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Abstract

Diffusion processes have traditionally been modeled using the classical diffusion
equation. However, as in the case of tracer transport in porous media, significant dis-
crepancies between experimental results and numerical simulations have been reported
in the literature. Therefore, in order to describe such anomalous behavior known as
non-Fickian diffusion, some authors have replaced the parabolic model by continuous
random walk models, which have been shown to be very effective. Integro-differential
models have been also proposed to describe non-Fickian diffusion in porous media. The
aim of this paper is to compare the ability of these classes of models to capture the
dynamics of tracer transport in porous media.
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1 Introduction

Trance transport in porous media is generally described by a diffusion equation that depends
on the fluid velocity, which is linked to the pressure by the Darcy’s law (see [24], [9], [12],
[23] and [28]). Such diffusion equation is established considering the mass conservation
equation

∂u

∂t
+∇.(vu) = ∇.J + q2, (1)

where u denotes the concentration, v the fluid velocity, J the mass flux and q2 a reaction
term. In (1) J is given by

J = Jdif + Jdis, (2)

where Jdif denotes the mass flux due to molecular diffusion
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Jdif = −Dm∇u, (3)

where Dm is the effective molecular diffusion tensor, and Jdis satisfies the so called Fick’s law
Jdis = −Dd∇u, and represents the dispersive mass flux associated with random deviations
of fluid velocities within the porous space from their macroscopic value v. In the definition

of Jdis, Dd denotes the dispersive tensor usually given by Dd = αt‖v‖I + (α` − αt)
1

‖v‖
vvT ,

where α` and αt are the longitudinal and transversal dispersivities.
Combining (1) with (2) we obtain the parabolic equation

∂u

∂t
+∇.(uv) = ∇.((DmI +Dd)∇u) + q2, (4)

where I is the identity tensor. Equation (4) can be rewritten in the following equivalent
form

∂u

∂t
+∇.(uv) = ∇.(D∇u) + q2. (5)

The use of equation (5) to describe diffusion processes in porous media in general and
tracer transport in particular have been shown inefficient. In fact the numerical results
obtained do not accurately reproduce the laboratorial experiments. These facts are well
reported in the literature and without be exhaustive we mention [2], [5], [6], [16], [18],
[19], [20], [26], [27] and [30]. Several limitations of the parabolic equation to describe the
concentration evolution have been pointed out (see, for instance, [4], [17], [21]): it prescribes
an infinite speed of propagation for the concentration; it is based on Fick’s law for the mass
flux which establishes a linear relation between the concentration and dispersive mass flux;
the mass flux J is independent of the history of dispersion; in the dispersive tensor the
dispersive coefficients are medium constant and invariant with time and space (often they
increase with the distance and/or with time). To circumvent the pathological behavior of
the diffusion equation (5) several approaches were proposed in the literature. A summary
of some of them is given in [21].

A widely adopted alternative is based on continuous time random walks (CTRW) (see
for instance [2], [5], [6], [8], [15], [18], [19]). Let us consider that each particle in diffusion
performs jumps or transitions characterized by waiting times between jumps. The jumps
and the waiting time are coupled by a joint probability density function (pdf) ψ that
describes at (x, t) the jump at position x ant time t. When the jumps occur in Rn, the pdf
ψ and u are linked by the following generalized master equations

∂u

∂t
(x, t) =

∫ t

0

1

t1

(∫
Rn
M(x− z, t− σ)u(z, σ)dz −

∫
Rn
M(z − x, t− σ)u(x, σ)dz

)
dσ. (6)

In (6) t1 represents a median transition time, M(x, t) is defined by its Laplace transform
M̃(x, s) which is given by

M̃(x, s) =
st1ψ̃(x, s)

1− ψ̃(u)
. (7)
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In (7) the following notations were used: ψ̃(x, s) represents the Laplace transform of the

pdf ψ(x, t) and ψ̃(s) =

∫
Rn
ψ̃(x, s) dx. If we assume that the pdf ψ is such that its Laplace

transform can be decoupled in the following form ψ̃(x, s) = p(x)φ̃(s) where p(x) denotes
the transition length pdf and φ denotes the marginal density of ψ, then M̃ admits also the
decoupling M̃(x, s) = p(x)M̃(s), where

M̃(s) =
st1φ̃(s)

1− φ̃(s)
.

