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Abstract The selection of appropriate radiation incidence directions in radi-
ation therapy treatment planning is important for the quality of the treatment
plan, both for appropriate tumor coverage and for better organ sparing. The
objective of this paper is to discuss the benefits of using radial basis functions
within a pattern search methods framework in the optimization of the highly
non-convex beam angle optimization (BAO) problem. Pattern search methods
are derivative-free optimization methods that require few function value eval-
uations to converge and have the ability to avoid local entrapment. These two
characteristics gathered together make pattern search methods suited to ad-
dress the BAO problem. The pattern search methods framework is composed
by a search step and a poll step at each iteration. The poll step performs a
local search in a mesh neighborhood and assures convergence to a local mini-
mizer or stationary point. The search step provides the flexibility for a global
search since it allows searches away from the neighborhood of the current it-
erate. Radial basis functions are used and tested in this step both to influence
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the quality of the local minimizer found by the method and to obtain a better
coverage of the search space in amplitude. A set of retrospective treated cases
of head-and-neck tumors at the Portuguese Institute of Oncology of Coimbra
is used to discuss the benefits of using this approach in the optimization of
the BAO problem.

Keywords Intensity modulated radiation therapy · Beam angle optimiza-
tion · Pattern search methods · Radial basis functions

1 Introduction

The purpose of radiation therapy is to deliver a dose of radiation to the tu-
mor volume to sterilize all cancer cells while minimizing the collateral effects on
the surrounding healthy organs and tissues. Typically, radiation is generated
by a linear accelerator mounted on a gantry that can rotate along a central
axis and is delivered with the patient immobilized on a couch that can rotate.
The rotation of the couch combined with the rotation of the gantry allows
radiation from almost any angle around the tumor. Many authors consider
non-coplanar angles (e.g., [5,13,29,31,32]). However, despite the fact that al-
most every angle is possible for radiation delivery, the use of coplanar angles,
i.e., angles that lay in the plane of rotation of the gantry, is predominant. This
is a way to simplify an already complex problem, and the angles considered
lay in the plane of the rotation of the gantry around the patient. In clinical
practice, most of the time, the number of beam angles is assumed to be defined
a priori by the treatment planner and the beam directions are still manually
selected by the treatment planner, relying mostly on experience, despite the
evidence presented in the literature that appropriate radiation beam incidence
directions can lead to a plan’s quality improvement [13,28,46].

An important type of radiation therapy is intensity modulated radiation
therapy (IMRT), where the radiation beam is modulated by a multileaf col-
limator. Multileaf collimators enable the transformation of the beam into a
grid of smaller beamlets of independent intensities. A common way to solve
the IMRT optimization problems is to use a beamlet-based approach leading
to a large-scale programming problem. Due to the complexity of the whole op-
timization problem, many times the treatment planning is divided into three
smaller problems which can be solved sequentially: beam angle optimization
(BAO) problem, fluence map optimization (FMO) problem, and leaf sequenc-
ing problem. Most of the efforts in the IMRT optimization community have
been devoted to optimizing beamlet intensities [2,7,9,10,22,36,43,44,45,50],
once the beam angles have been selected by the treatment planner. Compara-
tively, less research effort has been directed to the optimization of beam angles
[18]. Here we will focus our attention in the BAO problem, using coplanar an-
gles, and will assume that the number of beam angles is defined a priori by
the treatment planner.

Many attempts to address the BAO problem can be found in the litera-
ture including simulated annealing [6,17,29], genetic algorithms [18,20,24] or
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particle swarm optimization [23]. Although those global heuristics can theo-
retically avoid local optima, globally optimal or even clinically better solutions
can not be obtained without a large number of objective function evaluations.
The concept of beam’s eye view has been a popular approach to address the
BAO problem as well [19,29,37]. The concept is similar to a bird’s eye view,
where the object being viewed is the tumor as seen from a beam. The bigger
the area of the tumor and the smaller the area of the surrounding organs is
seen by the beam, the better candidate the beam is to be used in the treatment
plan. Other approaches include the projection of the surrounding organs into
the tumor. Pugachev and Xing [38] present a computer assisted selection of
coplanar angles based on a variation of the beam’s eye view concept. Ehrgott
et al. [18] discuss a mathematical framework that unifies the approaches found
in literature. Aleman et al. [5] propose a response surface approach and in-
clude non-coplanar angles in beam orientation optimization. Lim and Cao [25]
propose an approach that consists of two sequential phases: branch-and-prune
and local neighborhood search. Schreibmann et al. [48] propose a hybrid mul-
tiobjective evolutionary optimization algorithm for IMRT treatment planning
and apply it to the optimization of the number of incident beams, their ori-
entations and intensity profiles. Other approaches include maximal geometric
separation of treatment beams [13], set cover [21] or gradient searches [9].

Here, similarly to [3,5,9,13,20,26,32,48], we will use the optimal solution
of the FMO problem to drive our BAO problem. Many of the previous BAO
studies are based on a variety of scoring methods or approximations to the
FMO to gauge the quality of the beam angle set. When the BAO problem is
not based on the optimal FMO solutions, the resulting beam angle set has no
guarantee of optimality and has questionable reliability since it has been exten-
sively reported that optimal beam angles for IMRT are often non-intuitive [51].
The BAO problem is quite difficult since it is a highly non-convex optimization
problem with many local minima [9,49]. Therefore, methods that avoid being
easily trapped in local minima should be used. Obtaining the optimal solution
for a beam angle set is time costly and even if only one beam angle is changed
in that set, a complete dose computation is required in order to compute and
obtain the corresponding optimal FMO solution. Recent literature addressed
this time issue with warm starts [4]. Alternatively, methods that require few
function value evaluations should be used to tackle the BAO problem. The pat-
tern search methods framework is suited to address the BAO problem since
it requires few function value evaluations to converge and have the ability to
avoid local entrapment. Here, we will discuss the benefits of using radial basis
functions within the pattern search methods framework in the optimization of
the highly non-convex BAO problem. The pattern search methods framework
is composed by a search step and a poll step at each iteration. The poll step
performs a local search in a mesh neighborhood and assures convergence to
a local minimizer or stationary point. The search step provides the flexibility
for a global search since it allows searches away from the neighborhood of the
current iterate. Radial basis functions are used and tested in this step both
to influence the quality of the local minimizer found by the method and also
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to obtain a better coverage of the search space in amplitude. A set of retro-
spective treated cases of head-and-neck tumors at the Portuguese Institute of
Oncology of Coimbra is used to discuss the benefits of this approach in the
optimization of the BAO problem. We will compare the performance of our ap-
proach with a gradient based local search approach and both with the typical
equispaced coplanar treatment plans. The paper is organized as follows. In the
next section we describe the BAO problem formulation and the coupled FMO
problem formulation. Section 3 briefly presents the pattern search methods
framework used. Radial basis functions interpolation and its use within the
search step of the pattern search methods framework is presented in section
4. Clinical examples of head-and-neck cases used in the computational tests
are presented in section 5. Section 6 presents the obtained results. In the last
section we have the conclusions and future work.

2 Beam angle optimization problem

In order to model the BAO problem as a mathematical programming prob-
lem, a quantitative measure to compare the quality of different sets of beam
angles is required. For the reasons presented in section 1, our approach for
modeling the BAO problem uses the optimal solution value of the FMO prob-
lem as the measure of the quality for a given beam angle set. Thus, we will
present the formulation of the BAO problem followed by the formulation of
the FMO problem we used.

