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a b s t r a c t

This study is motivated by the observation that the effects of renewable energy output variations across
several integrated power markets are likely to be complicated by price arbitrage and weather dynamics.
Wind in particular has supply side effects when associated with substantial generating facilities, but also
demand side influences when associated with extreme weather conditions. To unravel these effects, daily
electricity prices and the weather variables wind, temperature and their interaction (wind chill) in the
Central-West Europe coupled market were analysed from 2007 to the end of 2014 by means of vector
autoregressions. The spillover effects were found to be quite subtle. Despite efficient price arbitrage, it is
not the case that daily wind output shocks diffuse uniformly across all markets, or that the largest
generator of wind energy creates the most significant spillovers or that high wind conditions necessarily
lead to lower prices. Market specificities matter and are important for operational prediction and
weather risk hedging.

© 2016 Elsevier Ltd. All rights reserved.
1. Motivation

European policy to increase market integration in wholesale
electricity trading has been intensively pursued since the vision of a
single energy market emerged in the 1990s. Whilst the need for
more interconnectors and harmonisation of trading was initially
motivated by the pursuit of economic efficiency and greater
competition, policy-makers have been encouraged further in this
direction by the emergence of substantial amounts intermittent
renewable generation. The rapid rise in generation from wind and
solar in particular, again motivated primarily by policy, raises
concerns about security of supply in the longer term and also
efficient system balancing in the short term, both of which appear
to be remedied to some extent by more regional interconnectivity.
Moreover, with the renewable energy sources (RES) capacity fore-
cast to grow substantially, ENTSO-E (2015) [1] emphasise the
growing importance of cross-border electricity flows in order to
maintain generation adequacy. In this context, therefore, it is easy
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to understand why there has been extensive research on modelling
the progress of market integration in electricity prices, expressed
both in terms of price convergence and the dynamics of shock
transmissions.

However, the inter-regional price effects of large volumes of
renewable energy are awkward to clarify, and the impact of
weather has generally been under-specified in the market inte-
gration studies. Large volumes of renewable energy are weather
induced, and their local price effects might transmit to neigh-
bouring markets, arbitrage permitting, but weather conditions are
also correlated across regions. Thus, evenwithout interconnections,
common weather conditions induce price co-movements.
Furthermore, weather affects both the demand and supply sides
of the markets in different ways and these will be idiosyncratic to
the consumption drivers and generation technology mixes in each
market. Unravelling these confounding factors is particularly
important for system operations and price risk management. For
example, the use of weather insurance, derivatives or other hedges
require explicit models of price transmission between regions that
distinguishes arbitrage effects from weather spillovers.

The objective of this paper is therefore to undertake a detailed
econometric analysis of price transmission in the daily coupled
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Table 1
Indicative values for NTC in MW.

To From

BE DE FR LU NL

BE
[19,500]a

3400 2400

DE
[163,800]a

2700 3000

FR
[125,900]a

2300 3200

LU
[1800]a

980

NL
[28,200]a

2400 3850

a Installed Electricity Generation Capacity in MW [45].
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wholesale market of Central-West Europe (CWE) taking explicit
account of renewable energy generation and with a focus upon the
particular weather variables wind, temperature and their interac-
tion (wind chill). The next section provides a review of relevant
background research, followed by summaries of the European
Union initiatives for market integration, renewable energies and
the emergence of the CWEmarket. The data and analysis follow. On
the basis of results from some large vector-autoregression models
in section, we offer some new insights.

