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The dependence of the Landau gauge two-point gluon and ghost correlation functions on the lattice spacing
and on the physical volume are investigated for pure SU(3) Yang-Mills theory in four dimensions using lattice
simulations. We present data from very large lattices up to 1284 and for two lattice spacings 0.10 fm and
0.06 fm corresponding to volumes of ∼ð13 fmÞ4 and ∼ð8 fmÞ4, respectively. Our results show that, for
sufficiently large physical volumes, both propagators have a mild dependence on the lattice volume. On the
other hand, the gluon and ghost propagators change with the lattice spacing a in the infrared region, with
the gluon propagator having a stronger dependence on a compared to the ghost propagator. In what concerns
the strong coupling constant αsðp2Þ, as defined from gluon and ghost two-point functions, the simulations
show a sizeable dependence on the lattice spacing for the infrared region and for momenta up to ∼1 GeV.
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I. INTRODUCTION

The computation of the gluon and ghost propagators of
pure Yang-Mills theory in the Landau gauge have been
investigated in the past years using lattice simulations for
the SU(2) and SU(3) groups and accessing more deeply
the infrared region. In four dimensions, this effort estab-
lished a consensus that the gluon propagator [1–12] is
infrared suppressed and acquires a finite nonvanishing
value at zero momentum. On the other hand, the ghost
propagator seems to be described essentially by its tree-
level expression [2,3,5,9,11,13–16]. In order to access the
infrared momenta, the lattice simulations have been per-
formed on huge volumes: ð27 fmÞ4 using a 1284 lattice for
the SU(2) gauge group [1] and ð17 fmÞ4 using a 964 lattice
for SU(3). Such large volumes were achieved by setting the
lattice spacing at ∼0.2 fm. Although the simulations were
performed within the perturbative scaling window, the use
of such large lattice spacings rise the question of how far
from the continuum limit the results are.
For pure Yang-Mills theory the mass scale is given by the

mass of the lightest glueball state. For SU(3), lattice
simulations [17,18] show that the lightest glueball has
the quantum numbers JPC ¼ 0þþ and a mass of about
1700 MeV. The distance scale associated with such a value
for the mass being a ∼ 0.12 fm. For the SU(2) gauge group
[19], the predicted lightest glueball is about 1600 MeV and
the corresponding distance scale is given again by 0.12 fm. It
follows, that the large lattice spacings used in the simulation
mentioned in the previous paragraph can introduce some bias
on the final result. Indeed, in [8], the dependence of the gluon
propagator on the lattice spacing for the SU(3) gauge group
was analyzed. The authors conclude not only that the effects
due to the use of a large lattice spacing are dominant over the

finite-volume effects, but also that the computations using
such a large lattice spacing underestimate the propagator in
the infrared region. However, at the qualitative level, the
results of [8] reproduce the large volume and large lattice
spacing simulations reported in [1,3].
In the current paper, we aim to extend the work of [8] and

investigate the dependence of the gluon and ghost propa-
gators on the lattice spacing for large physical volumes
≳6.5 fm. Furthermore, given that from the gluon and ghost
propagator one can define a renormalization group invariant
strong coupling constant αsðp2Þ, we also analyze the
dependence of the coupling on the lattice spacing. Our
results show that the use of a large lattice spacing changes the
deep infrared values of the gluon propagator, of the ghost
propagator and of the strong coupling constant. The simu-
lations reported here show that the gluon propagator is
suppressed in the infrared region, when one uses a large
lattice spacing, while the ghost propagator is enhanced by
using a larger lattice spacing. On the other hand, for the
definition of the strong coupling constant considered here,
the use of a larger lattice spacing enhancesαs for low andmid
momenta up to p≲ 1 GeV.
The paper is organized as follows. In Sec. II, we resume

the details of the lattice calculations, including definitions,
number of configurations, Landau gauge fixing, and the
renormalization procedure. In Sec. III A, we report on the
computation of the gluon propagator, while in Sec. III B we
report on the results for the ghost propagator. In Sec. III C, the
results for the running coupling are discussed. In Sec. IV, we
compare our simulatons with the lattice results of [3]. Finally,
in Sec. V, we summarize the results discussed and conclude.