2.1 BAO model

Let us consider n to be the fixed number of (coplanar) beam directions,
i.e., n beam angles are chosen on a circle around the CT-slice of the body that
contains the isocenter (usually the center of mass of the tumor). Typically, the
BAO problem is formulated as a combinatorial optimization problem in which
a specified number of beam angles is to be selected among a beam angle can-
didate pool. The continuous [0◦, 360◦] gantry angles are generally discretized
into equally spaced directions with a given angle increment, such as 5 or 10
degrees. We could think of all possible combinations of n beam angles as an
exhaustive global search method. However, this requires an enormous amount
of time to calculate and compare all dose distributions for all possible angle
combinations. Therefore, an exhaustive search of a large-scale combinatorial
problem is considered to be too slow and inappropriate for a clinical setting.
Many heuristics and meta-heuristics have been presented as an attempt to
reduce the number of combinations to compare. However, most require a pro-
hibitive number of function evaluations when the measure considered is the
optimal value of the FMO problem.

We will consider a different approach for the formulation of the BAO prob-
lem. All continuous [0◦, 360◦] gantry angles will be considered instead of a
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discretized sample. Since the angle −5◦ is equivalent to the angle 355◦ and the
angle 365◦ is the same as the angle 5◦, we can avoid a bounded formulation. A
basic formulation for the BAO problem is obtained by selecting an objective
function such that the best set of beam angles is obtained for the function’s
minimum:

min f(θ1, . . . , θn)

s.t. (θ1, . . . , θn) ∈ R
n.

(1)

Here, the objective f(θ1, . . . , θn) that measures the quality of the set of
beam directions θ1, . . . , θn is the optimal value of the FMO problem for each
fixed set of beam directions. Such functions have numerous local optima, which
increases the difficulty of obtaining a good global solution. Thus, the choice of
the solution method becomes a critical aspect for obtaining a good solution.
Our formulation was mainly motivated by the ability of using a class of solu-
tion methods that we consider to be suited to successfully address the BAO
problem: pattern search methods. The FMO model used is presented next.

2.2 FMO model

For a given beam angle set, an optimal IMRT plan is obtained by solving
the FMO problem, the problem of determining the optimal beamlet weights
for the fixed beam angles. Many mathematical optimization models and algo-
rithms have been proposed for the FMO problem, including linear models (e.g.,
[43,44]), mixed integer linear models (e.g., [22,36]), nonlinear models (e.g., [7,
50]), and multiobjective models (e.g., [10,45]). Recently, the use of a convex
FMO formulation and interior point methods greatly speed up computational
times, yielding optimal treatment plans in seconds, making it a viable option
for clinical applications [2].

Radiation dose distribution deposited in the patient, measured in Gray
(Gy), needs to be assessed accurately in order to solve the FMO problem, i.e.,
to determine optimal fluence maps. Each structure’s volume is discretized in
voxels (small volume elements) and the dose is computed for each voxel using
the superposition principle, i.e., considering the contribution of each beamlet.
Typically, a dose matrix D is constructed from the collection of all beamlet
weights, by indexing the rows of D to each voxel and the columns to each
beamlet, i.e., the number of rows of matrix D equals the number of voxels
(Nv) and the number of columns equals the number of beamlets (Nb) from all
beam directions considered. Therefore, using matrix format, we can say that
the total dose received by voxel i is given by

∑Nb

j=1 Dijwj , with wj the weight
of beamlet j. Usually, the total number of voxels considered reaches the tens
of thousands, thus the row dimension of the dose matrix is of that magnitude
which originates large-scale problems.

Here, we will use a convex penalty function voxel-based nonlinear model
(e.g., [3,5,32]). In this model, each voxel is penalized according to the square
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difference of the amount of dose received by the voxel and the amount of
dose desired/allowed for the voxel. This formulation yields a quadratic pro-
gramming problem with only linear non-negativity constraints on the fluence
values [44]:

minw
Nv
∑

i=1

1
vS



λi

(

Ti −
Nb
∑

j=1

Dijwj

)2

+

+ λi

(

Nb
∑

j=1

Dijwj − Ti

)2

+





s.t. wj ≥ 0, j = 1, . . . , Nb,

where Ti is the desired dose for voxel i, λi and λi are the penalty weights of
underdose and overdose of voxel i, and (·)+ = max{0, ·}. Although this formu-
lation allows unique weights for each voxel, similarly to the implementation
in [3], weights are assigned by structure only so that every voxel in a given
structure has the weight assigned to that structure divided by the number of
voxels of the structure (vS). This nonlinear formulation implies that a very
small amount of underdose or overdose may be accepted in clinical decision
making, but larger deviations from the desired/allowed doses are decreasingly
tolerated [3].

The FMO model is used as a black-box function. Other models used before
for BAO include convex penalty function structure-based approaches [26] and
a variety of linear approaches [9,27]. It is beyond the scope of this study to
discuss if this formulation of the FMO problem is preferable to others. The
conclusions drawn regarding BAO coupled with this nonlinear model are valid
also if different FMO formulations are considered.

3 Pattern search methods

Pattern search methods are directional direct search methods that belong
to a broader class of derivative-free optimization methods (see [8] for a detailed
overview of derivative-free optimization methods), such that iterate progres-
sion is solely based on a finite number of function evaluations in each iteration,
without explicit or implicit use of derivatives. Since we are interested in reso-
lution methods for the beam angle problem formulation presented in Eq. (1),
we will summarily describe pattern search methods for unconstrained opti-
mization problems of the form

min f(x)
s.t. x ∈ R

n,

where the decision vector x = (x1, . . . , xn) is used as input into the black-box
function f .

Pattern search methods are iterative methods generating a sequence of
non-increasing iterates {xk} using positive bases (or positive spanning sets)
and moving towards a direction that would produce a function decrease. A



Selection of beam directions using RBFs within PSM 7

positive basis for R
n can be defined as a set of nonzero vectors of Rn whose

positive combinations span R
n (positive spanning set), but no proper set does.

A positive spanning set contains at least one positive basis. It can be shown
that a positive basis for Rn contains at least n+1 vectors and cannot contain
more than 2n [14]. Positive bases with n+ 1 and 2n elements are referred to
as minimal and maximal positive basis, respectively. Commonly used minimal
and maximal positive bases are [I − e], with I being the identity matrix of
dimension n and e = [1 . . . 1]⊤, and [I − I], respectively.

One of the main features of positive bases (or positive spanning sets),
that is the motivation for directional direct search methods, is that unless the
current iterate is at a stationary point, there is always a vector vi in a positive
basis (or positive spanning set) that is a descent direction [14], i.e., there is
an α > 0 such that f(xk +αvi) < f(xk). This is the core of directional direct
search methods and in particular of pattern search methods. The notions and
motivations for the use of positive bases, its properties and examples can be
found in [1,14].

The pattern search methods framework [1] is the class of the most used
and implemented directional direct search methods. Pattern search methods
framework as described in [1] is presented next. Let us denote by V the n× p
matrix whose columns correspond to the p (≥ n+1) vectors forming a positive
spanning set. Given the current iterate xk, at each iteration k, the next point
xk+1, aiming to provide a decrease on the objective function, is chosen from
a finite number of candidates on a given mesh Mk = {xk + αkVz : z ∈
Z
p
+}, where αk is the mesh-size (or step-size) parameter and Z+ is the set of

nonnegative integers.
Pattern search methods are organized around two steps at every iteration.

