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Abstract— Radiotherapy is one of the main treatments used 
against cancer. Radiotherapy uses radiation to destroy cancerous 
cells trying, at the same time, to preserve healthy tissues. The 
planning of a radiotherapy treatment is patient dependent, 
resulting in a lengthy trial and error procedure until a treatment 
complying as most as possible with the medical prescription is 
found. Intensity Modulated Radiation Therapy (IMRT) i s one 
type of radiation treatment that allows the achievement of a high 
degree of conformity between the area to be treated and the dose 
absorbed by tissues. Nevertheless, it is still not possible to 
eliminate completely the potential treatments’ side effects. In this 
paper we use a database of already treated head-and-neck cancer 
patients in the Portuguese Institute of Oncology of Coimbra, and 
explore the possibility of classifying new and untreated patients 
according to the probability of presenting xerostomia 12 months 
after the beginning of IMRT treatments by using a Logistic 
Regression approach. The results obtained show that the 
classifier presents a high discriminative ability in predicting the 
binary response “aptness to xerostomia at 12 months”. 

Keywords— Radiotherapy; IMRT; logistic regression 
predictors; ROC curves; AUC. 

I.  INTRODUCTION 

Cancerous cells are characterized by having a fast 
reproduction and, at the same time, being less capable of 
repairing themselves than healthy cells if damaged by 
radiation. This makes radiation therapy one of the main 
treatments against cancer, being delivered to about 50% of all 
cancer patients sometime during the illness. The main goal of 
radiation therapy is to deliver enough radiation to kill target 
cells, maintaining always the compromise between the local 

control of the tumor and the collateral effects, i.e., minimizing 
the damages on the surrounding healthy organs and tissues. 
The treatment of each patient is personalized and planned 
based on computed tomography (CT) images, where the target 
volume(s) (PTV) and organs at risk (OAR) are delineated [1]. 
With the patient immobilized on a coach, in the same position 
he was when the CT scans were performed, the radiation is 
delivered by a linear accelerator (LINAC), mounted on a 
gantry that can rotate along a central axis. The rotation of the 
coach combined with the rotation of the gantry allows the 
irradiation from almost any angle around the tumor.  

In this paper we focus on a particular type of radiation 
therapy: Intensity Modulated Radiation Therapy (IMRT). 
IMRT allows the achievement of a high degree of conformity 
between the delivered dose and the shape of the PTV [1,2]. In 
fact, the head of the LINAC is composed by a number of 
movable leaves (multileaf collimator - MLC), which can block 
part of the radiation beam during portions of the radiation 
delivery time, controlling the intensity and incidence of 
radiation. In IMRT treatments, these leaves are set to open a 
desired aperture, during a specific period of time (Multiple 
Static Collimation), so that the radiation delivered has a 
specific intensity profile. 

To plan the treatment for a new patient, the planner should 
make three decisions: (1) Determine the minimum number of 
incidence angle to satisfy the treatment aims – Beam Angle 
Optimization Problem ; (2) Determine the best intensity map to 
the set of determined angles – Fluence Map Optimization; (3) 
Define the efficient way to produce the defined intensity 
profiles – Beam Segmentation Optimization [see, for instance, 
3-6]. The treatment planning for a new patient is a complex 



task, being frequently done through a trial and error time 
consuming procedure until a treatment complying with the 
medical prescription is found. This process is known as 
forward planning, being a time consuming practice and without 
guarantees of an optimal treatment. An inverse planning is 
preferable, consisting in the use of optimization models and 
algorithms to automatically determine the best treatment, given 
the medical prescribed doses. Nevertheless, inverse planning 
technique is far from being a resolved problem [see, for 
instance, 7].  

Despite the fact that a treatment is planned trying to 
minimize the probability of induced complications, it is not 
possible to eliminate completely all side effects. When treating 
head-and-neck cancer patients, one of the most frequent side 
effects is xerostomia, the medical term for dry mouth due to 
lack of saliva. Xerostomia reduces drastically the quality of life 
of patients due to difficulties in swallowing and in feeding and 
they usually lose weight. It is a side effect of the exposure of 
salivary glands to radiation. 