2. Background research

Weather conditions are essential variables for demand fore-
casting and numerous methods have developed over many years to
model ambient temperatures in various forms, wind speed with its
associated wind chill effects, humidity, cloud coverage and others.
Maximum and minimum ambient temperatures were used for
demand forecasting in Italy by Sforna (1995) [2], whilst Islam et al.
(1995) [3] in Muscat used selected climate variables according to
their correlation with electricity demand (maximum temperature,
maximum and average relative humidity, wind speed, duration of
sunshine, global radiation, degree days and a comfort index). Cor-
relation of electricity demand and climate variables was also used
to select adequate input variables by Santos et al. (2007) [4] and
Amjady and Keynia (2009) [5]. Robinson (1997) [6] simply used a
daily average ambient temperature in demand forecasting. Sailor
and Mu~noz (1997) [7] used in addition to ambient temperature,
relative humidity (in the form of enthalpy latent days) and wind
speed, all population-weighted. Taylor (2003) [8] improved on the
existing use by the UK National Grid of single point weather fore-
casts, by using weather ensembles. A population-weighted mean
daily outdoor temperature was used by Pardo et al. (2002) [9] to
calculate heating and cooling degree days (HDDs and CDDs) for a
demand model to account for the influence of temperatures on
demand. The use of HDD, CDD and the mean relative humidity was
also used by Mirasgedis et al. (2006) [10] in statistical models for
the daily and monthly electricity demand prediction for Greece.
Bessec and Fouquau (2008) [11] assessed the influence of temper-
ature on demand across Europe and found a non-linear relation
with a clear heating effect. Moreover, the cooling effect was more
important in the south European countries with a clear U-shape
relation. Suganthi and Samuel (2012) [12] performed a compre-
hensive review of the types of models used for demand forecasting,
most of them involving climate conditions as explanatory variables.
A study of climate determinants on demand was carried out for
Italy [13] highlighting the importance of the increasing installation
of air conditioning in the electricity demand since 2003.

To the extent that price forecasts depend upon demand, all of
these weather effects pass through implicitly [14,15]. The intro-
duction of weather determinants on electricity price forecasting is
explicitly mentioned by many researchers [16,17]. However, Wu
and Shahidehpour (2010) [18] suggest that weather variablesmight
cause overfitting and model inaccuracies. Nevertheless, Weron and
Misiorek (2008) [19] used ambient temperatures in the electricity
price forecasting model for Nord Pool. Comprehensive reviews of
electricity spot price modelling are made by Higgs (2008) [20],
Aggarwal et al. (2009) [21] and byWeron (2014) [22], which report
the use of ambient temperature as an input variable. Furthermore,
Higgs and Worthington (2008) [23], Christensen et al. (2012) [24]
and Zachmann (2013) [25] recognise that, in their multi-state
models, the transition probabilities and electricity price spikes
are, or may be, weather dependent. Wind power forecasts are used
in electricity price forecasting by Cruz et al. (2011) [26], J�onsson
et al. (2013) [27] and Ziel et al. (2015) [28] with appealing results,
demonstrating model performance improvements. The latter also
included solar power in the electricity price forecasting of Germany
and Austria. Additionally, Keles et al. (2013) [29] introduces a self-
containedwind power forecast, which is then used in the electricity
price forecast. A summary of the analysed literature involving
weather variables is provided in Table 6 Appendix A.

Regarding the interconnection of regional electricity markets,
De Vany & Walls (1999) [30] looked at market integration across
eleven regions in the western United States using spot market
electricity prices from 1994 to 1996, aggregated by peak and off-
peak values, as did Park, Mjelde, & Bessler (2006) [31]. In
Australia,Worthington, Kay-Spratley&Higgs (2005) [32] examined
the integration of the Australian National Electricity Market, but
found poor integration. Later, Higgs (2009) [33] also assessed the
Australian National Electricity Market in terms of the level of
integration, examining the inter-relationships of wholesale spot
electricity prices among four markets, finding by then that the
highly interconnected markets have higher conditional correla-
tions. In Europe several studies have looked at market integration
(e.g. Refs. [34,35]). Econometric methods have been based upon on
correlations, cointegration analysis, fractional cointegration,
exploratory data analysis of price differences variability, vector
autoregressive (VAR), vector error correction models (VECM),
Granger-causality, principal components and impulse response
analyses. The Central-West Europe (CWE) region was found to be
integrated in these studies and increasingly so over time. Lately the
authors specified a number of VARmodels to evaluate the effects of
the introduction of the market coupling mechanism between the
trilateral market (Belgium, France and the Netherlands) and Ger-
many, leading to the conclusion that this has created an apparent
smoothing of the responses to innovations of the integrated CWE
markets [35].