The first step consists of a finite search on the mesh, free of rules, with the goal
of finding a new iterate that decreases the value of the objective function at
the current iterate. This step, called the search step, has the flexibility to use
any strategy, method or heuristic, or take advantage of a priori knowledge of
the problem at hand, as long as it searches only a finite number of points in the
mesh. The search step provides the flexibility for a global search since it allows
searches away from the neighborhood of the current iterate, and influences the
quality of the local minimizer or stationary point found by the method.

If the search step fails to produce a decrease in the objective function,
a second step, called the poll step, is performed around the current iter-
ate. The poll step follows stricter rules and, using the concepts of positive
bases, attempts to perform a local search in a mesh neighborhood around xk,
N (xk) = {xk + αkv : for all v ∈ Pk} ⊂ Mk, where Pk is a positive basis
chosen from the finite positive spanning set V. For a sufficiently small mesh-
size parameter αk, the poll step is guaranteed to provide a function reduction,
unless the current iterate is at a stationary point [1]. So, if the poll step also
fails to produce a function reduction, the mesh-size parameter αk must be de-
creased. On the other hand, if both the search and poll steps fail to obtain an
improved value for the objective function, the mesh-size parameter is increased
or held constant. The most common choice for the mesh-size parameter update
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is to halve the mesh-size parameter at unsuccessful iterations and to keep it
or double it at successful ones. We are able to describe now the pattern search
methods framework.

Algorithm 1 Pattern search methods framework
Initialization:

– Set k = 0.
– Choose x0 ∈ Rn, α0 > 0, and a positive spanning set V.

Iteration:

1. Search step: evaluate f at a finite number of points in Mk with the goal of decreasing
the objective function value at xk. If xk+1 ∈Mk is found satisfying f(xk+1) < f(xk),
go to step 4 and expand Mk. Both search step and iteration are declared successful.
Otherwise, go to step 2 and search step is declared unsuccessful.

2. Poll step: this step is only performed if the search step is unsuccessful. If f(xk) ≤ f(x)
for every x in the mesh neighborhood N (xk), go to step 3 and shrink Mk. Both poll
step and iteration are declared unsuccessful. Otherwise, choose a point xk+1 ∈ N (xk)
such that f(xk+1) < f(xk), go to step 4 and expand Mk. Both poll step and iteration
are declared successful.

3. Mesh reduction: let αk+1 = 1

2
× αk . Set k ← k + 1 and return to step 1 for a new

iteration.
4. Mesh expansion: let αk+1 = αk (or αk+1 = 2×αk). Set k ← k+1 and return to step

1 for a new iteration.

Typically, the stopping criteria of the pattern search methods is based ei-
ther on convergence criteria related with the mesh-size parameter or on the
maximum number of function value evaluations allowed. Pattern search meth-
ods share the following convergence result, provided that each column vector
vi of V is given by Gz̄i, where G ∈ R

n×n is a nonsingular generating matrix
called mesh or pattern generator and z̄i is an integer vector in Z

n. This as-
sumption is crucial for global convergence, ensuring that the mesh has only a
finite number of points in a compact set [1]:

Theorem 1 Suppose that the level set L(x0) = {x ∈ R
n : f(x) ≤ f(x0)}

is compact and that f is continuously differentiable in an open set containing

L(x0). Then

lim inf
k−→+∞

‖∇f(xk)‖ = 0,

and there exists at least one limit point x∗ such that ∇f(x∗) = 0.

Furthermore, if limk−→+∞ αk = 0, ‖xk+1 − xk‖ ≤ Cαk for some constant

C > 0 independent of the iteration counter k, and xk+1 = argmin
x∈N (xk)f(x)

in the poll step, then

lim
k−→+∞

‖∇f(xk)‖ = 0,

and every limit point x∗ satisfies ∇f(x∗) = 0.
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The results of Theorem 1 (the proof can be found in [53]) concern the abil-
ity of pattern search methods to converge globally, i.e., from arbitrary points,
to local minimizers candidates. We recall that, despite the nonexistence of any
supporting theory, due to their blindness caused by the nonuse of derivatives,
and also by the flexibility of the search step to incorporate global search pro-
cedures while the poll step continues to assure convergence to local minima,
numerical evidence about the capability of pattern search methods to compute
global minimizers has been reported – see, e.g., [1,11].

The purpose of the mesh-size parameter, beyond its use as stopping criteria,
is twofold: to bound the size of the minimization step and also to control the
local area where the function is sampled around the current iterate. Most
derivative-free methods couple the mesh-size (or step-size) with the size of
the sample set (or the search space). The initial mesh-size parameter value
defined in [33] for comparison of several derivative-free optimization algorithms
is α0 = max{1, ‖x0‖∞}. However, this commonly used choice of initial mesh-
size parameter might not be adequate for our problem at hand. Note that, if
the initial mesh parameter is a power of 2, (α0 = 2ℓ, ℓ ∈ N), and the initial
point is a vector of integers, using this common mesh update, all iterates will
be a vector of integers until the mesh-size parameter becomes inferior to 1.
This possibility is rather interesting for the BAO problem.

To address the BAO problem, efficiency on the number of function value
computations is of the utmost importance. Therefore, the number of trial
points in the search step should be minimalist, and guided by some physical
or biological meaning. On the other hand, when the search step fails to obtain
a decrease on the function value, polling should also be oriented in order to
further reduce the number of function value evaluations (at least for successful
iterations). Recently, the efficiency of pattern search methods improved signif-
icantly by reordering the poll directions according to descent indicators built
from simplex gradients [12]. One of the main advantages of this pattern search
methods framework is the flexibility provided by the search step, where any
strategy can be applied as long as only a finite number of points is tested. This
allows the insertion of strategies/heuristics that enhance the global search by
influencing the quality of the local minimizer or stationary point found by
the method. The use of minimum Frobenius norm quadratic models, to be
minimized within a trust region, to compute a single trial point in the search
step, enhanced a significant improvement of direct search for black-box non-
smooth functions [11] similar to the BAO problem at hand. The size of the
trust region is coupled to the radius of the sample set. Thus, for an effective
global search, the sample points should span all the search space. That could
be achieved by using larger initial step-size parameters. However, since the
BAO problem has many local minima and the number of sample points is
scarce, the polynomial interpolation or regression models (usually quadratic
models) used within the trust region struggle to find the best local minima.
Therefore, starting with larger mesh-size parameters may cause the algorithm
to jump over lower local minima than the obtained one, leading to worse or
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similar results obtained when starting with smaller mesh-size parameters and
at the cost of more function value evaluations [41].

An alternative and popular approach to keep small mesh-size parameters
and still have a good coverage of the whole search space is to use a multi-
start approach. However, the multi-start approach has the disadvantage of in-
creasing the total number of function evaluations and consequently the overall
computational time. Moreover, the obtained good span of R2 in amplitude is
only obtained by overlapping all the iterates giving the illusion that nonusual
beam angle configurations were tested while in fact only local searches around
the initial beam angle configurations were performed. Here, we will adopt
a different strategy. We will consider a single starting point, a small initial
mesh-size parameter, and will try to obtain a good span in amplitude of R2

by incorporating an additional global strategy in the search step: radial basis
functions interpolation. Other global strategies like particle swarm methods
can be included in the search step to enhance a global search – see [56]. How-
ever, the number of function evaluations required for these types of strategies
is prohibitive for obtaining an answer in a clinically acceptable time frame.
We describe next the radial basis functions interpolation strategy we used in
the search step.