II. LATTICE SETUP AND RENORMALIZATION
PROCEDURE

The pure gauge SU(3) Yang-Mills simulations reported
here use the Wilson action at several β values and physical
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volumes. The full set of simulations performed in the
context of this work is resumed in Table I. For the
conversion into physical units, we use the string tension
as measured in [20].
The gauge configurations were generated with the

Chroma library [22] using a combined Monte Carlo sweep
of seven overrelaxation updates with four heat bath
updates. Each configuration UμðxÞ obtained from the
Monte Carlo sampling was gauge fixed to the Landau
gauge by maximizing the functional

FU½g� ¼
1

VNdNc

X

x;μ

ReTr½gðxÞUμðxÞg†ðxþ êμÞ� ð1Þ

over the gauge orbit and where V is the number of the
lattice points, Nd ¼ 4 the number of space-time dimen-
sions, Nc ¼ 3 the number of colors and êμ the unit vector
along the direction μ. In what concerns the gauge-fixing
algorithm, we rely on the Fourier accelerated steepest
descent method [23], which was implemented using
Chroma and PFFT [24] libraries. The quality of the gauge
fixing was monitored by

θ ¼ 1

VNc

X

x

Tr½ΔðxÞΔ†ðxÞ�; ð2Þ

where

ΔðxÞ ¼
X

ν

½Uνðx − êμÞ − UνðxÞ − H:c: − trace�; ð3Þ

which is the lattice version of the gauge fixing condition
∂A ¼ 0. For each gauge configuration, the gauge fixing
was stopped when θ ≤ 10−15.
The Landau gauge gluon propagator is given by

Dab
μνðpÞ ¼ δab

�
δμν −

pμpν

p2

�
Dðp2Þ; ð4Þ

where latin indexes refer to color degrees of freedom and
greek indexes to Lorentz degrees of freedom, and its
computation was done using the set of definitions described
in Ref. [25]. The results reported here are given as function
of the tree-level improved momentum,

pμ ¼
2

a
sin

�
nπ
Lμ

�
; n ¼ 0; 1;…;

Lμ

2
; ð5Þ

where a is the lattice spacing and Lμ the number of lattice
points in the direction μ. The statistical errors on the
propagators were evaluated using the bootstrap method
with a confidence level of 67.5%.
The ghost propagator is defined as

GabðpÞ ¼ δabGðp2Þ ð6Þ

and we have relied on the method described in [26] to
compute the scalar function Gðp2Þ. For most of the
ensembles, we have considered several sources and their
averaged results in order to reduce the statistical noise.
The statistical errors for the ghost propagator were com-
puted as for the gluon propagator.
In the current paper, besides the propagators we also look

at the renormalization group invariant strong coupling
defined by

αsðp2Þ ¼ g20
4π

dDðp2Þd2Gðp2Þ; ð7Þ

where

dDðp2Þ ¼ p2Dðp2Þ and dGðp2Þ ¼ p2Gðp2Þ ð8Þ

are the gluon and ghost dressing functions, respectively.
In order to compare the data of the various simulations,

the propagators were renormalized using a MOM scheme
with the renormalized propagators defined as

Dðp2Þjp2¼μ2 ¼ ZADLatðμ2Þ ¼
1

μ2
ð9Þ

and

Gðp2Þjp2¼μ2 ¼ ZηGLatðμ2Þ ¼
1

μ2
ð10Þ

where DLat and GLat refer to the bare lattice propagators. In
the current work, we use μ ¼ 4 GeV for the renormalization

TABLE I. Lattice setup. The physical scale was set from the string tension as measured by [20]. The lattice spacing
for β ¼ 6.3 was not measured in [20], so we relied on the procedure described in [21]. The last column refers to the
number of point sources, per configuration, used in the inversion of the Faddeev-Popov matrix needed to compute
the ghost propagator.

