezzi and 
Bunn (2009), where the authors, using multivariate analysis, modelled the prices of all 
variables as a joint system. Developing a vector error correction model (VECM), with the 
electricity, gas and carbon prices as endogenous variables and temperature as an 
exogenous regressor, the authors estimated the dynamic pass-through of CO2 price into 
electricity price for Germany and UK. Other studies have been following that 
econometric approach, a category where this article also belongs. Honkatukia et al. 
(2006) developed a similar model for the NordPool market considering the electricity, 
gas, coal and carbon prices as endogenous variables. Fell (2010), also for the NordPool 
and with the same prices variables, added the temperature and the reservoir water level3 
as exogenous regressor to the VECM. Chemarin et al. (2008) estimated a VECM for the 
France power market considering the electricity, gas, oil and carbon as prices as 
endogenous and a two different weather variables: the temperature, affecting the demand 
side of electricity market, and rainfall influencing the electricity production of a country 
concerning its energy mix. Thoenes (2011), following a similar econometric approach, 
analyses the relationship between electricity, fuels and carbon prices for the German 
market. 

Other works has been conducted in order to examine the long-run relation and  
short-run dynamics between electricity prices and fossil fuel prices. For instance, 
Mohammadi (2009) analyses the relation between the electricity prices and coal, natural 
gas and crude oil for the USA market, while Mjelde and Bessler (2009), for the same 
market added the uranium price to the analysis. Authors such as Ferkingstad et al. (2011) 
studied the Northern European electricity market case and Moutinho et al. (2011) the 
Spanish case. 
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3 MIBEL background 

The lack of storability in electricity sector means that production levels need to 
constantly match demand requirements. In fully competitive electricity markets the 
aggregated supply curve reflects the stack of increasing marginal costs offered by 
different power plants in order to produce electricity. Since electricity demand typically 
varies through the day and according the seasons, every power system needs low 
marginal cost (high capital cost) generation units operating baseload and flexible plant, 
typically with lower capital costs but higher marginal costs, producing intermittently at 
the peaks periods when prices case rise significantly allowing recover both fixed and 
variable costs (Bunn, 2004). A merit order or ranking of the supply technologies based on 
their marginal production costs, from the cheapest do the most expensive, can therefore 
be constructed. In the Portuguese electric system, since there is no nuclear power, 
baseload typically includes generation capacity which cannot be modulated, namely 
renewables4 – wind power and run-of-river hydro plants. Reservoir hydroelectric power 
and pumped storage could be used in both baseload and peak load periods (especially in 
very rainfall winters). At the end of merit order subsist plants with low capital cost and 
high marginal costs – thermal fuel oil/gasoil plants, thermal coal plants and combined 
cycle gas turbine (CCGT). The question on the marginal unit at the peakload periods 
relies between thermal coal and CCGT because the full oil/gasoil plants were being 
phased out during the period of this study, as one can perceive in Table 1. Due to 
emissions trading, the marginal production costs of carbon inefficient technologies, in the 
Portuguese case coal-fired plants, increase substantially and that, subsequently, the 
relative position between coal and CCGT in the merit order may change due to carbon 
costs (Sijm et al., 2008). So, if thermal coal was the highest marginal cost technology 
than is expected that coal-fire power plants operate most at the peaks and CCGT at  
mid-merit hours. 

Table 1 shows that the weight of each technology in electricity production  
(CCGT, thermal coal and hydroelectric), excluding renewables, is approximately 1/3. 
Hydroelectric power plants present the most variable production which naturally depends 
on the weather conditions, but also in thermal coal there is some variability which 
typically offsets the hydroelectric lower production years. 