4 Radial basis function interpolation

For numerical approximation of multivariate functions, radial basis func-
tions (RBFs) can provide excellent interpolants. For any finite data set in
any Euclidean space, one can construct an interpolation of the data by using
RBFs, even if the data points are unevenly and sporadically distributed in a
high dimensional Euclidean space. There is a wide range of applications where
RBF interpolation methods can be successfully applied (e.g., aeronautics [42]).
However, RBF interpolant trends between and beyond the data points depend
on the RBF used and may exhibit undesirable trends using some RBFs while
the trends may be desirable using other RBFs. Numerical choice of the most
adequate RBF for the problem at hand should be done instead of selecting
RBFs a priori without a valid criteria [40].

Next, we will formulate RBF interpolation problems, discuss the solvability
of RBF interpolation problems, and describe the strategy used to take advan-
tage of RBF interpolants in the search step of the pattern search method
framework applied to the BAO problem.

4.1 RBF interpolation problems

Let f(x) be the true response to a given input vector x (of n components)
such that the value of f is only known at a set of N input vectors x =
x1, . . . ,xN , i.e., only f(xk) (k = 1, . . . , N) are known. An interpolation model



Selection of beam directions using RBFs within PSM 11

g(x) generated from a RBF ϕ(t) can be represented in the following form:

g(x) =

N
∑

j=1

αjϕ(‖x− xj‖), (2)

where αj are the coefficients to be determined by interpolation conditions,
g(xk) = f(xk) (k = 1, . . . , N), ‖x − xj‖ denotes the parameterized distance
between x and xj defined as

||x− xj || =

√

√

√

√

n
∑

i=1

|θi|
(

xi − xj
i

)2
, (3)

and θ1, . . . , θn are scalars (see [40]).
A standard data normalization approach is to scale each component xi by

an estimation of its standard deviation σi calculated from the data:

σi =

√

∑N

j=1(x
j
i − ave(xi))2

N − 1
, with ave(xi) =

1

N

N
∑

j=1

xj
i .

Scaling each data attribute by its estimated standard deviation also helps the
initial formulation of the approximation problem. The scalars θ1, . . . , θn in
Eq. (3) are the model tuning parameters that will be determined by a cross-
validation method for the best prediction model of the given data. Mathemat-
ically, one could rewrite ‖x− xj‖ as

‖x− xj‖ =

√

√

√

√

n
∑

i=1

|θ̄i|
(

xi − xj
i

)2

, with θ̄i =
θi
σ2
i

. (4)

In practice, starting without any scaling (i.e., θ̄i = 1 in Eq. (4)) may lead to ill-
conditioning of the interpolation problem. The coefficient matrix of the linear
equations

∑N

j=1 αjϕj(x
k) = f(xk) (k = 1, . . . , N) is called the interpolation

matrix. The condition number of the unscaled interpolation matrix is usually
very large compared to the scaled interpolation matrix condition number. The
purpose of using two sets of scaling parameters in Eq. (2) is to allow a non-
dimensional initial choice of θ̄i = 1. Note that, for simplicity, most of the time,
θ̄i = 1 is considered, which can lead to bias results.

The most popular examples of RBF [35] are cubic spline ϕ(t) = t3, thin
plate spline ϕ(t) = t2 ln t, multiquadric ϕ(t) =

√
1 + t2, and Gaussian ϕ(t) =

exp(−t2) (see Fig. 1). These RBFs can be used to model cubic, almost quadratic,
and linear growth rates, as well as exponential decay, of the response for trend
predictions.

For fixed parameters θ̄i, the coefficients α1, . . . , αN in Eq. (2) can be cal-
culated by solving the following linear system of interpolation equations:

N
∑

j=1

αjϕ(||xk − xj ||) = f(xk), for k = 1, . . . , N. (5)
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Fig. 1 Graphs of commonly used radial basis functions.

One can rewrite Eq. (5) in matrix form as

Φ











α1

α2

...
αN











=











f(x1)
f(x2)

...
f(xN )











, (6)

where Φ is the interpolation matrix defined as

Φ =











ϕ(||x1 − x1||) ϕ(||x1 − x2||) . . . ϕ(||x1 − xN ||)
ϕ(||x2 − x1||) ϕ(||x2 − x2||) . . . ϕ(||x2 − xN ||)

...
...

. . .
...

ϕ(||xN − x1||) ϕ(||xN − x2||) . . . ϕ(||xN − xN ||)











.

A unique interpolant is guaranteed for multiquadric and Gaussian RBFs,
(i.e., Φ is a nonsingular matrix) even if the input vectors xj are few and
poorly distributed, provided only that the input vectors are all different when
N > 1. However, for cubic and thin plate spline RBFs, Φ might be singular
[35]. An easy way to avoid this problem on the cubic and thin plate spline
RBF interpolants is to add low-degree polynomials to interpolation functions
in Eq. (2) and formulate an interpolation problem with constraints. That is, let

p(x) =
∑M

j=1 βjpj(x), where p1, . . . , pM form a basis of algebraic polynomials
in R

n with degree at most m. Then interpolation functions are of the following
form:

g(x) = p(x) +

N
∑

j=1

αjϕ(||x− xj ||). (7)
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The M extra degrees of freedom in g(x) can be eliminated by forcing the
following M constraints:

N
∑

j=1

αjpk(x
j) = 0 for k = 1, . . . ,M, (8)

which has the following matrix form:

P











α1

α2

...
αN











= 0,

where

P =







p1(x
1) . . . p1(x

N )
...

. . .
...

pM (x1) . . . pM (xN )






.

The interpolation equations using g(x) in Eq. (7) become

N
∑

j=1

αjϕ(||xk − xj ||) +
M
∑

j=1

βjpj(x
k) = f(xk) for k = 1, . . . , N. (9)

Combining Eqs. (8) and (9), we obtain the following equation for the con-
strained RBF interpolation in matrix form:

(

Φ PT

P 0

)





















α1

...
αN

β1

...
βM





















=





















f(x1)
...

f(xN )
0
...
0





















. (10)

The key results on solvability of RBF interpolations related to the four
RBFs shown in Fig. 1 are the following:

1. As seen before, Eq. (6) is always solvable if ϕ(t) =
√
1 + t2 or ϕ(t) =

exp(−t2);
2. For quadratic polynomials (m = 2), Eq. (10) is solvable if ϕ(t) = t3 or

ϕ(t) = t2 ln t, provided that the input vectors x1, . . ., xN do not fall into
the zero set of the polynomial [47].

The constructed interpolant g(x) in Eq. (2) depends on “subjective” choice
of ϕ(t), and model parameters θ1, . . . , θn. While one can try all the possible
choices of ϕ(t) in search of a desirable interpolant, there are infinitely many
choices for θ1, . . . , θn. One could, however, use cross-validation to choose val-
ues of θ1, . . . , θn that yield an interpolant g(x) with the most accurate trend
prediction possible.
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4.2 Model parameter tuning by cross-validation

RBF interpolation models use the parameterized distance:

‖x− xj‖ =

√

√

√

√

n
∑

i=1

|θi|
(

xi − xj
i

σi

)2

, (11)

where θ1, . . . , θn are scalars. Mathematically, one could pick any fixed set of
θ1, . . . , θn and construct the interpolation function for the given data. However,
two different sets of θ1, . . . , θn will lead to two interpolation models that behave
very differently between the input vectors x1, . . . ,xN . Model parameter tuning
for RBF interpolation aims at finding a set of parameters θ1, . . . , θn that results
in the best prediction model of the unknown response based on the available
data.