From (6), we have in the Laplace space the following generalized mater equation

sũ(x, s)− u0(x) =
1

t1
M̃(s)

(∫
Rn
p(x− z)ũ(z, s)dz −

∫
Rn
p(z − x)ũ(x, s)dz

)
,

which is equivalent to

sũ(x, s)− u0(x) =
1

t1
M̃(s)

∑
|α|

(−1)|α|
1

α!
mα,p

∂|α|ũ

∂xα
(x, s), (8)

where α = (α1, . . . , αn), αi ∈ N0, |α| =
n∑
i=1

αi, α! =

n∏
i=1

αi!,
∂|α|ũ

∂xα
=

∂|α|ũ

∂xα1
1 . . . ∂xαnn

and

mα,p =

∫
Rn
p(z)zα dz.

Neglecting in (8) the terms involving partial derivatives with order greater than two we
obtain

sũ(x, s)− u0(x) = −M̃(s)
(
v.∇ũ(x, s)−∇.(D∇ũ)(x, s)

)
, (9)

where v is the vector with components vi =
1

t1

∫
Rn
p(z)zi dz, and D is the matrix of order

n defined by Dii =
1

2t1

∫
Rn
p(z)z2i dz and Dij =

1

t1

∫
Rn
p(z)zizjdz, i 6= j. We remark that

equation (9) can be also obtained with convenient modifications if the pdf φ has a compact
support in Rn.

We observe that the one dimension version of the equation (9) was used for instance in
[5], [6], [8] and [15] to simulate tracer transport in porous media when p is a Gaussian pdf
and φ is the truncated power law pdf

φ(t) =
(1 + t/t1)

−1−β

t1rβΓ(−β, r)
exp(− t1 + t

t2
), r =

t1
t2
, t1 < t2, 0 ≤ β ≤ 2,
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where Γ is the incomplete Gamma function In these papers, the integral terms of equation
(6) were replaced by summations over z.

Another alternative that can be considered to avoid the pathological behavior of the
classical diffusion equation (4) consist in the introduction of an hyperbolic or non-Fickian
correction as been proposed, e.g., in [17], [21]. One possible approach is to assume that the
dispersive mass flux Jdis satisfies the following differential equation

τ
∂Jdis
∂t

(x, t) + Jdis(x, t) = −Dd∇u(x, t), (10)

where τ is a delay parameter. Note that the left hand side of (10) is a first order approxima-
tion of the left hand side of Jdis(x, t+ τ) = −Dd∇u(x, t), which means that the dispersion
mass flux at the point x and time t+ τ depends on the gradient of the concentration at the
same point but at a delayed time. Equation (10) leads to

Jdis(t) = −
∫ t

0
Ker(t− s)Dd∇u(s) ds, (11)

provided that Jdis(0) = 0. In (11) Ker is given by Ker(t) =
1

τ
e−

t
τ . Combining the partition

(2), where Jdif and Jdis are given by (3) and (11), respectively, with (1) we obtain the
integro-differential equation

∂u

∂t
+∇.(uv)−∇.(Dm∇u) =

∫ t

0
Ker(t− s)∇.(Dd∇u)(s) ds (12)

which replaces (5). The mathematical and numerical analysis of initial boundary value
problems based on integro-differential equations of type (12) were studied for instance in
[1], [3], [10], [11], [13], [14] and [25].

The objective of this paper is to illustrate the capacity of the three different classes of
models introduced to simulate the experiments presented in [2]and [29]. These experiments
are characterized by a non-Fickian behavior, i.e., deviation from the classical diffusion
equation (5) which can be consequence of the existence of preferential flow paths that
strongly influence both water and tracer transport ([22]). In Section 2 we describe the
numerical procedures used in the numerical simulations presented in Section 3. In this last
section such numerical simulations are compared with experimental results. In Section 4
we summarize some conclusions. We point out that to the best of our knowledge, this is
the first work where the validation of mathematical models based on integro-differential
equations of type (12) is considered.

2 BTCs

In this section, we test and validate the models by fitting breakthrough curves (BTCs)
resulting from laboratory tracer tests. These curves describe the evolution of the tracer
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José A. Ferreira, Lúıs Pinto

concentration at specific point of the spatial domain where the tracer transport occurs.
Experimentally BTCs show early arrival times and long later time tails (see for instance [2],
[18] and [29]).