3. Market integration, renewable energies and the CWE

Directive 90/547/EEC on the transit of electricity through
transmission grids [36] aligned to Directive 90/377/EEC concerning
the transparency of gas and electricity prices charged to industrial
end-users [37], provided the first steps for the creation of the in-
ternal European electricity market. Later, Directives 96/92/EC,
2003/54/EC and 2009/72/EC established harmonised rules for the
various electricity markets [38,39]. Regulatory agencies were
created throughout the European Member States in order to
transpose and implement the local corresponding laws and regu-
lations. The main regulatory functions aimed to: provide licencing,
perform monitoring of activities, set and implement tariffs, and to
protect customers [40]. In 2006, market integration in Europe was
still far from being achieved [41], and this led the European Com-
mission to foster an Agency for the Cooperation of Energy Regu-
lators (ACER) which in turn launched seven Electricity Regional



Fig. 1. CWE installed generation capacities in 2012.
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Fig. 2. CWE electricity cross-border flows (flow) [MWh] in CWE in 2012 (Belgium e BE, France e FR, Germany e DE and the Netherlands - NL).
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Initiatives [42,43], one of which, the Central West (Belgium, France,
Germany, Luxembourg, Netherlands) is the focus here.

In Table 1 [44,45] the Net Transfer Capacities (NTC) and
respective installed electricity generation capacities declared be-
tween the CWE countries are shown. Note the relatively small NTC
between France and Germany compared to their sizes of installed
electricity generation capacity.

Almost simultaneously with the initiatives for market integra-
tion, Directives 2001/77/EC and 2009/28/EC, called for the pro-
motion of electricity generation by RES in Europe [46,47]. The aim
was to reduce dependency on imported fossil fuels for both security
and low carbon reasons. The large deployment of RES generation in
Europe was achieved through a programme of strong financial
support mechanisms [48e50], including feed-in tariffs, feed-in
premia, fiscal incentives, tax exemptions and others. The RES
electricity (RES-E) generation in Europe was 467,7 TW h in 2013
consisting of 42.4% hydroelectric, 27.4% wind, 10.4% solar, 9,9%
biomass and 10% of other renewable technologies [51]. The CWE
electricity markets, in particular Germany, have been prominent in
this structural change and Fig. 1 displays the generating capacity
mix in 2012 (excluding Luxembourg). Clearly the four countries are
very different in both scale and mix.
The impact of RES-E on electricity markets has been discussed

widely. Wind, for example, like any low marginal cost generation
displaces higher marginal cost technologies and this “merit-order
effect” is well recognised in leading to lower wholesale prices [52].
Evidently, the extent of this merit order effect will depend upon the
slope of the merit order stack around the demand levels. If it is
quite flat, with a lot of similar generating technology, e.g. the stack
of thermal coal plant in Germany, the wind depression on prices
may not show at normal times but only perhaps at low demand
periods. How the wind effects may then transmit to neighbouring
markets is even more complex. We analyse this process in the
following sections.

4. Transmission of renewable energy and CWE market
specificities

Whilst we expect higher renewable energy volumes in a
particular market to lower prices, depending upon the slope of the
supply function, how that effect spills over to neighbours will
depend upon various circumstances. Thus, if the interconnector is
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Fig. 3. Scatter plots of Daily Average Wind Speed (WS) [km/h] vs Electricity Cross-border Flows (flow) [MWh] in 2012 (Belgium e BE, France e FR, Germany e DE and the
Netherlands - NL).
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congested or if the price spread does not motivate arbitrage, no
power will flow, and if the slope of the neighbour's supply function
is too flat, or if the volumes involved are immaterial, the price
changes will be minimal. Thus, we cannot simply presume that a
country with a lot of wind generation will necessarily be a major
influence on neighbouring prices. Likewise, we cannot expect a
small country to make a substantial impact on a much larger
country's prices. Furthermore, it is possible to envisage a process
wherebywind volumesmay not affect one country, because of a flat
supply function, but may get exported and substantially reduce
prices for a neighbour. And weather conditions in neighbouring
countries could have counter-balancing demand side effects that
induce apparently counter-intuitive spillovers. For example, high
wind in one country that has relatively little wind production but a
substantial amount of electric heating (e.g. France) could cause an
increase demand (and hence prices) because of wind-chill [53], and
so the import of wind-generated excess power from a neighbouring
country (e.g. Germany) may actually appear to be correlated with
higher price. To explore these and other specificities, we first look at
the CWE interactions.