β a (fm) 1=a (GeV) L La (fm) No. of Configurations Sources

5.7 0.1838(11) 1.0734(63) 44 8.087 100 3
6.0 0.1016(25) 1.943(47) 64 6.502 100 2

80 8.128 70 2
128 13.005 35 1

6.3 0.0627(24) 3.149(46) 128 8.026 54 3
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scale. The renormalization constants ZA and Zη were
computed by fitting the bare lattice propagators to the
functional form

Dðp2Þ ¼ z
p2 þm2

1

p4 þm2
2p

2 þm4
3

ð11Þ

in the range p ∈ ½0; 6� for the gluon propagator and

Gðp2Þ ¼ z
½log p2

Λ2�γgh
p2

ð12Þ

in the rangep ∈ ½2; 6� for the ghost propagator. Then, we use
the fits to impose the normalization conditions (9) and (10).
We have checked that the fits reproduced the lattice data for
momentum ∼4 GeV. Furthermore, in all cases the χ2=d:o:f
associated to the fits are below unit.
In order to reduce the lattice artifacts, for momenta above

1 GeV we have performed the conic cut as defined in [27].
For momenta below 1 GeV, the figures include all lattice
data points.
Besides the finite size effects due to the simulation on a

finite box, with a finite lattice spacing, any lattice calcu-
lation is imbued with Gribov noise. In the current work, we
do not attempt to estimate the effects coming from the
choice of the various maxima of the functional (1). As
discussed in e.g. [9,25,28], picking different maxima of
FU½g� can lead to small changes in the propagators in the
infrared region.

III. PROPAGATORS AND STRONG COUPLING:
HOW THEY CHANGE WITH THE LATTICE

SPACING AND THE VOLUME

In this section, we present the results of the simulations
resumed in Table I, focusing on the dependence on the
lattice spacing and physical lattice volume.

A. The gluon propagator

The data for the renormalized gluon propagator can be
seen in Fig. 1. In the left plot, the lattice data for essentially
the same volume (V ∼ 8 fm) and different lattice spacings
(0.18 fm, 0.10 fm and 0.063 fm) are compared, whereas the
right plot outlooks the simulations performed with the same
lattice spacing (a ∼ 0.10 fm) but different physical vol-
umes (La ¼ 6.5 fm, 8.1 fm and 13.0). If the data of our
simulations show essentially no dependence on the physi-
cal volume for volumes above ð6.5 fmÞ4, they also reveal a
nontrivial dependence of the propagator on the lattice
spacing.
From Fig. 1, one concludes that for the same physical

volume, using a larger lattice spacing has an impact on the
gluon propagator for momenta up to ≲1 GeV, with the
larger lattice spacing underestimating the lattice data in
the infrared region.
The relative importance of finite lattice spacing and finite

volume effects confirms the results reported in [8].

B. The ghost dressing function

For the ghost two-point function we report on the
dressing function dGðp2Þ as defined in Eq. (8). The ghost
dressing function for the simulations with a physical
volume of about ð8 fmÞ4 (left plot) and the same lattice
spacings but different physical volumes (right plot) can be
seen in Fig. 2.
In what concerns the dependence on the lattice spacing,

the figure shows that decreasing the lattice spacing, while
keeping the same physical volume, suppresses the ghost
propagator in the infrared region. The figure also shows
that the data computed with our coarser lattice, i.e. the
simulation performed with β ¼ 5.7, differ from all the other
simulations for momenta as large as 2 GeV. Indeed, for
momenta up to 2 GeV, the β ¼ 5.7 data are above the data
of the remaining simulations and, in this sense, the coarser
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FIG. 1. Renormalized gluon propagator at μ ¼ 4 GeV for (left) a physical volume of ð8 fmÞ4 and different lattice spacings; (right) the
same lattice spacing and different volumes. Details about the lattice parameters are given in Table I.