A common assumption in the validation of mathematical models in the context of tracer
transport is to consider that the experiments can be described by a one dimension model,
that is, if the diffusion process occurs in a cylinder, then the behavior of the tracer in a
perpendicular disc to the axis of the cylinder is well described by its behavior at the center
of such disc. Therefore, equations (5), (9) and (12) are defined in the domain (0, T ]× (0, L)
and they are completed with the initial condition u(x, t) = u0(x), x ∈ (0, L), and boundary
conditions of the following type

u(0, t) = uI(t), u(L, t) = 0, t ∈ (0, T ],

where the first condition defines the injected fluid while the last one means that all the fluid
that attains the end of the spatial domain is removed. In [0, T ]× [0, L] we introduce a grid
{(xi, tn), i = 0, . . . , Nx, n = 0, . . . , Nt}, where x0 = 0, xNx = L, xi−xi−1 = h, t0 = 0, tNt = T
and tn − tn−1 = ∆t.

The numerical curves are obtained fitting the BTCs curves using the the root mean
square error (RMSE) defined by

RMSE =
( 1

Nt

Nt∑
n=1

(un − unh)2
)1/2

,

where Nt is the number of measurements at the prescribed point and unh is the corresponding
approximation defined by a discretization of the classical diffusion equation (5) or (9) or
(12).

We remark that equation (12) for a particular choice of φ(t) leads to equation (5). In

fact if φ(t) = λe−λt and t1 = λ−1 then φ̃(s) =
1

1 + λ−1s
and M̃(s) = 1. While the best-fit

BTCs based on (5) and (12) are computed using the publicly available CTRW toolbox ([7]),
the best-fit BTCs based on (12) are computed using a numerical scheme previous studied
by the authors in [1], [13] and [14] which, for one dimension, can be written in the following
form

D−tu
n+1
h + vDc(u

n+1
h )−DmD2u

n+1
h = Dd∆t

n∑
`=1

Ker(tn+1 − t`)D2u
`
h, (13)

where D−t denotes the usual backward finite difference operator in time, Dc and D2 repre-
sent the second order centered finite difference operators which approximate the first and
the second spatial derivatives, respectively. In this case the minimization of the RMSE is
carried out using built-in routines of Matlab (version 7.9.0 (R2009b)). To avoid possible
influence on the numerical solution, the outlet boundary condition is imposed far enough
from the grid point used for the computation of the BTCs.
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3 Validation

3.1 Data set 1

In an already classical experiment, Scheidegger [29] used homogeneous Berea sandstone core
columns to investigate the accuracy of the classical diffusion model in simulating tracer
transport in porous media. During the experiment, columns of different lengths were first
fully saturated with tracer and subsequently flushed with clean liquid. The resulting tracer
BTCs at the outflow boundary were measured and compared with the ones predicted by
the classical diffusion model.

We test the introduced models using typical data from one of these experiments. In
this case, the column was 7.62× 10−1 meters (m) long and 5.08× 10−2 m in diameter, the
clean liquid was injected at a rate equal to 1.73 cubic centimeters per minute (cm3/min),
and the porosity of the core was 0.204. This gives an average velocity of 4.18×10−3 m/min.
We consider uI = 1, for t ∈ (0, T ]. In Figure 1 (a) we show the experimental data and the
best-fit curves obtained with the models (5) and (12), and the best-fit curves for models
(12) and (9) are shown in Figure 1 (b).
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Figure 1: Experimental data set 1 and the best-fit BTCs: (a) - models (5) (dash line) and
(12)(solid line); (b)-models (12) (solid line) and (9) (dash line).

A quick observation of Figure 1 (a) indicates that the model (12) captures the transport
dynamics quite well. However, the model (5) fails to describe the data, especially at later
times, since it can not reproduce the long tail, a typical indication of non-Fickian transport.
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This result for the classical diffusion model (5) is in line with the findings of Scheidegger.
The values of the two models constants and the RMSE are listed in Table 1. As indicated
by the given results, the application of the proposed model leads to a reduction of about
79% in the RMSE.

Now we compare the results obtained for the integro-differential model (12) with the
results for the CTRW model (9). As shown in Figure 1 (b), there is only a small discrepancy
between them. The RMSE values, 3.66 × 10−3 and 5.11 × 10−3, respectively, suggest that
the integro-differential model fits the data slightly better. Here and in the following, we
omitted the values of t1 and t2 in the model (9). They are consistently very small, and very
large, respectively, when compared to the time scale.