In Fig. 2, taken from ENTSO-E, (2015b) [54] we see that most of
the cross-border export flows are from France to Germany and to
Belgium, from Germany to the Netherlands, and from the
Netherlands to Belgium, but they are all variable and flows do
reverse. Fig. 3 shows the influence of wind speed1 on electricity
cross-border flows and these scatter plots do not indicate strong
correlations of cross-border flows with wind speed.2 Only flows
from Germany to the Netherlands seem to be associated with
higher wind speeds, but this appears to be due a few influential
observations. All of which raises the question of whether there is
indeed less cross-border impact of wind than expected, or whether
there are confounding factors. In the next section, therefore, we
estimate some vector time-series models to identify weather and
1 Daily average wind speed (in km/h) taken from www.wunderground.com [60].
2 Correlations between cross-border-flows and wind speed are available upon

request.
price spillover effects and explore these interactions.

5. Data and vector modelling

Price data was extracted from Datastream [55] for the day-
ahead spot electricity prices in V/MWh, except weekends, from
the 1st of November 2007 to the 31st of December 2014. We focus
on peak prices (hours 9e20) since it is during high demand periods
that extra transmission capacity should be valued efficiently. Fig. 4
displays the price time series, which exhibit the usual character-
istics of volatility clustering and spikes [20,41,56e58]. The mean-
reverting nature was confirmed with Augmented Dickey-Fuller
(ADF) and Phillips-Perron (PP) test statistics indicating statio-
narity as in Boisseleau (2004), Park et al. (2006) and Bunn and
Gianfreda (2010) [31,34,59]. Daily weather data was retrieved from
www.wunderground.com [60]: maximum and minimum ambient
temperatures (in degrees Celsius) and average wind speed (in km/
h) for each country of the CWE. Maximum and minimum ambient
temperatures were then used to calculate Heating Degree-days3

(HDD) according to the UK Meteorological Office method [61,62].
A proxy for wind power was obtained through the product of
average wind speed and installed wind power capacity.4 Also a
proxy for the wind chill effect was obtained through the product of
wind speed and HDD. In previous work [63], the authors estab-
lished that cloud cover as an exogenous variable did not contrib-
uted significantly to explain CWE electricity market prices,
therefore this variable was not used. Furthermore, as precipitation
would only be fully specified if used in conjunction with reservoir
levels, that was, for practical reasons, outside our scope for such a
large region being studied.

Following the widespread use of VAR models [64,65], to eval-
uate electricity market integration (as in Refs. [34,66]), VARX
models were estimated. These models allowed separate
3 Base temperature of 15.5� Celsius.
4 Some assumptions were made: perfect wind speed predictions and average

wind speed representative for the peak period.

http://www.wunderground.com
http://www.wunderground.com


Table 2
Model lag length.

VAR peak VARX peak VAR wind chill

Lag length criteria Lags SC HQ Lags SC HQ Lags SC HQ
2 126.5707 125.6636* 5 �4.856887 �5.083654* 3 34.57369* 34.48436

* indicates lag order selected by the criterion.
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Fig. 4. Day-ahead spot electricity prices in V/MWh (BPX e Belgium, PWNX e France, EEX e Germany, APX e the Netherlands).
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contemporaneous and lagged effects of price and weather induced
spillovers to be assessed. Since our analysis was not concerned with
the intraday effects of weather forecast errors, we used the actual
measured daily climate data. Generalised Impulse Response Anal-
ysis [67] was finally used to enable an investigation of the overall
potential impacts of unexpected shocks or innovations on the
endogenous variables.

The most general form of the model, VARX, is as follows:
YT
t ¼

�
BPXpeak; PWNXpeakEEXpeak;APXpeak;WSz$Wcapz;HDDz;WSz$HDDz

�
t

Yt ¼ C þ
Xp

i¼1

AiYt�i þ BXt þ ut (1)

where Yt is the log day-ahead electricity price matrix, C is the
constant matrix, Ai and B are coefficient matrices, Xt is the exoge-
nous variable matrix and ut is the matrix of unobservable error
terms. The Schwartz Bayesian criterion (SC) and the Hannan-Quinn
criterion (HQ) were used to determine the lag length of each model
in a sequential test procedure through successive estimation,
starting with 15 lag models and calculating-down for lower lags.
The endogenous variable lags where criteria are minimised are
presented in Table 2 for the three estimated models. The Breusch-
Godfrey test for residual autocorrelation was performed to all
models, indicating adjustment of the number of lags used in each
model [64]. Also a lag exclusion Wald test was performed to each
model, in order to detect lags with non-significant coefficients [68].
The stability condition of no roots outside the unit circle is satisfied
for all equations in the models.