LATTICE GLUON AND GHOST PROPAGATORS AND THE … PHYSICAL REVIEW D 94, 014502 (2016)

014502-3



lattice provides an upper bound to the corresponding
continuum correlation function. Recall that the behavior
of the gluon propagator is the opposite, i.e. the β ¼ 5.7
gives a lower bound to the continuum gluon propagator.
The results of the simulations with the smaller lattice
spacings are compatible within one standard deviation
only for momenta above ∼1 GeV and in the infrared
region the propagator is suppressed if the lattice spacing
is decreased. Note, however, that within two standard
deviations the dressing functions are compatible for almost
the full range of momenta.
From the right panel of Fig. 2, one can conclude that, as

for the gluon propagator, the dependence of the lattice data
on the physical volume is very mild if any. Indeed, the three
lattice simulations are compatible within one standard
deviation for all momenta. The data for our largest physical
volume have a larger statistical error and seem not to be as
smooth as the others, but this is possibly due to the limited
statistical ensemble used in the calculation of the correla-
tion function.
For completeness, in Fig. 3 we report on the ghost

dressing function for all the simulations referenced in
Table I. The data for all the simulations agree within
two standard deviations, with the exception of the β ¼ 5.7
for a lattice using 444 points, which overestimates the
propagator.

C. The running coupling

The combination of dressing functions

αsðp2Þ ¼ g20
4π

dDðp2Þd2Gðp2Þ ð13Þ

is a renormalization group invariant and defines a running
coupling. As for the propagators, we also aim to understand
how αsðp2Þ changes with the lattice spacing and volume.

In the computation of the strong coupling constant, we have
used the bare lattice functions.
The dependence of the strong coupling on the lattice

spacing and physical volume is resumed in Fig. 4. In order
to better illustrate the dependence on the physical volume
and lattice spacing, for the strong coupling constant, the
plots only include the data surviving the momentum cuts
mentioned before. As can be observed from the right plot,
the simulations show essentially no dependence on the
physical volume. On the other hand, the left plot of Fig. 4
shows that, at low and mid momenta, i.e. for p≲ 1 GeV,
the strong coupling constant αsðp2Þ is slightly suppressed
for smaller lattice spacings. For momenta above ∼1 GeV,
the results of all the simulations become compatible.
Another feature of αsðp2Þ concerns the position of its

maximum. Indeed, as can be seen in Fig. 4, the position of
the maximum of the strong coupling constant, as a function
of p2, seems to be independent of both the lattice spacing
and physical volume and occurs for p2 ∼ 250 MeV2.
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FIG. 2. Renormalized ghost dressing function at μ ¼ 4 GeV for: (left) a physical volume of ð8 fmÞ4 and different lattice spacings;
(right) for the same lattice spacing and different volumes. Details about the lattice parameters are given in Table I.
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FIG. 3. Renormalized ghost dressing function at μ ¼ 4 GeV for
the simulations reported in Table I.
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However, in what concerns the numerical value of the
maximum of αsðp2Þ, its value seems to be suppressed when
approaching the continuum limit, i.e. for smaller lattice
spacings. Indeed, our simulation at β ¼ 6.3 shows a
maximum of αsðp2Þ which is about 15% smaller compared
to the corresponding value obtained for the remaining
simulations.

IV. COMPARISON WITH PREVIOUS WORKS

In this section, we aim to compare our lattice results with
those performed using the, so far, largest physical volumes
for a SU(3) simulation [3]. We call the reader’s attention
that in this work, the conversion into physical units relied
on a different definition of the lattice spacing. In order to be
able to compare these results with those reported in the
previous sections, we have rescaled the propagators accord-
ingly. Another issue that should be taken into consideration
is that our simulations and those of [3] used completely
different algorithms to maximize the functional (1). As
discussed previously, the choice of the maxima of FU½g�
has an impact on the propagators, changing their behavior
in the infrared region (Gribov noise) and, therefore, the
comparison of the results at low momenta should be done
with care.

In Table II, we summarize the lattice setup of the Berlin-
Moscow-Adelaide simulations when one relies on our
definition for the conversion into physical units.