The MIBEL, the joint Portuguese-Spanish electricity market that came into effect in 
July 1, 2007, allows participants to trade power on either side of the Portugal/Spain 
border. The daily spot market (the purpose of this study) is managed by operator 
responsible for the electricity spot market (OMEL), located at Spain, while the 
derivatives market (futures and options) is managed by operator responsible for the 
electricity derivatives market (OMIP), located at Portugal. Wholesale electricity spot 
price formation in OMEL uses ‘market splitting’ procedure to solve cross-border 
congestion management (one single Iberian price area if there is no congestion in the 
interconnection between Spain and Portugal and with distinct price areas if there is 
congestion in the interconnection between both countries). Interconnection capacity 
makes it possible to trade electricity between countries (Pacheco, 2010). 
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Table 1 Electricity production and generation capacity by technology 
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The influence of carbon on the price of electricity may not be constant across time. Even 
given full pass-through of CO2 costs, the CO2 emissions associated with electricity 
generation will be a function of generation fuel used. This in turn makes the increase in 
marginal cost of electricity generation due to CO2 market dependent upon the technology 
used in generation. In order to address this problem we have included in the econometric 
model a set of variables which we hope that works as a proxy of the marginal producer 
(the weight of each technology on the total energy traded in the market during a day). 

Climate variables, such as temperature, rainfall or brightness may also influence the 
relationship between electricity and carbon prices. Temperature, which influences the 
behaviour of the population, may affect the demand side of the electricity market  
(Engle et al., 1986), and other weather conditions like rainfall and wind impact the supply 
side (production) of electric system with regard of its energy mix conditioning both the 
costs with fuels and the level of CO2 emissions. In this study we chose to incorporate in 
the model only the effects of climate variables on the demand side to the extent that we 
hope the supply side effects would be captured by the energy mix variables mentioned 
above. 

4 Empirical methodology 

Empirical research in measuring pass-through of CO2 costs into commodities or products 
prices, including the electricity price, typically applies one of two modelling techniques: 
univariate approach, with a single equation regression, or multivariate approach. Recent 
studies have been confirmed that dynamic interactions may play a fundamental role in the 
price formation process of electricity wholesale markets (Knitell and Roberts, 2005) and 
multivariate analysis of simultaneous equations is the only technique that avoids the 
endogeneity problems by treating all variables (electricity price, fuel prices and EUA 
prices) to be endogenous. Multivariate analysis has been developed using either the VAR 
models or cointegrated VAR (CVAR) models. As noted (Engle and Granger, 1987), there 
are strong beliefs that economic data are non-stationary, meaning any particular price 
measure over time will not be tied to its historical mean. So, modelling that kind of data 
by a levels VAR model appears to be inadequate, because of spurious regression risk, 
thus requiring one of the two solutions: 

1 modelling a VAR in first differences which may impose the risk of loss relevant 
information about long-term relationships 

2 specify a CVAR, if the variables show a very interesting property, namely the 
cointegration. 

The latter alternative, if it is possible, has the advantage of allowing the simultaneous 
analysis of the long-run interactions and the short-term adjustments to the equilibrium 
relationship. 

The cointegration concept, introduced by Engle and Granger (1987), means that 
individual economic variables may be non-stationary and wander through time, but it is 
expected not to be completely independent of each other. That is, similar economic forces 
influence each variable and it is expected that the different variables will tied together. In 
a more formal way, it is possible that two or more variables are non-stationary and 
wander through time, but a linear combination of them may, over time, converges to a 
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stationary process. Such a process, if present, may reflect the long-run equilibrium 
relationship, and is referred to as the cointegration equation. According to Engle and 
Granger (1987), cointegrated variables must have an error correction representation in 
which an error correction term (ECT) must be incorporated into the model. Accordingly, 
a VECM is formulated to reintroduce the information lost in the differencing process, 
thereby allowing for long-run equilibrium as well as short-run dynamics. 

Since the influential work of Engle and Granger (1987) several procedures have been 
proposed for testing the null hypothesis that two or more non-stationary time series are 
not cointegrated, meaning there exist no linear combinations of the series that are 
stationary. One approach is to use likelihood ratio tests based on estimation a VAR. This 
approach was first proposed by Johansen (1988) and refined further by Johansen and 
Juselius (1990) and Johansen (1991, 1992, 1994). Johansen’s approach provides a unified 
framework for estimation and testing in the context of a multivariate VECM. 