For the first model (VAR Peak), all variables are considered to be
endogenous (there were no exogenous variables considered), in
order to capture the corresponding inter-relationships, therefore,5
In the second model (VARX Peak), the price inter-relationships
and the influence of wind power, heating degree days and wind
chill on prices are captured, therefore, the endogenous variable
matrix is YT

t ¼ ðBPXpeak; PWNXpeakEEXpeak;APXpeakÞt and the exog-
enous variable matrix is XT

t ¼ ðWSz$Wcapz;HDDz;WSz$HDDzÞt . The
third model (VAR Wind Chill) intends to capture the inter-
relationships of wind chill alone, therefore, it only considers as
endogenous variables YT

t ¼ ðWSz$HDDzÞt .
5 where z is the subscript for Belgium, France, Germany and the Netherlands.



Table 3
VARX Wind power generation proxy.

2007e2014 l_BPX_PEAK l_EEX_PEAK l_PWNX_PEAK l_APX_PEAK

BE_WSAVG � WIND_BE 0.00000058 �0.0000035 0.00000139 0.00000135
[0.31913] [�1.8557]* [0.77677] [0.95535]

DE_WSAVG � WIND_DE �0.0000001 �4.08E-07 �1.27E-07 �7.98E-08
[�1.04236] [�4.09718]*** [�1.35185] [�1.06850]

FR_WSAVG � WIND_FR �0.0000019 �0.00000183 �0.00000199 �0.00000131
[�2.93603]*** [�2.73242]*** [�3.13568]*** [�2.60477]***

NL_WSAVG � WIND_NL �0.00000178 �0.0000026 �0.00000318 �0.00000267
[�1.60586] [�2.26355]** [�2.92881]*** [�3.10513]***

Significant at *** 1% ** 5% * 10% significance level.
Vector autoregression estimates standard errors in ( ) & t-statistics in [ ].
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6. Analysis and discussion of results

6.1. Wind effects on demand and supply

In the estimated models, we use the product of wind speed and
installed wind capacity as a proportional proxy for wind power
output, and the product of wind speed and Heating Degree-Days as
a proxy for the wind-chill effect. The results in Tables 3 and 4 show
the relevant coefficients taken from the full VARX modelling:

� Local wind power generation has significant negative effects, as
expected, in all four countries. Surprisingly, France and the
Netherlands have the most significant negative spillovers into
the other countries, whilst Germany and Belgium have no sig-
nificant effects elsewhere. These are, of course, average effects,
but they do suggest that it is not necessarily the case that the
largest wind generating country will spread lower prices to its
neighbours. Rather a country that is predominantly low cost and
Table 4
VARX Wind chill proxy.

2007e2014 l_BPX_PEAK l_EEX_PEAK l_PWNX_PEAK l_APX_PEAK

BE_WSAVG � BE_HDD �0.000225 0.000209 �0.000582 �0.000326
[�0.90849] [0.81248] [�2.39367]** [�1.69385]*

DE_WSAVG � DE_HDD �0.0000123 0.0000657 0.000401 �0.00014
[�0.04603] [0.23639] [1.52524] [�0.67098]

FR_WSAVG � FR_HDD 0.001354 0.0013 0.001515 0.001797
[1.82301]* [1.68903]* [2.07892]** [3.11189]***

NL_WSAVG � NL_HDD 0.0000972 �0.000183 0.000229 0.000331
[0.36224] [�0.65896] [0.86800] [1.58623]

Significant at *** 1% ** 5% * 10% significance level.
Vector autoregression estimates standard errors in ( ) & t-statistics in [ ].
exporting (France) may be more influential. The Netherlands
appears to be both an importer from Germany and an exporter
to Belgium, and so even though it is a small wind producer, its
price sensitivity is effective. Belgium, as an importer, does not
spillover.

� French wind chill has significant positive influence on its own
prices, as expected, given the high sensitivity of demand to cold
weather in that country. Furthermore, this positive effect spills
over to all other CWE markets. Evidently, the increased demand
is met not only by the French internal supply, but also by elec-
tricity imports from neighbouring countries. Similar wind-chill
effects are not observed in the other countries, as they are not
associated with such high intensity of electric heating.