A. The gluon propagator

In Fig. 5, we gather the results of our simulation at
β ¼ 5.7 with those of the Berlin-Moscow-Adelaide group.
The data show that the dependence on the volume is at most
mild, with the infrared propagator decreasing slightly when
La changes from 8 fm to 17 fm. Note that the differences
occur only for momenta below ∼400 MeV.
In Fig. 6, the two-point gluon correlation function data

reported previously, i.e. using larger (smaller) values of β
(the lattice spacing) but smaller physical volumes, are
compared with the largest volume result of the Berlin-
Moscow-Adelaide group. All data sets seem to converge
into a unique curve for momenta above ∼0.7 GeV. For
smaller momenta, the lattice data coming from the simu-
lations at β ¼ 5.7, which have the largest lattice spacing,
are always below the remaining results. The comparison of
the simulations performed at the smallest β values suggests
that the propagators associated with the higher β should be
multiplied by ∼8=9, in the infrared region, to obtain the
infinite volume limit.
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FIG. 4. Running coupling at μ ¼ 4 GeV for a physical volume of ð8 fmÞ4 and different lattice spacings (left) and for the same lattice
spacing and different volumes (right). Details about the lattice parameters are given in Table I.

TABLE II. Lattice setup considered by the Berlin-Moscow-Adelaide group [3]. Note that the data have been
rescaled to use the same definition for all simulations—see text for details.

No. of Configurations

β a (fm) 1=a (GeV) L La (fm) Glue Ghost

5.7 0.1838(11) 1.0734(63) 64 11.763 14 14
72 13.234 20
80 14.704 25 11
88 16.174 68
96 17.645 67
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B. The ghost dressing function

The Berlin-Moscow-Adelaide ghost data cover momenta
up to ∼3 GeV (β ¼ 5.7, 644) or up to ∼1.5 GeV for the
larger volume (β ¼ 5.7, 804). Given that we are considering
as renormalization scale μ ¼ 4 GeV, one cannot rescale the
Berlin-Moscow-Adelaide data to compare with our simu-
lations, as was done for the gluon propagator.
In Fig. 7, our data for the ghost dressing function

obtained for β ¼ 5.7 are compared with the results of
the Berlin-Moscow-Adelaide collaboration. The bare lat-
tice data from the 444 lattice simulation were rescaled to
reproduce the 644 data at the highest available momentum.
It follows that for momenta above ∼700 MeV, the results
of the various simulations define a unique curve. On the
other hand, for smaller momenta the dressing function
decreases as the physical volume of the lattice increases.

This type of behavior with the volume is not observed in
our simulations where we used smaller lattice spacings.
Indeed, as illustrated in Fig. 2, our data show essentially no
dependence on the physical volume in the infrared region.

C. The running coupling

The comparison of the results for the strong coupling
with those obtained by the Berlin-Moscow-Adelaide group
can be seen in Fig. 8. The differences between the two sets
of simulations are clearly seen for p≲ 1 GeV, with the
estimations of [3] being smaller than those obtained in our
simulations. In fact, some dependence on the lattice volume
can be seen by comparing the different β ¼ 5.7 data at low
momenta. The results of all the simulations become
compatible for momenta above ∼1 GeV, as already
described in Sec. III C.
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FIG. 5. Renormalized gluon propagator for the Berlin-
Moscow-Adelaide lattice data. The plot also includes the results
of our simulation with the same β value.
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V. SUMMARY AND CONCLUSIONS

In this work, we report the dependence of the lattice
results for the gluon propagator, the ghost propagator and
the strong coupling constant on the physical volume and
lattice spacing used to simulate QCD. Our goal is to
understand how precise one can compute these functions
using lattice QCD simulations, modulo possible effects
associated with the presence of Gribov copies. In fact, the
issue of the Gribov copies can be important to the
calculation of the propagators and, possibly, the strong
coupling constant [9,25,28,29]. However, due to the huge
amount of computer time needed to study Gribov copies
effects in these large lattices, we are unable to disentangle
such influence in our lattice results. Nevertheless, the
observed dependence of the above mentioned functions
on the lattice spacing and physical volume is, as demon-
strated by the results discussed here and [8], far from trivial
and impact mainly in the low momentum region.
In what concerns the gluon propagator, the new