Other metrics that are not based on fitting errors must be used to de-
termine which basis function ϕ(t) and what scaling parameters θi are most
appropriate to model the response function f(x), because RBF interpolation
method yields a fitting function g(x) whose value at xk is exactly f(xk) for
k = 1, . . . , N . One can always try to obtain values of f(x) at some additional
data points xN+1, . . . ,xN̄ and use the prediction errors |g(xk) − f(xk)| for
k = N + 1, . . . , N̄ to assess the prediction accuracy of g(x), but this technique
is often impractical and always expensive. The prediction accuracy can be used
as a criterion for choosing the best basis function ϕ(t) and parameters θi.

Without additional sample points, cross-validation (CV) [52,55] was pro-
posed to find ϕ(t) and θi that lead to an approximate response model g(x)
with good prediction capability and proved to be effective [54]. The leave-
one-out CV procedure is usually used in model parameter tuning for RBF
interpolation (see [54], e.g.) and has the following three steps:

1. Fix a set of parameters θ1, . . . , θn.
2. For j = 1, . . . , N , construct the RBF interpolant g−j(x) of the data points

(xk, f(xk)) for 1 ≤ k ≤ N, k 6= j.
3. Use the following CV root mean square error as the prediction error:

ECV (θ1, . . . , θn) =

√

√

√

√

1

N

N
∑

j=1

(g−j(xj)− f(xj))
2
. (12)

The goal of model parameter tuning by CV is to find θ1, . . . , θn that min-
imize the CV error, ECV (θ1, . . . , θn), so that the interpolation model has the
highest prediction accuracy when CV error is the measure. Using different θi
allow the model parameter tuning to scale each variable xi based on its sig-
nificance in modeling the variance in the response, thus, have the benefit of
implicit variable screening built in the model parameter tuning.
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4.3 Incorporation of RBF interpolation in the pattern search methods
framework tailored for the BAO problem

The most common approach for incorporating interpolation models in pat-
tern search methods consists of forming an interpolation model and finding its
minimum in the search step. For example, in Custódio et al. [11], the search
step computes a single trial point using minimum Frobenius norm quadratic
models to be minimized within a trust region. Here, we are only interested
in discussing the advantages of using a RBF model in the search step of the
pattern search method applied to the BAO problem. Therefore, the strategy
sketched here is tailored for addressing the BAO problem, it might only be
generalized for similar problems, and does not include the formal minimiza-
tion of the RBF model. RBF trial points are computed using the following
strategy:

Algorithm 2 RBF trial points
Initialization: Build an RBF model.
Iteration: For each beam direction (i = 1, . . . , n)

1. Evaluate the RBF model for every degree between the previous beam direction and
the next one.

2. Find the minimum of those values that correspond to a beam direction that was not
evaluated yet and is at least m degrees away from a previously evaluated one, for the
beam direction at stake.

3. Take as RBF trial point the current iterate updating the beam direction corresponding
to the minimum found in step 2.

Our main goal for using a RBF model in the search step of the pattern
search methods framework is to influence the quality of the local minimizer
found and simultaneously to properly explore the search space in amplitude
without a random criteria. Therefore, each beam direction is tested for every
degree between the previous beam direction and the next one as stated in step
1. Step 2 forces the algorithm to consider RBF model directions in regions not
yet explored. In our implementation we considered m = 4.

We choose to implement the use of RBF interpolation in the search step
taking advantage of the availability of an existing pattern search methods
framework implementation used successfully by us to tackle the BAO prob-
lem [41]. We used the last version of SID-PSM [11,12] which is a MATLAB
[30] implementation of the pattern search methods (PSM) that incorporates
improvements for the search step, with the use of minimum Frobenius norm
quadratic models to be minimized within a trust region, and improvements for
the poll step, where efficiency on the number of function value computations
improved significantly by reordering the poll directions according to descent
indicators. Similarly to the minimum Frobenius norm quadratic models, the
RBF models are not built in the search step until the number of points pre-
viously evaluated is greater than n+ 1. Therefore, the search step is skipped
while the number of points is not greater than n+1. The SID-PSM algorithm
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incorporating the RBF interpolation models applied to the BAO problem is
the following.

Algorithm 3 PSM framework using RBFs within search step
Initialization:

– Set k = 0.
– Choose x0 ∈ R

n, α0 > 0, and a positive spanning set V.

Iteration:

1. Search step: if the number of evaluated points is not superior to n+1 skip the search
step. Otherwise, compute the RBFs trial points followed by the minimum Frobenius
norm quadratic trial point until one of them decreases the objective function value.
If none achieves that goal, go to step 2 and the search step is declared unsuccessful.
Otherwise, go to step 4 and both the search step and iteration are declared successful.

2. Poll step: this step is only performed if the search step is unsuccessful. If f(xk) ≤ f(x)
for every x in the mesh neighborhood N (xk), go to step 3 and shrink Mk. Both poll
step and iteration are declared unsuccessful. Otherwise, choose a point xk+1 ∈ N (xk)
such that f(xk+1) < f(xk) and go to step 4. Both poll step and iteration are declared
successful.

3. Mesh reduction: let αk+1 = 1

2
× αk . Set k ← k + 1 and return to step 1 for a new

iteration.
4. Mesh expansion: let αk+1 = αk (or αk+1 = 2×αk). Set k ← k+1 and return to step

1 for a new iteration.

The total number of points computed in the search step is n + 1 (n RBF
trial points plus the minimum Frobenius norm quadratic trial point). More
conservative strategies could be adopted, e.g., only considering the best of the
RBF trial points. The inclusion of RBF trial points in the search step has three
distinct purposes: to improve the coverage of the search space in amplitude,
to influence the quality of the local minimum obtained by performing searches
away from the neighborhood of the current iterate and last but not least
to improve the efficacy of the minimum Frobenius norm quadratic models.
This last goal is a consequence of the first two, trying to obtain data points
that are less poorly distributed in a high dimensional space and span all the
search space in amplitude. The minimum Frobenius norm quadratic models
are minimized within a trust region whose size is coupled to the radius of the
sample set. Thus, for an effective global search, the sample points should span
all the search space.

The benefits of using RBFs in the search step of the pattern search methods
framework in the optimization of the BAO problem are illustrated using a set
of clinical examples of head-and-neck cases that are presented next.

5 Head-and-neck clinical examples

Four clinical examples of retrospective treated cases of head-and-neck tu-
mors at the Portuguese Institute of Oncology of Coimbra are used to test the
pattern search methods framework proposed. The selected clinical examples
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were signalized at IPOC as complex cases where proper target coverage and
organ sparing proved to be difficult to obtain. The patients’ CT sets and de-
lineated structures were exported via Dicom RT to a freeware computational
environment for radiotherapy research (see Fig. 2). Since the head-and-neck
region is a complex area where, e.g., the parotid glands are usually in close
proximity to or even overlapping with the target volume, careful selection of
the radiation incidence directions can be determinant to obtain a satisfying
treatment plan.