� In Table 5 we report endogenous lags to explore the inter-day
dynamic spillover of the wind-chill effect. Whilst we expect
arbitrage in prices for a coupled market to be contemporaneous,
windy weather systems generally move across Europe from
West to East. Thus, windy conditions in Belgium, France and the
Netherlands would on average precede those in Germany. The
results show that all countries have a positive wind-chill rela-
tion with their own previous day conditions and that Germany
does indeed follow the others. In France, the positive lagged
effects are significant for three days, and this is a characteristic
of thermal inertia in electric heating systems. Thus, the French
price spillover is likely to have a persistent effect on its
neighbours.
6.2. Impulse response analysis

With contemporaneous price arbitrage within the coupled
market and various specific demand and supply side weather in-
fluences, the net effect of shocks is the sum of complex interactions.
We therefore present the impulse response functions within the
full VAR Peak model to give an indication of the overall spillover
potential and their persistence.

In Fig. 5, in Appendix B, we see the spillover potential of the
wind power proxy on adjacent electricity peak prices. All impacts
are initially significant, negative and the persistence to a one
standard deviation shock is about four periods. Similarly, Fig. 6
shows the impact of cold weather shocks. These tend to increase
prices and are more persistent. The combination of wind speed and
cold weather is shown in Fig. 7 in terms of wind-chill. Here, most
interestingly, the initial impact is negative (perhapsmainly a supply
side effect of wind power) and then positive as the extra heating is
required. Finally, for completeness in Fig. 8 we show the endoge-
nous price interactions. Price shocks transmit across the coupled
markets and gradually decay, as expected and as noted by other
researchers who have investigated these indications of market
integration.

7. Conclusion

This study was motivated by the observation that the effects of
renewable energy output variations across several integrated po-
wer markets are likely to be complicated by price arbitrage and



Table 5
VAR wind chill e sample 1/1/2007 to 31/12/2014e2162 observations.

BE_WSAVG � BE_HDD DE_WSAVG � DE_HDD FR_WSAVG � FR_HDD NL_WSAVG � NL_HDD

BE_WSAVG(�1) � BE_HDD(�1) 0.445344 0.233903 0.036301 0.135016
[14.2342]*** [6.82318]*** [3.23136]*** [3.69104]***

BE_WSAVG(�2) � BE_HDD(�2) 0.041359 �0.047363 �0.028174 �0.018147
[1.25384] [�1.31046] [�2.37878]** [�0.47053]

BE_WSAVG(�3) � BE_HDD(�3) 0.072713 �0.01659 0.001843 �0.030263
[2.30996]** [�0.48100] [0.16307] [�0.82231]

DE_WSAVG(�1) � DE_HDD(�1) 0.028281 0.37225 �0.008171 �0.009178
[1.15155] [13.8339]*** [�0.92663] [�0.31965]

DE_WSAVG(�2) � DE_HDD(�2) 0.035526 0.009246 0.035975 0.053624
[1.36558] [0.32435] [3.85123]*** [1.76299]*

DE_WSAVG(�3) � DE_HDD(�3) 0.089132 0.165917 0.007541 0.046121
[3.68756]*** [6.26481]*** [0.86887] [1.63204]

FR_WSAVG(�1) � FR_HDD(�1) 0.168532 0.15751 0.342332 0.197716
[2.6338]*** [2.24658]** [14.8999]*** [2.64284]***

FR_WSAVG(�2) � FR_HDD(�2) 0.075434 0.155153 0.129872 0.160178
[1.13202] [2.12499]** [5.42792]*** [2.05596]**

FR_WSAVG(�3) � FR_HDD(�3) 0.159352 0.093759 0.109908 0.163032
[2.50324]** [1.34422] [4.80846]*** [2.19051]**

NL_WSAVG(�1) � NL_HDD(�1) 0.091282 0.054973 0.023332 0.369898
[3.69991]*** [2.03362]** [2.63381]*** [12.8237]***

NL_WSAVG(�2) � NL_HDD(�2) �0.013619 �0.02728 0.012772 0.091357
[�0.53114] [�0.97096] [1.38721] [3.04732]***

NL_WSAVG(�3) � NL_HDD(�3) �0.019173 0.017645 0.000371 0.109072
[�0.77706] [0.65267] [0.04190] [3.78089]***

C 3.767092 4.048953 1.329848 4.032492
[4.82796]*** [4.73602]*** [4.74671]*** [4.42036]***

R-squared 0.623337 0.581325 0.50175 0.564083
Adj. R-squared 0.621156 0.5789 0.498864 0.561559
Schwarz SC 9.292424 9.475189 7.243893 9.604993