Parameters model (5) model (9) model (12)

v (m/min) 4.65× 10−3 7.23× 10−3 4.27× 10−3

D (m2/min) 1.35× 10−5 7.86× 10−6

Dm (m2/min) 1.08× 10−5

Dd (m2/min) 1.76× 10−5

τ (min) 25.52

β 1.58

RMSE 1.72× 10−2 5.11× 10−3 3.66× 10−3

Table 1: Fitting parameters for the results of Figure 1 and RMSE values.

3.2 Data set 2

The second group of data is the result of tracer displacement experiments through homo-
geneous sand columns reported in [2]. Next, we briefly describe the setup and we refer
to that paper for all other experimental details. The columns were incrementally packed
with sand particles of different sizes. The diameter of most of the sand particles lie in the
range of 0.1 − 0.71 millimeters. We consider the results for two columns: Column 1, 11
cm in diameter and 10 cm long; and Column 2, also 11 cm in diameter but 40 cm long.
The transport experiment was conducted under initially unsaturated conditions, with the
water content of 0.24 for Column 1 and of 0.18 for Column 2. A pulse tracer at the flow
rate of 4.20× 10−2 cm/min was applied at the top of both columns within the time period
of 140 seconds (s) for the smaller column and of 107 s for the longer one. The respective
average velocities were 1.86×10−1 cm/min and 2.28×10−1 cm/min. After the pulse, water
was injected at the same rate. To simulate this scenario, for Column 1 we set at the inlet
boundary uI = 4.16× 10−2 for t ≤ tI = 2.33 min and uI = 0 for t > tI , and for Column 2
the inlet boundary is defined by uI = 5.77 × 10−2 for t ≤ tI = 1.78 min and uI = 0 for
t > tI . The observed and fitted BTCs for the models are plotted in Figure 2 for Column 1
and in Figure 3 for Column 2.

In particular, Figures 2 and 3 show that the agreement for the classical diffusion model
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Figure 2: Experimental data set 2 and the best-fit BTCs for Column 1: (a) - model (5)(dash
line) and model (12) (slid line); (b)- model (9) (dash line) and model (12) (solid line) .
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Figure 3: Experimental data set 2 and the best-fit BTCs for Column 2: (a) - model (5)(dash
line) and model (12) (slid line); (b)- model (9) (dash line) and model (12) (solid line) .
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is very poor. This is especially true at later times, where the BTC possesses a heavy tail.
On the other hand, the integro-differential model (12) captures the BTC behavior much
better. The RMSEs presented in Tables 2and 3 confirm this conclusion.

Parameters model (5) model (9) model (12)

v (m/min) 1.88× 10−1 1.10 1.69× 10−1

D (m2/min) 3.69× 10−2 2.92× 10−2

Dm (m2/min) 2.59× 10−1

Dd (m2/min) 10−1

τ (min) 15.95

β 1.1

RMSE 2.5× 10−3 9.77× 10−4 9.53× 10−4

Table 2: Fitting parameters for the models plotted in Figure 2 and RMSE values.

Parameters model (5) model (9) model (12)

v (m/min) 1.90× 10−1 2.88 1.74× 10−1

D (m2/min) 2.37× 10−1 1.88× 10−1

Dm (m2/min) 1.16× 10−1

Dd (m2/min) 4.25× 10−1

τ (min) 42.14

β 0.97

RMSE 9.64× 10−4 3.43× 10−4 1.91× 10−4

Table 3: Fitting parameters for the models plotted in Figure 3 and RMSE values.

4 Conclusions

In this paper three different classes of diffusion models are compared considering tracer
transport experimental data: the classical diffusion model (5), the CTRW model (9) and
the integro-differential model (12). The classical diffusion model is established assuming
Fick’s law for the mass flux while the CTRW model is established considering that the
particles perform jumps and between consecutive jumps the particles wait for a random
time. The randomness of the transport is described by a joint pdf for the waiting time
and for the length of the jump. The integro-differential model is constructed by modifying
Fick’s law considering that the mass flux at a certain time depends on the gradient of the
concentration at a delayed time.

The numerical simulations show that the classical diffusion model does not capture the
long tails of the BTCs at later times while the CTWR model and the integro-differential
model are able to reproduce this non-Fickian behavior leading the last model to a greater
reduction of RMSE.
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