In this study we use an available database of head-and-neck 
cancer patients already treated in the Portuguese Institute of 
Oncology of Coimbra (IPOC-FG). Our aim is to be able to 
predict whether a given patient subject to a given IMRT 
treatment will or not experience xerostomia 12 months after the 
beginning of the treatments. The approach developed to 
address this problem consists in applying Logistic Regression, 
a well-known type of probabilistic statistical classification 
model, to predict the binary response “xerostomia problem 
after 12 months of IMRT treatments”. The already treated 
patients stored in the database are used to train the predictor, 
which is then used to classify new patients. The Receiver 
Operating Characteristics (ROC) curve and the Area Under the 
ROC Curve (AUC) are then used to visualize the performance 
of the classifier and to measure the discriminative ability of the 
model in making the predictions for new patients. As far as the 
authors know, this is the first time that this methodology is 
applied with the aim of determining a potential problem of 
xerostomia after 12 months of radiation treatments.  

The paper is organized as follows: In the next section we 
describe the database. The classification model and the 
performance measure that describes the discriminative ability 
of the model used are presented in section 3. In section 4, we 
describe the clinical examples of head-and-neck cases used and 
the computational results. The conclusions are drawn in the last 
section. 

II. DATABASE 

The existing database was provided by IPOC-FG, 
consisting of a total of 458 head-and-neck anonymized cancer 
patients, including several patients’ features and medical 
registers. For each patient we have a set of attributes describing 
the patient’s characteristics, another set characterizing the 
tumor and also information regarding the treatments that have 
been or are being delivered to the patient. There is also a set of 
attributes related to follow-up medical consultations, including 
information describing complications that were experienced by 
the patients.  

The features registered by the medical oncologist for each 
patient before the IMRT treatment starts include: 

(1) the patient’s data: age and gender; 

(2) description of the tumor: type, location, stage (T – the 
size and/or extent of the primary tumor, N – the 
amount of spread to nearby lymph nodes, M – the 
presence of metastasis or secondary tumors formed by 
the spread of cancer cells to other parts of the body – 
and AJCC – general lymphomas stage), histology; 

(3) the treatments applied before or concomitantly with the 
radiotherapy: post-operative (namely, if the patient was 
submitted to surgery or not before the radiation 
treatment), type of quimiotherapy, type of 
radiotherapy; 

(4) attributes related to the radiation treatment: prescribed 
dose, the technical plan applied on the first phase of the 
treatment; 

(5) target volumes: identification of the PTV and its 
volume and the lymphatic nodes with disease (in the 
present database, a maximum of 4 lymphatic nodes 
were registered) and the corresponding volumes. 

 Regarding information registered after the beginning of the 
radiation treatment, the following attributes are considered: 

(1) the starting date of the radiation treatment and the date 
of the last follow-up consultation; 

(2) the overall and interruption treatment time (more 
precisely, the total number of days from the first 
session of radiotherapy to the last one and the total 
number of days that the patient did not attend to the 
treatment among the planned sessions); 

(3) total delivered dose in Gy, total number of plans, 
fractions, beams, segments and monitor units on 
overall treatment, ,  mean dose on GTV – Gross Target 
Volume, which is the known tumor – and PTV – 
Planning Target Volume – which consist on the GTV 
and a microscopic spread (a volume known as Clinical 
Target Volume - CTV) plus a marginal volume around 
CTV) [1], D98 (the dose received by 98% of the total 
volume of the GTV), D2 (the dose received by 2% of 
the total volume of the GTV) and standard deviation of 
the doses delivered on GTV as well as when 
considering fractions of 2Gy on GTV); 

(4) the response of the tumor to the treatment 
(complete/partial/progression) and the response type 
(persistence or recidive); 

(5) location of local and regional disease/recidive, 
neoplasies, metastases (in particular on bone, brain, 
liver and lung); 

(6) in case of death, cause of death; 

(7) complications severity on the OARs in each follow-up 
(the complications considered in the present database 
were on the ears, pain, skin, larynx, pharynx, 
esophagus, mucous membrane, salivary glands and the 



weight loss), ranked from 0 to 5, where 0 means no 
complication and 5 death; 

(8) if there are other treatments being done concomitantly, 
identification of the treatment (in the present database, 
up to 4 alternative treatments for each patient); 

(9) new follow-up institution (if the patient was transferred 
from IPOCFG to another medical institution); 

(10) for every follow-up consultation, the number of days 
between the beginning of the radiation treatment and 
the corresponding register. 