The spinal cord and the brainstem are some of the most critical organs at
risk (OARs) in the head-and-neck tumor cases. These are serial organs, i.e.,
organs such that if only one subunit is damaged, the whole organ functionality
is compromised. Therefore, if the tolerance dose is exceeded, it may result in
functional damage to the whole organ. Thus, it is extremely important not to
exceed the tolerance dose prescribed for these type of organs. Other than the
spinal cord and the brainstem, the salivary glands are also important OARs.
The parotid gland is the largest of the three salivary glands. The submandibu-
lar gland is the second largest salivary gland and are also important and diffi-
cult to spare in most head-and-neck cases. At IPOC both the submandibular
glands and the third largest salivary gland, the sublingual gland, are included
on a single structure named oral cavity. A common complication due to sali-
vary glands irradiation is xerostomia (the medical term for dry mouth due to
lack of saliva). This decreases the quality of life of patients undergoing radi-
ation therapy of head-and-neck, causing difficulties to swallow. The salivary
glands are parallel organs, i.e., if a small volume of the organ is damaged, the
rest of the organ functionality may not be affected. Their tolerance dose de-
pends strongly on the fraction of the volume irradiated. Hence, if only a small
fraction of the organ is irradiated the tolerance dose is much higher than if
a larger fraction is irradiated. Thus, for these parallel structures, the organ
mean dose is generally used instead of the maximum dose as an objective for
the treatment planning optimization.

In general, the head-and-neck region is a complex area to treat with radio-
therapy due to the large number of sensitive organs in this region (e.g., eyes,
mandible, larynx, etc.). For simplicity, in this study, the OARs used for treat-
ment optimization were limited to the spinal cord, the brainstem, the parotid
glands and the oral cavity.

The tumor to be treated plus some safety margins is called the planning
target volume (PTV). For the head-and-neck cases in study it was separated in
two parts with different prescribed doses: PTV1 and PTV2. The prescription
dose for the target volumes, the tolerance doses for the OARs and the sizes
of all structures considered in the optimization are presented in Table 1. The
dose grid resolution was 3.5 mm × 3.5 mm × 3 mm.

The parotid glands are in close proximity to or even overlapping with the
PTV which helps explaining the difficulty of parotid sparing. Adequate beam
directions can help on the overall optimization process and in particular in
parotid sparing.
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Fig. 2 Illustration of structures visualized in CERR [15].

Table 1 Sizes and prescribed doses for all the structures considered for IMRT optimization.

Mean Max Prescribed Number of voxels

Structure dose dose dose case 1 case 2 case 3 case 4

Spinal cord – 45 Gy – 1382 3567 3265 1424
Brainstem – 54 Gy – 1715 2072 2087 1569
Left parotid 26 Gy – – 1576 1536 2538 676
Right parotid 26 Gy – – 1390 1807 2367 684
Oral cavity 30 Gy – – 4646 4511 6768 2853
PTV1 – – 70.0 Gy 4001 1485 16860 4417
PTV2 – – 59.4 Gy 31119 43649 69748 28721
Body – 80 Gy – 1790592 1413138 1608589 664886

6 Results

The RBFs incorporation in the pattern search methods framework was
tested using a set of four clinical examples of retrospective treated cases of
head-and-neck tumors at the Portuguese Institute of Oncology of Coimbra
(IPOC). A typical head-and-neck treatment plan consists of radiation deliv-
ered from five to nine equally spaced coplanar orientations around the patient.
Treatment plans with seven equispaced coplanar beams were used at IPOC
and are commonly used in practice to treat head-and-neck cases [5]. Treat-
ment plans that require fewer beams than in current practice may reduce
the length of the treatment time, which is an important clinical aspect in
IMRT. Moreover, using fewer beams increases the importance of each beam
and BAO becomes more critical. Therefore, both seven-beam and five-beam
treatment plans were obtained using our BAO algorithms, denoted PSM, PSM-

RBF1, PSM-RBF2, PSM-RBF3, PSM-RBF4, whether the algorithm used was
the pattern search framework alone or coupled with multiquadric, thin plate
spline, cubic spline or gaussian RBFs, respectively. These treatment plans were
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compared with the seven-beam and five-beam equispaced coplanar treatment
plans denoted equi7 and equi5, respectively.

Gradient based search algorithms are used to tackle the BAO problem by
many treatment planning systems including the one used at IPOC. A reason
for the popular use of gradient based search algorithms is that they converge
very quickly to the closest local minimum. However, for a highly non-convex
optimization problem with many local minima, such as the BAO problem,
that is more a disadvantage than an advantage. As an attempt to contour this
issue, many local searches are usually performed using a multi-start strategy.
However, such strategy might not be effective due to the so called ‘curse of
dimensionality’. Since the search space has five or seven dimensions, the num-
ber of beams we aim to optimize, the search space is too large for an efficient
multi-start strategy (at least when trying to use few function value evalua-
tions). We will compare the performance of our BAO algorithm not only with
the typical equispaced coplanar treatment plans but also with a gradient based
local search approach, similar to the one implemented by Craft [9], denoted
LS.

Despite the fact that the purpose of this work is not to compare the re-
sults obtained by our approach with the results obtained by many other ap-
proaches previously used, we also tested different versions of beam’s-eye-view,
a technique widely used and spread in the literature. The results were not
as good as the presented by our approach. Nevertheless, the motivation for
testing beam’s-eye-view among many other strategies and methods present in
the literature includes the fact that it seems a good strategy to incorporate
beam’s-eye-view in the search step in future works, similarly to the inclusion
of RBFs in this work.

In order to facilitate convenient access, visualization and analysis of patient
treatment planning data, as well as dosimetric data input for treatment plan
optimization research, the computational tools developed within MATLAB
and CERR – computational environment for radiotherapy research [15] are
used widely for IMRT treatment planning research. The ORART – operations
research applications in radiation therapy [16] collaborative working group
developed a series of software routines that allow access to influence matrices,
which provide the necessary dosimetry data to perform optimization in IMRT.
CERR was elected as the main software platform to embody our optimization
research.

Our tests were performed on a 2.66Ghz Intel Core Duo PC with 3 GB
RAM. We used CERR 3.2.2 version and MATLAB 7.4.0 (R2007a). The dose
was computed using CERR’s pencil beam algorithm (QIB). An automatized
procedure for dose computation for each given beam angle set was developed,
instead of the traditional dose computation available from IMRTP module ac-
cessible from CERR’s menubar. This automatization of the dose computation
was essential for integration in our BAO algorithm. To address the convex
nonlinear formulation of the FMO problem we used a trust-region-reflective
algorithm (fmincon) of MATLAB 7.4.0 (R2007a) Optimization Toolbox.
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For the gradient based local search approach we used the unconstrained
multivariable minimization function (fminunc) of MATLAB 7.4.0 (R2007a)
Optimization Toolbox. The starting beam angle sets include the equispaced
coplanar beam angle set and random starting beam angle sets produced by
generating n random spacings from a lognormal distribution of mean 360/n
and standard deviation 25, and the staring angle is a random number uniform
between 0 and 360 [9].