simulations reproduce the behavior already observed in
[8]. The lattice data show essentially no dependence on
the lattice physical volume for volumes above ð6.5 fmÞ4
for the full range of momenta accessed. On the other
hand, the infrared propagator reveals a nontrivial depend-
ence on the lattice spacing, with smaller lattice spacings
favoring larger infrared propagators for momenta smaller
than ∼1 GeV.
On the other hand, the ghost propagator has a mild

dependence on the lattice volume but, contrary to the
gluon propagator, the simulations show that this two-point
correlation function is suppressed at low momenta when
the lattice spacing is decreased. We would like to point out
that, for the ghost propagator, the functional form (12)
which reproduces the perturbative one-loop result at high
momentum is able to describe the lattice data over a
surprisingly wide range of momenta. Indeed, if one takes
Λ as a fitting parameter, (12) is able to fit the lattice data
from momenta ∼1 GeV up to the largest momenta
simulated. If one sets Λ ∼ ΛQCD ∼ 200 MeV, the range
of momenta described by (12) starts from about ∼2 GeV
and goes, again, up to the largest momentum available. We
take this result as an indication that the ghost propagator
follows closely the perturbative propagator for momenta
as small as ∼1 GeV.
From Figs. 1 and 2 one can quantify how the propagators

are modified by changing the lattice spacing. For the gluon
propagator one finds, for zero momentum, a ∼10% order of
magnitude effect by decreasing the lattice spacing from
0.18 fm down to 0.06 fm. In what concerns the ghost
propagator, the change of the lattice spacing changes the
propagator by ∼7% at the lower momenta available in our
simulations.
The dependence of the strong coupling constant on the

lattice spacing and physical volume is milder than for the
propagators. Although the position of the maximum of

αsðp2Þ seems to be independent of the both the lattice
spacing and volume, the value of the strong coupling
constant seems to be suppressed as one approaches the
continuum limit. As discussed in Sec. III C, the value of
αsðp2Þ at the maximum is reduced by ∼15% for our largest
value, when compared to the other calculations.
In Sec. IV, our results are compared with those obtained

using the largest physical volumes to simulate pure Yang-
Mills SU(3) theory [3]. Such large volumes were achieved
by relying on a large lattice spacing a ¼ 0.18 fm. Our
simulations and those performed by the Berlin-Moscow-
Adelaide group give different answers for all the quan-
tities considered here at low momenta. Note, however,
that at the qualitative level, the propagators and the strong
coupling constant are similar. Furthermore, looking at the
renormalized data (see Figs. 1 for the gluon and Fig. 5 for
the ghost data), both sets of propagators show no
dependence or a very mild one on the physical volume.
The differences that are seen in the infrared for the two
sets of simulations may be explained by different choices
of the gauge fixing algorithm, i.e. in principle they can be
attributed to Gribov noise. Indeed, it is well known that
the choice of the maxima of FU½g� can change the
propagators in the low momenta region. A direct com-
parison of the Berlin-Moscow-Adelaide simulations and
ours for a ¼ 0.18 fm, suggests that the continuum gluon
(ghost) propagator should be suppressed (enhanced) at
low momenta.
In summary, our results show that the computation of the

two-point correlation functions on the lattice has a nontrivial
dependence on the lattice spacing and a mild dependence on
the lattice volume for volumes above ð6.5 fmÞ4. Simulations
performed with large lattice spacings, i.e. a≳ 0.18 fm for
pure Yang-Mills theory, are able to get the qualitative
features of the propagators but introduce a measurable
bias on the results at low momenta. The use of such large
lattice spacings introduce also strong lattice spacing effects
for all momenta range, not show here, which are removed
for momenta above ∼1 GeV by performing cuts on the
momenta [27]. All the simulations discussed here use the
Wilson action; certainly, improving the action may amelio-
rate the results in what concerns the dependence on the
lattice spacing. However, relying on improved actions
requires revising all the calculation procedure.
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