Significant at *** 1% ** 5% * 10% significance level.
Vector autoregression estimates standard errors in ( ) & t-statistics in [ ].
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weather dynamics. Wind in particular has supply side effects when
associated with substantial generating facilities, but also demand
side influences when associatedwith cold weather. This means that
assessing the specific effects of weather conditions on various
markets, e.g. for operational prediction or hedging, may require
subtle analysis. Through detailed modelling of the Central West
Europe coupled market comprising Belgium, France, Germany and
the Netherlands, we found that despite efficient price arbitrage, it is
not the case that daily wind power output shocks diffuse uniformly
across all markets, or that the largest generator of wind energy
creates the most significant spillovers or that high wind conditions
necessarily lead to lower prices.

Furthermore, whereas simple scatter diagrams appear to sug-
gest very little relationship between cross-border energy flows and
wind production in these countries (Fig. 3), impulse response
analysis from a large vector autoregression with endogenous and
exogenous representations of price andweather variables indicated
the potential for mutual spillovers across all countries. However,
specific analyses of the coefficients of selected variables in the VAR
revealed idiosyncratic characteristics. Whereas Germany was by far
the largest energymarket and the largest generator of wind energy,
it also tended to import substantially from France (Fig. 2) and had a
flat supply function dominated in its mid-range by coal facilities
(Fig. 1). Thus, whilst neighbouring wind generation may be highly
correlated (Roques et al., 2010 [69], reported a correlation of 0.4 for
France and Germany), on average, Germany did not appear to
spillover wind-induced price effects to its neighbours. This more
extensive modelling thereby reverses some of the conventional
indications suggested elsewhere, e.g. Ref. [70]. Alternatively,
France, being a low cost exporter, even with much less wind gen-
eration, had, on average, significant spillover effects in lowering
prices for all neighbours when its wind output increased.
Furthermore, France has substantially higher price response to
demand, because of widespread electrical heating, and when wind
conditions combine with cold weather to produce a wind chill ef-
fect, higher prices emerge and spillover to all neighbours. We also
found that a smaller importing country such a Belgium created
little spillover, but a similar smaller country like the Netherlands,
being a transit between imports from Germany and exports to
Belgium, proved to have a very sensitive effect on price spillovers if
its wind production changed. Finally, the dynamics of the weather
induced effects on demand and, as a consequence, on prices were
longer lasting, as weather conditions moved across the countries,
than the supply side effects.

Overall, apart from market harmonisation and interconnector
capacities, understanding the arbitrage dynamics of prices as more
renewable energies enter the production mix requires rather spe-
cific unravelling of the supply-side and demand-side specificities of
the countries involved. The relative slopes of the supply functions
around demand levels are important, as well as the technology mix
and possible market power effects determining the price spreads.
The nature and regional dynamics of demand also requires careful
analysis, as demand-side effects may significantly counteract the
supply side. As a basis for analysis however, vector autoregression is
useful and could well support weather risk models, although it
appears to require large scale specification. We did not, however,
undertake an intraday hourly panel representation, as our specifi-
cation was already large in terms of lags, prices and weather vari-
ables, but it is likely that for operational precision, intraday
granularity will be required in practice.
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Appendix A
Table 6
Essential weather variables for demand forecasting.

Weather exogenous
variables

Weather ensembles e European Centre for medium- electricity demand forecasting. The range of different range weather
forecasts (ECMWF)

[8]

Ambient temperature Avg. Amb. Temp. [4e8,11,19]
Max. Amb. Temp. [2,3]
Min. Amb. Temp. [2]
Cooling and heating degree days [3,7,9,10]

Relative humidity Avg. Rel. Hum. [3,4,7,8,10]
Max. Rel. Hum. [3]
Enthalpy latent days [7]

Precipitation [8]
Wind Speed [3,7,8,26

e29]
Solar Cloud cover [8]

Sunshine duration [3]
Global radiation [3]

Comfort index [3]
Weather exogenous

variables
Weather ensembles e European Centre for Medium- electricity demand forecasting. The range of different range Weather
Forecasts (ECMWF)

[8]
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Fig. 6. Impulse response functions of peak spot electricity prices to HDD shocks.
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Fig. 7. Impulse response functions of peak spot electricity prices to wind chill proxy shocks.
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Fig. 8. Impulse response functions of peak spot electricity prices to price shocks.
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