The last version of SID-PSM was used as our pattern search methods
framework. The spanning set used was the positive spanning set ([e −e I −I],
with I being the identity matrix of dimension n and e = [1 . . . 1]T ). Each of
these directions corresponds to, respectively, the rotation of all incidence di-
rections clockwise, to the rotation of all incidence directions counter-clockwise,
the rotation of each individual incidence direction clockwise, and the rotation
of each individual incidence direction counter-clockwise. The initial mesh-size
parameter was set to α0 = 4 when RBFs were used in the search step. Larger
powers of 2 were tested without improvements in the quality of the results
and at a cost of more function value evaluations. The initial mesh-size param-
eter for PSM was set to α0 = 32 to obtain similar numbers of function value
evaluations and similar coverage of the search space in amplitude. Since the
initial points were integer vectors, all iterates will have integer values as long
as the mesh parameter does not become less than one. Therefore, the stopping
criteria adopted was the mesh parameter becoming less than one. Since we
want to improve the quality of the typical equispaced treatment plans, the
equispaced coplanar beam angles were considered as the initial points for the
beam angle optimization processes. The choice of these initial points and the
non-increasing property of the sequence of iterates generated by SID-PSM im-
ply that each successful iteration correspond to an effective improvement with
respect to the usual equispaced beam configuration.

The main goal of the present work is to verify the contribution of RBFs
in the improvement of our BAO approach using pattern search methods. Si-
multaneously we would like to verify which particular RBF performs best for
the problem at hand. The CV error of an interpolation model can be a use-
ful and objective tool to decide which model is better. We used the MATLAB
code fminsearch, an implementation of the Nelder-Mead [34] multidimensional
search algorithm, to minimize the CV error ECV (θ1, . . . , θn) in Eq. (12) and
to find the best model parameters θ1, . . . , θn. The results of the seven and
five-beam angle optimization process for the four retrospective treated cases
of head-and-neck tumors are presented in Tables 2 and 3, respectively.

The most important outcome of the results shown in Tables 2 and 3 is that
regardless the RBF considered, the use of RBFs within the pattern search
methods framework approach outperforms the other approaches in terms of
objective function value. Moreover, in average they require less function value
evaluations and consequently less computational time to obtain a better so-
lution. Another important conclusion is that all the pattern search methods
framework approaches obtained clearly better objective function value than
the gradient based local search approach. Moreover, the gain in terms of ob-
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Table 2 Results of the seven-beam angle optimization process using LS, PSM, PSM-RBF1,
PSM-RBF2, PSM-RBF3 and PSM-RBF4. The initial function value (Finit), the best ob-
tained function value (Fopt), the percentage of decrease in the objective function value, the
number of function evaluations (Fevals) and the time in hours are displayed for each case.

Case algorithm Finit Fopt % decrease Fevals time (h)

1

LS 186.6 184.1 1.3 336 6.6
PSM 193.2 179.5 7.1 201 4.2
PSM-RBF1 193.2 178.1 7.8 178 3.7
PSM-RBF2 193.2 178.2 7.8 146 2.9
PSM-RBF3 193.2 177.6 8.1 182 3.8
PSM-RBF4 193.2 177.8 8.0 172 3.6

2

LS 228.6 221.7 3.0 272 6.3
PSM 242.7 213.9 11.9 145 3.6
PSM-RBF1 242.7 212.3 12.5 126 3.2
PSM-RBF2 242.7 211.9 12.7 184 4.3
PSM-RBF3 242.7 212.2 12.6 192 4.6
PSM-RBF4 242.7 212.7 12.4 130 3.2

3

LS 232.1 227.2 2.1 272 11.1
PSM 238.6 224.5 5.9 172 7.8
PSM-RBF1 238.6 222.2 6.9 91 3.8
PSM-RBF2 238.6 221.3 7.3 167 7.1
PSM-RBF3 238.6 222.8 6.6 138 5.9
PSM-RBF4 238.6 222.3 6.8 203 8.9

4

LS 200.5 195.4 2.5 305 6.8
PSM 202.2 191.4 5.3 140 3.4
PSM-RBF1 202.2 190.1 6.0 171 3.9
PSM-RBF2 202.2 189.5 6.3 163 3.8
PSM-RBF3 202.2 189.6 6.2 168 3.9
PSM-RBF4 202.2 191.5 5.3 197 4.8

jective function value of the gradient based local search approach is mostly due
to the random choice of a better starting point rather than due to the gradient
based local search performance. In terms of deciding which RBF suits better
the problem at hand no conclusion can be drawn. For different cases, different
RBF obtained slightly better results. The CV error of an interpolation model
can also be used as an objective tool to decide which model is better. However,
those values were also inconclusive and therefore are not included.

Despite the improvement in FMO value, the quality of the results can
be perceived considering a variety of metrics. Typically, results are judged
by their cumulative dose-volume histogram (DVH). For the pattern search
methods framework approaches, the best results in terms of objective function
value, in average, were obtained by PSM-RBF2. Since the BAO influence is
better perceived when using less beam angles, because greater improvements
with respect to the equispaced beam angle configuration are obtained, DVH
comparisons will be made for five-beam angle treatment plans obtained by
PSM-RBF2, LS and equi5. The DVH displays the fraction of a structure’s
volume that receives at least a given dose. Another metric usually used for
plan evaluation is the volume of PTV that receives 95% of the prescribed dose.
Typically, 95% of the PTV volume is required. The occurrence of coldspots,
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Table 3 Results of the five-beam angle optimization process using LS, PSM, PSM-RBF1,
PSM-RBF2, PSM-RBF3 and PSM-RBF4. The initial function value (Finit), the best ob-
tained function value (Fopt), the percentage of decrease in the objective function value, the
number of function evaluations (Fevals) and the time in hours are displayed for each case.

Case algorithm Finit Fopt % decrease Fevals time (h)

1

LS 194.3 192.2 1.1 216 3.1
PSM 202.5 185.6 8.3 152 2.4
PSM-RBF1 202.5 185.5 8.4 95 1.4
PSM-RBF2 202.5 183.9 9.2 139 2.1
PSM-RBF3 202.5 184.0 9.1 129 1.9
PSM-RBF4 202.5 184.9 8.7 171 2.8

2

LS 253.8 245.3 3.3 222 3.8
PSM 267.1 233.8 12.5 129 2.4
PSM-RBF1 267.1 232.6 12.9 89 1.6
PSM-RBF2 267.1 231.9 13.2 91 1.7
PSM-RBF3 267.1 233.6 12.5 109 1.9
PSM-RBF4 267.1 233.7 12.5 194 3.8

3

LS 243.6 236.4 3.0 174 4.9
PSM 243.6 221.4 9.1 123 3.8
PSM-RBF1 243.6 218.1 10.5 164 5.1
PSM-RBF2 243.6 220.8 9.4 105 3.2
PSM-RBF3 243.6 218.8 10.2 104 3.0
PSM-RBF4 243.6 224.5 7.8 67 1.9

4

LS 231.2 228.3 1.3 282 4.3
PSM 240.2 217.0 9.7 112 1.9
PSM-RBF1 240.2 213.7 11.0 138 2.3
PSM-RBF2 240.2 213.8 11.0 105 1.7
PSM-RBF3 240.2 215.0 10.5 90 1.5
PSM-RBF4 240.2 216.6 9.8 179 3.3

less than 93% of PTV volume receives the prescribed dose, and the existence
of hotspots, the percentage of the PTV volume that receives more than 110%
of the prescribed dose, are other measures usually used to evaluate the target
coverage.Mean and/or maximum doses of OARs are usually displayed to verify
organ sparing.