The aim of this work is to be able to predict whether 
patients that begin their treatment today will or will not have 
xerostomia 12 months from now. This means that the only 
information that we can use is the one that is available prior to 
the beginning of the radiation therapy treatment or, at most, 
during the first weeks of treatment. If, at an early stage of their 
treatment, we are able to detect patients that will probably have 
xerostomia later on, it will still be possible to adjust treatment 
plans to try to avoid this complication. 

If we look at all attributes that are available before the 
beginning of the treatment, we can immediately observe that 
some of them will be irrelevant considering our objective. This 
is why we decided to consider only a subset of all the existing 
attributes. The attributes that were chosen were those with an 
expected strong connection with the target response according 
to the medical physicists. They are the following: the age of the 
patient, the gender, a binary variable indicating the post-
operative (namely, if the patient was submitted to surgery or 
not before the radiation treatment), the type of quimiotherapy 
used, the type of radiotherapy used, the overall treatment time 
planned, the technical plan applied on the first phase of the 
treatment, the interruption treatment time, the mean dose on the 
GTV considering fractions of 2Gy, the severity of xerostomia 
problem on the first week of radiation treatments and the mean 
dose on all salivary glands and in each of them in particular 
(more precisely, the contralateral and ipsilateral parotids, the 
oral cavity and the contralateral and ipsilateral submandibular 
glands). We ended up with a total of 16 attributes. 

Although the database has 458 patients, and even 
considering only a subset of 16 attributes, there are still many 
missing values. Although there are many techniques described 
in the literature that propose ways of dealing with missing 
values, taking into account the type of attributes that we are 
working with [8], we felt that it was better not to consider 
registers with missing values. This drastically diminishes the 
number of available patients to 16, mainly because of lack of 
information regarding xerostomia in the first week. This is, in 
fact, one of the most important attributes to take into 
consideration if we want to predict xerostomia in the long run. 
Xerostomia predominance will be highly dependent on the 
radiosensitivity of the patients’ tissues. There is no known way 
of measuring this radiosensitivity, and this attribute can be a 
good proxy for that. 

We have thus worked with a set of 16 patients with 
complete registers for the 16 independent variables and for the 
dependent variable “xerostomia problem 12 months after the 
beginning of IMRT treatments”. Ten out of these 16 patients 

did not presented xerostomia after 12 months (belonging to 
class “0”), and 6 presented xerostomia (belonging to class “1”). 

On the following sections, we will use interchangeably the 
words patient, sample, observation, element and instance with 
the exact same meaning. 

III.  METHODOLOGICAL APPROACH 

The problem of predicting a target response for a new 
patient based on a dataset of previously classified patients can 
be seen as a machine learning problem, namely, a classification 
learning problem. In a classification problem, a training data 
set consisting of n elements is available. Each element is 
characterized by a p-dimensional attribute vector x, belonging 
to a suitable space, and a class label (also known as response) 
yϵ{0,1,…}. The objective is to construct a decision or 
classification rule that would accurately predict the class labels 
of elements for which only the attribute vector is observed. 

We intend to apply supervised classification algorithms to 
classify new patients according to the possibility of having or 
not xerostomia 12 months after the beginning of the radiation 
treatment. The available database of existing patients is used as 
training set to define the classification model, which is then 
used to assign new patients to a given class, according to the 
target response. Our approach consists in applying a well-
known technique, namely Logistic Regression. To assess the 
suitability of the model, we use a cross-validation procedure. 
The cross-validation procedure involves the partitioning of the 
available data sample into complementary subsets, performing 
the analysis on one subset (called training set) and validating 
the analysis on the other subset (called the validation set or 
testing set) [9]. We have chosen to use the leave-one-out cross-
validation (LOOCV), that uses a single observation from the 
original sample as the validation data, and the remaining 
observations as the training data. So, all observations with 
exception of one are used to train the model. The trained model 
is then used to predict the class of the remaining observation. 
This procedure is repeated such that each element in the dataset 
is used once as the validation data. The ROC curve and the 
AUC are then used to assess the performance of the classifier 
and to measure the discriminative ability of the model in 
making the predictions for new patients. On the following, we 
will briefly describe the methodologies used. 