The cointegration test procedure specifies a VAR of order k, without imposing any 
restriction a priori, in the form of error correction model (ECM). Assuming the  
existence of cointegration, the data generating process Pt can be appropriately  
modelled as a VECM with k – 1 lags (which is derived from a levels VAR with k lags). 
Consider a VAR of order k with a deterministic part given by µt. One can write  
the p-variate process as Pt = µt + A1Pt–1 + A2Pt–2 + … + AkPt–k+εt. Taking the  
variables in first differences, with Δ as the difference operator (ΔP = Pt – Pt–1), than  
Pt–i ≡ Pt–1 – (ΔPt–1 + ΔPt–2 + … + ΔPt–i+1) and one can re-write the process as: 

1

1
1

k

t t i t i i i
i

P P P μ ε
−

− −
=

Δ = Π + Γ Δ + +∑  (1) 

where 
1 1

;   
k k

i i j
i j i

A I A
= = +

Π = − Γ = −∑ ∑  and ~ (0, )t Niidε Σ  

In equation (1) Pt represents a vector of p non-stationary endogenous variables and the 
matrix Π contains information about the long-run relationship among endogenous 
variables and can be decomposed as Π = αβ′, whereas β represents the cointegration 
vectors and α the matrix with the estimations on the speed of adjustment to the 
equilibrium. The matrix Π is called an ECT, which compensates for the long-run 
information lost through differencing (Juselius, 2006). The rank of matrix Π (r) 
determines the long-run relationship. If the rank of the matrix Π is zero (r = 0), there is no 
long-run relationship and the model above is equal to a VAR in differences. If the matrix 
Π has the full rank (r = p), then it is invertible, meaning that the processes Pt is stationary 
I(0) and a normal VAR in levels can be used. The cointegration relationship occurs when 
the order of the matrix is between 0 and p (0 < r < p) and there are (p xr) matrices α and 
β such that the equation Π = αβ′ holds. In this case, Pt is I(1) but the linear combination  
Xt = β′Pt is I(0). If, for example, r = 1 and the first element of β was β = –1, then one 
could write the linear combination as Xt = –P1,t + β2P2,t + … + βpPp,t, which is equivalent 
to saying that long-run equilibrium relationship among variables of vector Pt is expressed 
as P1,t = β2P2,t + … + βpPp,t – Xt. This long-run relationship may not holds all the time, 
however the deviation Xt are stationary I(0). In this case, equation (1) can be written as: 
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1

1 1
1

´
k

t t i t t t
i

P P Pαβ μ ε
−

− −
=

Δ = + Γ Δ + +∑  (2) 

If β were known, then Xt would be observable and all the remaining parameters could be 
estimated by OLS. In practice, the procedure estimates β first and then the rest. 

An error correction model provides two alternative channels of the interaction among 
variables: 

1 short-run effects of the variables are captured similar to the VAR of differences, 
whose parameters are estimated in the matrix Γi 

2 the long-run effects enter the model with the term ΠPt–1 or α β′Pt–1. µt, is a vector of 
deterministic terms (constant and trend) and εt is a vector of innovations reflecting 
new information emanating from each of the variables. 

The approach first proposed by Johansen (1988) and Johansen and Juselius (1990) was 
been extended later by Harbo et al. (1998) and Pesaran et al. (2000) to includes 
exogenous variables in the model, which in our case is particularly useful because it 
allows an adequate treatment of the generation mix and temperatures variables. 

Estimation typically proceeds in two stages: first, a sequence of tests is run to 
determine r, the cointegration rank. Then, for a given rank the parameters of equation (1) 
are estimated. The rank of Π (row rank of β) determines the number of cointegration 
vectors. Usually two tests on the eigenvalues are used to determine r: trace test and λmax 
Statistics. 

5 Data 

This study covers the period corresponding to the Phase II of EU ETS, running from 
January 2, 2008, to August 31, 2011. We use daily data for working days5. The electricity 
series, from OMEL, is the day-ahead price (€/MWh) for the peak load regime. The peak 
price is the hourly average of spot prices quoted from 8:00 h to 20:00 h. The natural gas 
price (€/MWh gas) is the spot price from the Zeebrugge Hub6. The coal price (€/ton.) is 
the spot index API#2 (CIF ARA7). The EUA price series (€/ton.) is the spot price quoted 
at EEX – European Energy Exchange (Leipzig, Germany)8. We transformed the price 
variables into their natural logarithms to reduce variability, and thus obtaining directly 
the elasticity values from the parameter estimates. 