The results regarding targets coverage are presented in Table 4. We can
verify that PSM-RBF2 treatment plans consistently obtained slightly better
target coverage numbers compared to equi5 treatment plans. Moreover, target
coverage numbers are favorable to PSM-RBF2 treatment plans compared to
LS treatment plans. Organ sparing results are shown in Table 5. All the treat-
ment plans fulfill the maximum dose requirements for the spinal cord and the
brainstem. However, as expected, the main differences reside in salivary glands
sparing. The equi5 treatment plans could never enhance parotid sparing and
fail to spare the oral cavity for the first and fourth cases. While LS treatment
plans do slightly improve the parotid’s mean dose and oral cavity mean dose,
PSM-RBF2 treatment plans obtained significant improvements and manage
to fulfill the mean dose requirements for most of the cases. The differences
between equi5 treatment plans and PSM-RBF2 treatment plans, concerning
salivary glands sparing, and also target coverage, show a clear advantage for the
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Table 4 Target coverage obtained by five-beam treatment plans.

Case Target coverage PSM-RBF2 LS equi5

1

PTV1 at 95 % volume 67.6 Gy 67.6 Gy 67.3 Gy
PTV1 % > 93% of Rx (%) 99.8 99.7 99.6
PTV1 % > 110% of Rx (%) 0.0 0.0 0.0
PTV2 at 95 % volume 57.6 Gy 57.4 Gy 57.3 Gy
PTV2 % > 93% of Rx (%) 97.5 96.9 97.1
PTV2 % > 110% of Rx (%) 17.3 17.5 17.1

2

PTV1 at 95 % volume 66.6 Gy 66.6 Gy 66.6 Gy
PTV1 % > 93% of Rx (%) 98.8 98.7 98.8
PTV1 % > 110% of Rx (%) 0.0 0.0 0.0
PTV2 at 95 % volume 56.2 Gy 56.2 Gy 55.7 Gy
PTV2 % > 93% of Rx (%) 96.3 96.2 95.6
PTV2 % > 110% of Rx (%) 5.6 6.3 6.5

3

PTV1 at 95 % volume 66.6 Gy 66.6 Gy 66.4 Gy
PTV1 % > 93% of Rx (%) 98.3 98.2 97.9
PTV1 % > 110% of Rx (%) 0.0 0.0 0.0
PTV2 at 95 % volume 55.6 Gy 54.5 Gy 53.8 Gy
PTV2 % > 93% of Rx (%) 95.4 94.3 93.8
PTV2 % > 110% of Rx (%) 18.3 18.8 19.0

4

PTV1 at 95 % volume 66.4 Gy 66.3 Gy 66.2 Gy
PTV1 % > 93% of Rx (%) 98.0 97.8 97.7
PTV1 % > 110% of Rx (%) 0.0 0.0 0.0
PTV2 at 95 % volume 56.4 Gy 55.9 Gy 55.6 Gy
PTV2 % > 93% of Rx (%) 96.2 95.6 95.4
PTV2 % > 110% of Rx (%) 26.6 26.3 26.5

PSM-RBF2 treatment plans. DVH results for the first and fourth cases, where
both parotid and oral cavity sparing were not obtained by equi5 treatment
plans, are displayed in Fig. 3 to illustrate the numbers presented in Tables 4
and 5. For clarity, the DVHs were split in PTV1 and PTV2 and the remaining
structures distributed as an attempt to better visualize the results. The as-
terisks indicate 95% of PTV volumes versus 95% of the prescribed doses. The
results displayed in Fig. 3 confirm the benefits of using the optimized beam
directions obtained and used in PSM-RBF2 treatment plan. The benefits are
clear with respect both to the equispaced solution and also to the gradient
based local search solution.

In order to perceive the differences between the best five and seven-beam
treatment plans, DVH results for the treatment plans obtained by PSM-RBF2

for the second case using five and seven beams are displayed in Fig. 4. There
is a slight advantage of the seven-beam treatment plan both in terms of target
coverage and organ sparing. Nevertheless, the best five-beam treatment plan
obtained competitive results compared to the best seven-beam treatment plan
results.
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Table 5 OARs sparing obtained by five-beam treatment plans.

Mean Dose (Gy) Max Dose (Gy)

Case OAR PSM-RBF2 LS equi5 PSM-RBF2 LS equi5

1

Spinal cord – – – 39.1 40.0 39.8
Brainstem – – – 51.5 52.8 52.8
Left parotid 25.3 26.9 27.7 – – –
Right parotid 21.6 24.4 27.1 – – –
Oral cavity 30.2 32.1 33.7 – – –

2

Spinal cord – – – 44.9 45.5 44.8
Brainstem – – – 53.7 54.6 53.8
Left parotid 26.0 28.9 28.5 – – –
Right parotid 25.5 28.8 28.7 – – –
Oral cavity 29.3 30.3 29.9 – – –

3

Spinal cord – – – 44.2 44.0 44.4
Brainstem – – – 47.3 49.8 48.5
Left parotid 26.6 25.5 27.7 – – –
Right parotid 28.6 29.6 29.5 – – –
Oral cavity 27.8 28.9 29.4 – – –

4

Spinal cord – – – 40.7 41.1 41.2
Brainstem – – – 48.5 49.4 49.3
Left parotid 24.5 28.1 28.6 – – –
Right parotid 23.9 26.4 27.0 – – –
Oral cavity 31.1 35.2 35.7 – – –

7 Conclusions

The BAO problem is a continuous global highly non-convex optimization
problem known to be extremely challenging and yet to be solved satisfactorily.
A new approach for the resolution of the BAO problem, using RBFs within
a pattern search methods framework, was proposed and tested using a set of
clinical head-and-neck cases. Pattern search methods are suited for the BAO
problem since they require few function value evaluations and, similarly to
other derivative-free optimization methods, have the ability to avoid local en-
trapment. The pattern search methods approach seems to be similar to neigh-
borhood search approaches in which the neighborhood is constructed using
the pattern search method. However, local neighborhood search approaches
are only similar to the poll step of the pattern search methods framework.
The existence of a search step with the flexibility to use any strategy, method
or heuristic, or take advantage of a priori knowledge of the problem at hand, is
an advantage that was explored successfully in this work. We have shown that
a beam angle set can be locally improved in a continuous manner using pattern
search methods. Moreover, it was shown that the incorporation of RBFs in the
search step leads to an improvement of the local solution obtained. For nu-
merical approximation of multivariate functions, RBFs can provide excellent
interpolants, even if the data points available are unevenly and sporadically
distributed. For the retrospective tumor cases tested, our RBFs tailored ap-
proach showed a positive influence on the quality of the local minimizer found.
The improvement of the local solutions in terms of objective function value
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Fig. 3 Cumulative dose volume histogram comparing the results obtained by equi5, LS and
PSM-RBF2 for the first and fourth cases, 3(a) and 3(b) respectively.

corresponded, for the head-and-neck cases tested, to high quality treatment
plans with better target coverage and with improved organ sparing, in partic-
ular better parotid sparing. Moreover, we have to highlight the low number
of function evaluations required to obtain locally optimal solutions, which is a
major advantage compared to other global heuristics. This advantage should
be even more relevant when considering non-coplanar directions since the num-
ber of possible directions to consider increases significantly. The efficiency on
the number of function value computations is of the utmost importance, par-
ticularly when the BAO problem is modeled using the optimal values of the
FMO problem.
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