A. Logistic Regression Model 

Logistic regression is a renowned probabilistic statistical 
classification model. However, the name is somewhat 
misleading. Despite of, in the terminology of statistics, this 
model is known as logistic regression, it really is a technique 
for classification rather than regression [10]. The logistic 
regression classifier, also known as logit model, is used to 
predict a target response, which is a dependent variable, based 
on a set with one or more independent attributes. More 
precisely, the probabilities describing the possible values that 
the dependent variable could take are modeled, as a function of 
the explanatory variables, using a logistic function that gives 
outputs between 0 and 1 [10,11]. Logistic regression measures 
thus the relationship between a dependent variable and one or 



more independent variables by using probability scores as the 
predicted values of the dependent variable. 

Regarding the possible values of the outcome, the classifier 
can be of two types, binomial or multinomial. The first type 
deals with situations where the observed outcome can have 
only two possible categories; the second type considers cases 
where the number of available classes is higher than two. In the 
present work, our interest is focused on the binomial approach 
since the dependent variable will only take one out of two 
possible values: 1 if the patient presents xerostomia and 0 
otherwise. Therefore, the target response falls into one of two 
categories, “0” or “1”. 

Rather than modeling the response directly, logistic 
regression models the probability of belonging to a particular 
category [11]. With this type of output, we can then apply any 
value as threshold to make the predictions. Thus, considering a 
cutoff equal to α, if the probability obtained by the logistic 
classifier is higher than α, the class assigned should be “1”, 
otherwise it should be “0”. In fact, the threshold value 
represents a decision boundary in the feature space. The most 
used threshold is the value 0.5.  

We have used the R software for implementing our 
approach, using the R command glm. The construction of the 
logistic classification model is presented in algorithm 1. 

Algorithm 1: Logistic Regression model 
INPUTS 
L: the set of observations 
L12:  vector(column) with the corresponding target responses 

 
1: p ← matrix(# observations,1) 
2: for i in L: 
3: Ltrain ← L\L[i,]  
4: Ltest ← L[i,]  
5: LogRegModel ← 

glm(L12~.,family="binomial"(link="logit"),data= Ltrain)) 
6: p[i] ← predict(LogRegModel, Ltest,type=”response”) 
 
OUTPUT 
p: vector with the predicted probabilities for each observation 

 

B. Receiver Operating Characteristic (ROC) Curve 

A key question when interpreting the results of a 
classification model is “how well does the model discriminate 
between the observations with and without the outcome?”. For 
a binary outcome, the ROC curve is the most commonly used 
performance measure to judge the discriminative ability of a 
model [12]. The logistic classifier yields a probability 
consisting in a numerical value that represents the degree to 
which an observation is a member of a class. Such score can be 
used as a threshold to produce a discrete (binary) classifier 
[13]: if the classifier output is above the cutoff, the classifier 
produces “1”, else it produces “0”. Then, and since we are 
working with a binary classification model, it is possible to 
build a specific table layout that allows visualization of the 
performance of the algorithm for the applied threshold, namely 
the confusion matrix (also known as contingency table). This 

structure is a table with two rows and two columns that reports 
the number of: 

• false positives (FP): number of positive instances (“1”) 
classified as negatives (“0”); 

• false negatives (FN): number of negative instances 
classified as positives; 

• true positives (TP): number of positive instances 
classified as positives; 

• true negatives (TN): number of negative instances 
classified as negatives. 

 Each column of the matrix represents the instances in a 
predicted class, while each row represents the instances in the 
actual class. The sum of TP and FN is the total number of 
patients with the outcome (P), while the sum between FP and 
TN is the total number of patients without the outcome (N). 
The accuracy of the model could be estimated as the 
percentage of correct predictions for a taken threshold (the 
most usually chosen is 0.5). However, the simple computing of 
the accuracy cannot be a highly reliable metric for the real 
performance of a classifier, because it will yield misleading 
results if the data set is unbalanced. In our particular case, for 
instance, the accuracy of predicting always “0” would be equal 
to 62.5%, since 10 patients out of 16 will not present 
xerostomia, better than any random classifier. 

The ROC curve is most welcome, allowing more detailed 
and reliable analyses. The ROC curve is a plot of sensitivity 
(also known as recall and True Positive Rate (TPR)) against (1-
specificity) (also known as False Positive Rate (FPR)) for 
consecutive cutoffs for the probability of an outcome. The 
sensitivity is the ratio between the TP classifications and P; the 
specificity is the fraction of TN classifications among N and so, 
the FPR is given by the ratio between FP classifications and N. 
The confusion matrix can be constructed for the whole range of 
cutoffs, from 0 to 1, and the sensitivity and specificity can also 
be examined over the whole range of thresholds and thus the 
results can be plotted in a ROC curve. Each threshold value 
produces a different point in the ROC curve [13]. Sorting by 
decreasing order the probability values produced by the 
classification model, an observation that is classified as 
positive for a given cutoff will be classified as positive for all 
other lower cutoffs. Thus, moving down on the sorted values 
and processing one observation at a time and updating the TP 
and FP accordingly, we can obtain the list of points that create 
the ROC curve. This process starts in the point (0,0) and ends 
at (1,1), taking a linear execution time (see Algorithm 2) [13]. 