Regarding air temperature data9, we use the daily temperatures (minimum and 
maximum) at the representative weather stations weighted by the population  
(NUTS II – Eurostat). To control the model for the marginal technology in the market, 
we defined five variables according to the technologies present in the Portuguese power 
generation mix (excluding the renewables): CCGT, thermal coal, thermal fuel, 
hydroelectric and international trade (imports/exports). Each variable is defined as the 
ratio between the quantity of electricity traded that is produced by the technology and the 
total amount of electricity traded in the market. For instance, the variable mixt

ccgt = 0.35 
means that, on day t, 35% of all traded electricity was produced by CCGT technology. 
These variables, as the air temperature variables, are treated in the econometric model as 
exogenous variables. 
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Table 2 Summary statistics 
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In Figure 1, we should underline the two extreme electricity price peaks at the winters of 
2010 and 2011, which matched the peaks in the electricity produced by hydroelectric 
technology. 

Figure 1 Daily commodities prices and mix of electricity generation technologies (see online 
version for colours) 

 

Note: Time series plots of natural logarithms of prices of electricity peak load (OMEL), 
EUA (spot, EEX), natural gas (Zeebrugge), coal (API#2 –CIF ARA) and the 
variables of generation technologies. 

6 Empirical results 

The estimation method proceeds as follows: 

1 unit root (UR) tests are conduct to test for the order of integration in individual price 
series 

2 assuming the tests conclude that the series are I(1), the cointegration rank is 
determined 

3 a VECM is estimate. 
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Table 3 UR tests 
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6.1 Preliminary tests 

We start our estimation procedure by testing the existence of a UR in data. Traditional 
augmented Dickey-Fuller tests (ADF tests) and the more efficient Dickey-Fuller 
generalised least squares tests (ADF-GLS tests) are conducted using the natural 
logarithms of the price series (electricity, EUA, natural gas and coal). As shown in  
Table 3, all series fail to reject the null of a UR for all specifications tested at a 5% level 
except for electricity price (ADF test with only a constant). However, the UR tests with 
Breaks, which allow accounting for the possibility of level shift (Lanne et al., 2002), 
confirm the non-stationarity of the electricity prices. With linear trend and a constant 
include, tests for all series fail to reject the non-stationary null. However, no linear trend 
is apparent in any of the series. 

6.2 Econometric model 

Given the order of integration of the variables used, a general VECM specification can be 
formulated as: 

1

1
1

´ ;    ~ (0, )
k

t t i t i t t t t
i

P  P P Z Niidα β μ ε ε
−

− −
=

Δ = + Γ Δ +Φ + + Σ∑  (3) 

where Pt is a (4 × 1) vector of prices (endogenous variables) measured at time t:  
Pt = [Pt

peak, Pt
carb, Pt

gas, Pt
coal] – Pt

peak is the natural logarithm of electricity price, Pt
carb is 

the natural logarithm of CO2 emission allowances price, Pt
gas is the natural logarithm of 

natural gas price and Pt
coal is the natural logarithm of coal price. α and β are (4 × r)10 

matrix, whereas β and α represent the cointegrating vectors and the matrix with the 
estimations on the speed of adjustments to the equilibrium, respectively. 

Where Γi is a (4 × 4) matrix with the estimations of short-run parameters relating 
price changes lagged i periods. 

Where Ф is a (4 × 7) matrix of coefficients associated with the (7 × 1) vector Zt that 
represents the exogenous variables: Zt = [mixt

ccgt, mixt
coal, mixt

fuel, mixt
hydro, mixt

int, 
tempt

max, tempt
min] – mixt

ccgt is the % of electricity traded on day t produced in CCGT, 
mixt

coal is the % of electricity traded on day t produced in coal-fired thermal power plant, 
mixt

fuel is the % of electricity traded on day t produced in fuel-fired thermal power plant, 
mixt

hydro is the % of electricity traded on day t produced in Hydroelectric power plant, 
mixt

int is the % of electricity traded on day t originating in the international market, 
tempt

max is the maximum temperature occurred on day t and tempt
min is the minimum 

temperature occurred on day t. 
Where μt is a (4 × 1) vector of constant11 and εt is a (4 × 1) vector of innovations. 
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6.3 Cointegration tests 