C. Area Under the Curve 

The ROC curve allows a clear visualization of the 
performance of a classifier. However, when the aim is to 
compare different classifiers or simply the evaluation of the 
performance of a single classification model, the visualization 
mode is not the best approach. Therefore, we have to reduce 
the ROC performance to a single value that represents the 
expected performance of the model. The most recommended 
method for this purpose is the AUC [12,14], which produces a 
value belonging to the interval [0,1]. By definition, the AUC 



represents the probability that a randomly chosen positive 
observation is correctly ranked with a greater suspicion than a 
randomly chosen negative one [12-14]. Thus, in our study, it 
can be interpreted as the probability that a patient with the 
outcome is given a higher probability of the outcome by the 
model than a randomly chosen patient without the outcome. 

A random classifier generates a ROC curve equal to the 
diagonal line that links the points (0,0) and (1,1), and thus 
produces an AUC of 0.5 [13]. Therefore, an uninformative 
model has an AUC lower than or equal to 0.5 and, hence, no 
realistic classifier will have an AUC smaller than 0.5, whereas 
a perfect discriminating model produces an AUC of 1 [12]. The 
script behind the computation of the AUC is shown in 
algorithm 2. 

Algorithm 2: ROC and AUC (adapted from [13]) 
INPUTS 
L: the set of test observations 
p[i]: probability of observation i is positive, obtained by the 
classification model 
 
1: Lsorted ← L sorted by decreasing order of probability values 
2: FP ← 0 
3: TP ← 0 
4: R ← {}  
5: FPprev ← 0 
6: TPprev ← 0 
7: A ← 0 
8: pprev ← – ∞ 
9: for i in Lsorted: 
10: if p[i] ≠ pprev: 
11: R ← R + (FP/N,TP/P) 
12: base ← |FP – FPprev| 
13: height ← TP + TPprev 
14: A ← A + base · height / 2 
15: pprev ← p[i]  
16: FPprev ← FP 
17: TPprev ← TP 
18: if i is a positive observation: 
19: TP ← TP + 1 
20: else: 
21: FP ← FP + 1 
22: R ← R + (FP/N,TP/P) 
23: base ← |1 – FPprev| 
24: height ← 1 + TPprev 
25: A ← A / (P·N) 
 
OUTPUTS 
R: the list of points that create the ROC curve  
A: the AUC 

IV.  RESULTS 

In this section, we present the results of testing the logistic 
regression model to predict the complications in the salivary 
glands, 12 months after the beginning of IMRT treatments. Our 
goal concerned the ability of making correct predictions for 
new and unclassified patients, given a training data set 
containing patients already classified. Summarizing the steps 
followed, and thoroughly described in the previous section, we 
started by constructing the logistic regression model, predicting 
then the classes for new patients (“0” or “1”) using the 
LOOCV technique. Once all patients were classified (notice 

that in the present case the test set coincides with the original 
data set, due to the use of the LOOCV procedure), we traced 
the ROC curve and determined the AUC, to evaluate the 
prediction ability of the model. This methodology was applied 
to different subsets of attributes, among the total of 16 
variables described on the section 2, always considering a total 
of 16 patients. The best results were attained when considering 
the attributes: age, gender, post-operative, type of 
quimiotherapy, type of radiotherapy, overall treatment time, 
technical plan applied on the first phase of the treatment, 
interruption treatment time, mean dose on the GTV considering 
fractions of 2Gy, severity of xerostomia problem on the first 
week of radiation treatments and the mean dose on the 
contralateral and ipsilateral parotids and on the contralateral 
and ipsilateral submandibular glands. 

The ROC curve obtained for this dataset is illustrated in 
Figure 1. 

  

Fig. 1. ROC curve generated by Logistic Regression predictor when applied 
to our dataset by a LOOCV technique. The AUC produced is 0.82. The 
diagonal line that links the points (0,0) and (1,1) produces an AUC of 0.5. 

Figure 1 shows a high performance of the logistic 
regression model in making the predictions of existence of 
xerostomia 12 months after the beginning of radiation 
treatments. In fact, the ROC curve traced corresponds to an 
AUC equal to 0.82. This value evidences that the model is 
capable of making predictions highly consistent with the true 
classifications. 

Table I depicts the results produced in each iteration of 
algorithm 2. The logistic classifier yields a probability 
consisting in a numerical value that represents the degree to 
which a patient is a member of class “1”. Such probability 
score can be used as a threshold to produce a classifier and, 
consequently, a ROC point. The column identified as 
“Thresholds” in table I stores these probabilities sorted by 
decreasing order, to be then sequentially used as threshold 
values in the construction of the ROC curve and also on the 
computation of the AUC. The TP and FP values represent the 



TP and FP classifications accomplished for each threshold 
value. Each line of table 1 leads to the generation of a point in 
the ROC curve. 

TABLE I.  ROC CURVE PHASES. 

Thresholds TP FP 
1 0 1 
1 1 1 
1 2 1 
1 3 1 
1 4 1 
0.99998 5 1 
0.70626 5 2 
0.10669 5 3 
0.00720 5 4 
1.61 x10-6 5 5 
2.22x10-16 5 6 
2.22x10-16 5 7 
2.22x10-16 5 8 
2.22x10-16 5 9 
2.22x10-16 5 10 
2.22x10-16 6 10 

Table I suggests that logistic regression model is able of 
correctly predicting the classes for new patients efficiently. 
Looking at the table, we are able to identify different 
compromises between the degree of specificity and sensibility 
of the classifier. Looking at the existing compromises, we can 
define an adequate threshold value to improve the predictions. 
For instance, if we consider a cutoff equal to 0.75, we are able 
of correctly predicting the outcome for 14 patients in a total of 
16 (see the confusion matrix depicted on table II). This value 
produces an accuracy of 0.875. In the case of considering the 
most commonly used threshold, 0.5, we correctly estimate the 
output for 13 samples among the total of 16, obtaining an 
accuracy of 0.8125 (Table III). The threshold value identified 
as the break down in the accuracy by ROC graph produced 
better results than the most frequently used cutoff of 0.5. The 
same occurs when comparing with a random classifier, which 
produces an accuracy of 0.5, since the probability of a sample 
belongs to class “1” is 0.375 and the number of elements in this 
class is 6 from a total of 16 (see table IV). In fact, the random 
classifier is that which produces poorer results. 

TABLE II.  CONFUSION MATRIX FOR A THRESHOLD EQUAL TO 0.75. 

 
Predicted Values 
 0 1 

True Values 
0 9 1 
1 1 5 

TABLE III.  CONFUSION MATRIX FOR A THRESHOLD EQUAL TO 0.5 

 
Predicted Values 
 0 1 

True Values 
0 8 2 
1 1 5 

TABLE IV.  CONFUSION MATRIX FOR THE RAMDOM CLASSIFIER 

 
Predicted Values 
 0 1 

True Values 
0 6 4 
1 4 2 

In summary, the logistic regression model revealed 
undoubtedly a high discriminative ability in the context of 
predicting xerostomia problem 12 months after the beginning 
of radiation therapy. 

V. CONCLUSIONS AND FUTURE WORK 

In the present article we describe a methodology capable of 
accurately predicting the existence of xerostomia, most well-
known as dry mouth sensation, for head-and-neck cancer 
patients, 12 months after starting the radiation therapy 
treatment. The obtained results revealed a good performance of 
the logistic regression classifier, showing that the application of 
this predictive model to estimate the class for new patients will 
lead to robust results. The small size of the available database 
is the main weakness of this study. This problem will probably 
fade in the future, since the database is continuously being 
updated and the medical professionals that have to fill in the 
information are increasingly awaken for the importance of 
rigorous and systematic data registrations.  

Being able to predict treatment induced complications in 
the long-run at early stages of radiation therapy treatments has, 
as major advantage, the possibility of adjusting the treatment 
plan such that the probability of such complications are as low 
as possible. 

We are currently exploring this database further, trying to 
apply data mining algorithms not only to the short term and 
long term predictions of treatment induced complications but 
also tumor response. The obtained results can, in the future, be 
integrated in treatment planning optimization procedures. 
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