The first step in modelling procedure is to determine the lag relationship among the price 
series in a levels VAR [used to generate equation (3)]. Both the Akaike info criterion 
(AIC) and Hannan and Quinn criterion (HQC) loss metrics suggest the appropriate VAR 
lag length is two12 K = 2 (Table 4). Further, all the three metrics indicates the inclusion  
of exogenous variables (both the generation mix variables and weather variables) 
improves the fit of the VAR to the data. Results in Table 5 suggest not include lags in the 
exogenous variables. 

The tests of cointegration were implemented with the technique based on the reduced 
rank regression introduced in Johansen (1991). Since the VAR model contains exogenous 
variables, the Osterwald-Lenum (1992) and Johansen (1995) asymptotic critical values 
are no longer valid, and we therefore use the asymptotic critical values provided in 
Mackinnon et al. (1999), which results from improvements made to the work in Pesaran  
et al. (2000)13. The decision of whether the constant is within or outside of the 
cointegration space was based on the three metrics, and the results recommend restricting 
the intercept to lie in the cointegration space. 

The results for both trace test and λmax statistics, presented in Table 6, clearly indicate 
the existence of one cointegrated vector. So, we proceed under the result of a single  
long-run relationship among the variables. 
Table 4 Lag length in endogenous variables 

Lags AIC SIC HQC 
Constant and exogenous variables 
 1 –14.237 –13.980 –14.139 
 2 –14.286 –13.943 –14.155 
No constant and exogenous variables 
 1 –14.236 –14.000 –14.146 
 2 –14.282 –13.961 –14.159 
Constant and no exogenous variables 
 1 –14.052 –13.945 –14.011 
 2 –14.136 –13.943 –14.062 
 3 –14.132 –13.854 –14.026 
 4 –14.136 –13.772 –13.997 
No constant and no exogenous variables 
 1 –14.033 –13.948 –14.001 
 2 –14.123 –13.951 –14.057 
 3 –14.123 –13.866 –14.025 
 4 –14.129 –13.786 –13.998 
 5 –14.130 –13.702 –13.967 

Note: Model with constant and a maximum of 20 lags. 
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Table 5 Lag length in exogenous variables 

Lags AIC SIC HQC 
Lags in exogenous variables = 0 
 1 –14.2370 –13.9797 –14.1387 
 2 –14.2865 –13.9435 –14.1554 
Lags in exogenous variables = 1 
 1 14.2318 –13.8245 –14.0762 
 2 –14.2862 –13.7931 –14.0978 
Lags in exogenous variables = 2 
 1 –14.2082 –13.6508 –13.9952 
 2 –14.2638 –13.6207 –14.0181 
Lags in exogenous variables = 3 
 1 –14.1839 –13.4765 –13.9136 
 2 –14.2402 –13.4470 –13.9371 

Note: Model with constant and a maximum of 20 lags in the endogenous variables. 

Table 6 Cointegration tests 

HO: Trace test λmax – max eigen value test 

r = p – r = 
 

Statistics Critical
values p-values 

 
Statistics Critical

values p-values 

0 4  244.87 118.85 0.00  171.42 50.58 0.00 
1 3  73.46 85.26 0.24  42.75 43.87 0.06 
2 2  30.70 55.35 0.86  25.14 36.76 0.49 
3 1  5.57 28.71 1.00  5.57 28.71 1.00 

Notes: 5% significant level for critical values is. p-values calculated using the software in 
Mackinnon et al. (1999). Model with restricted constant (Case II), two lags in 
endogenous variables and seven exogenous variables. 

6.4 VECM estimation 

With the cointegration rank and optimum number of lags determined, the parameters of 
model (3) can be estimated. To do this we used the software GRETL14 and the maximum 
likelihood approach proposed by Johansen (1991). The results reported in Table 7 for the 
cointegrated vector β, which is normalised on Pt–1

peak, show that all estimated parameters 
have the correct sign and they are all significant according to the likelihood ration test as 
showed in Johansen (1995). Since the coefficients can be interpreted as price elasticities, 
therefore, a EUA price rise of 1%, would, in equilibrium, be associated with an electricity 
price rise of 0.51% (0.31% in the natural gas price and 0.29% in coal price). In addition, 
it appears from the parameter estimates for the adjustment coefficients α, and weak 
exogeneity tests described in Juselius (2006), for 1% significance, only the electricity 
price series reject the null, meaning that the long-run relationships in the data are 
important only for the electricity price. These results are expected since EUA, natural gas 
and coal are commodities traded global and thus may be driven more by forces outsider 
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the Iberian energy market. As one can see, the evidence of weak exogeneity is not so 
strong in the case of coal prices. 

The short-run parameters in the VAR are all significant except for natural gas price. 
In the case of the exogenous variables, we could confirm that the electricity generation 
mix is important for the short run dynamics of electricity price. There is also strong 
evidence that the weather variables are important for electricity price changes in the 
short-run. As expected, the effected of temperature on price changes is non-linear – there 
is a positive relationship between price changes and maximum temperature (which reflect 
demand of electricity essential for cooling) and a negative relationship between price 
changes and minimum temperature (which reflect demand of electricity essential for 
heating). Moreover, not only is the sign reversed, but also the magnitude of the 
coefficient is different: the coefficient associated with the minimum temperature  
(Фtempmin = –0.007) is almost the double of the coefficient associated with the maximum 
temperature (Фtempmax = 0.004). The same result, but in the opposite direction, was 
reported by Fezzi and Bunn (2006) for the Nordpool – in this case the demand for 
electricity (and price) is more sensible to the high temperatures, which can be explained 
by the different habits of energy consumption according to the very different latitudes of 
the two markets. 
Table 7 VECM parameter estimates 

Cointegration relationship 

Pt
peak Pt

carb Pt
gas Pt

coal Const. 
1.000*** –0.514*** –0.311*** –0.290*** 2.113*** 
 (0.09) (0.06) (0.09) (0.64) 

Short run dynamics 

 ΔPt
peak ΔPt

carb ΔPt
gas ΔPt

coal 

ECt–1 –0.317*** 0.012* - –0.015** 
ΔPt–1

peak –0.149*** - - - 
ΔPt–1

carb –0.244** - 0.197** 0.142*** 
ΔPt–1

gas –0.091* - –0.124*** 0.025** 
ΔPt–1

coal - –0.110*** - - 
mixt

ccgt 0.818*** - - 0.043*** 
mixt

coal 0.928*** –0.039* - 0.046** 
mixt

fuel 1.240*** –0.109*** - - 
mixt

hydro 0.652*** - - 0.034** 
mixt

int 0.417*** - - - 
tempt

max 0.004*** - - - 
tempt

min –0.007*** - - - 

Notes: ECt–1 refers to the adjustment coefficients (α). We only present the significant 
coefficients. Standard errors in parentheses. ***Significant at 1% level. 
**Significant at 5% level. *Significant at 10% level. 

Residuals analysis is conducted for model diagnostic testing (Table 8). Although there is 
no serial correlation, there is evidence of autoregressive conditional heterocedasticity 
(ARCH) and non-normality in the residuals. However, this is not likely to be a major 
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problem in our cointegration analysis since (Gonzalo, 1994) showed that the properties of 
asymptotically optimal inferences present on maximum likelihood estimators hold in 
finite samples even without the normality assumption. Observing the residuals correlation 
matrix (Table 9) we can see that the correlations among all equations are very low. 
Table 8 Diagnostic tests on residuals 

Diagnostic tests on residuals 

Serial correlation (H0: serially uncorrelated) 
 Ljung-Box Q’ (5) 5.5271 (0.355) 
Heterocedasticity (H0: homokedastic) 
 ARCH (5) 207.012 (0.000) 
Normality (H0: normal distributed) 
 Doornik-Hansen (8) 4,477.65 (0.000) 

Note: p-values in parentheses. 

Table 9 Residuals correlation matrix 

ΔPpeak 1 0.044 0.021 –0.044 
ΔPcarb - 1 –0.008 –0.03 
ΔPgas - - 1 0.044 
ΔPcoal - - - 1 

7 Conclusions 

This study uses a VECM approach to conclude about the relationship between electricity 
prices and CO2 emissions allowances prices for the MIBEL (Portuguese division) in the 
context of the Phase II of EU ETS (2008–2011). An econometric model was developed 
that encompasses long-run and equilibrium and short-run effects in the dynamic 
interactions between electricity, carbon, gas and coal prices. It was possible to control the 
effect of input prices in electricity price by using two sets of exogenous variables: one, 
reflecting the demand for electricity conditions (temperatures) and the other, reflecting 
the production mix (weight of each technology present in the production mix of the total 
energy traded in the market). Using daily data, it is shown that carbon price plays an 
important role in formulating the equilibrium price of electricity and, as the other fuels, 
stands essentially exogenous in the long run. The long-run elasticity of electricity price to 
carbon price shocks, herein the CO2 Cost Pass-Through, is 51%, meaning that, in the 
long-run, a 1% shock in carbon prices impacts, on average, into a 0.51% shock in 
electricity prices. Our results compare with 93% in Honkatukia et al. (2006) for the 
NordPool market, 32% in Fezzi and Bunn (2009) for the UK market, (11%–13%) in Fell 
(2010) for the NordPool market and 36% in Thoenes (2011) for the German market. In 
addition, the results found for the long-run PTR of CO2 prices into electricity price are 
just below the simulations (COMPETES model) for the Portuguese market (56%–64%) 
in Sijm et al. (2008) and (58%–100%) in Lise et al. (2010). 

Concluding, the results we have estimated for the Portuguese wholesale electricity 
market, not only in accordance with studies for other different European electricity 
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markets, confirm evidence of a significant link between carbon prices and electricity 
prices demonstrating that power producers have been passed on the opportunity costs of 
freely allocated emissions allowances to electricity prices, enabling power companies to 
get windfall profits. According to these conclusions the competitiveness of the power 
producers may not be affected if companies have to pay for emissions allowances, which 
therefore would result in a distributive impact on consumer’s surplus and firm’s profits. 
Therefore, these results support the changing in the allocation rule of emissions 
allowances to the electricity sector, from grandfathering to auctioning, proposed by the 
European Commission for the next phase of the EU ETS starting in 2013. 
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Notes 
1 Free allocation of CO2 allowances on the basis of historical emissions. 
2 COMPETES stands for comprehensive market power in electric transmission and energy 

simulator. 
3 In an alternative specification the author considers the reservoir water level as endogenous, 

considering that hydroelectricity could be used strategically to capture higher electricity 
prices. 

4 In Portugal, unlike the Spanish market, renewable energy is not traded in the wholesale market 
(OMEL). Producers contracted their energy bilaterally by the last resource supplier. 

5 Weekend and national holidays are excluded from this study because demand patterns are 
substantially different from working days. The difference in demand level for electricity 
among the three load regimes is substantially lower at the weekend and holidays. 

6 European virtual trading point (Belgium). 
7 Delivered to the Amsterdam/Rotterdam/Antwerp region. 
8 We test prices from other markets, namely ECX – European Climate Exchange (London, UK) 

and BlueNext (Paris, France) and we did not find significant differences. 
9 Source: European Climate Assessment and Dataset – ECA&D. 
10 Where r is the number of cointegrating vectors. 
11 Actually Π = αβ′ may be of order (4 × 5) or (4 × 4) depending on whether the constant is 

inside or outside (restricted or unrestricted) of the cointegration space. 
12 As the VAR is specified in first differences, the number of lags lag in the VECM should be 

one (k – 1). 
13 The first version was published in 1997, and it was contemporary of Harbo et al. (1998) where 

the inclusion of exogenous variables in the VECM was also treated. The advantage of 
Mackinnon et al. (1999) simulations is to allow treatment of up to eight exogenous variables, 
and recall that in our model we work with seven exogenous variables. 

14 ‘Gretl 1.8.6 for Windows’. One can find a good revision of the software properties in 
Rosenblad (2008). 


