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In this paper the simple dynamic facility location problem is extended to uncertain realizations
of the potential locations for facilities and the existence of customers as well as fixed and
variable costs. With limited knowledge about the future, a finite and discrete set of scenarios
is considered. The decisions to be made are where and when to locate the facilities, and how
to assign the existing customers over the whole planning horizon and under each scenario,
in order to minimize the expected total costs. Whilst assignment decisions can be scenario
dependent, location decisions have to take into account all possible scenarios and cannot be
changed according to each scenario in particular. We first propose a mixed linear programming
formulation for this problem and then we present a primal-dual heuristic approach to solve it.
The heuristic was tested over a set of randomly generated test problems. The computational
results are provided.
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1. Introduction

Facility location problems have been widely studied by many researchers, and from
the literature it is obvious the diversity of situations considered and the correspond-
ing diversity of models and solution techniques developed, reflecting the importance
of such problems [see 7, 24, 32, and references therein]. In simple terms, a location
problem can be seen as the problem of efficiently deciding where (and possibly
when) to locate facilities that will serve a set of customers.
In this paper we revisit the classical uncapacitated facility location problem

(UFLP), also known as the simple plant location problem, proposing a dynamic
and uncertain version of this problem as well as a primal-dual heuristic approach
inspired on classical works to solve it. The UFLP consists of deciding where to
locate a number of facilities among a finite set of potential sites, in order to minimize
total costs (fixed facility costs plus variable production costs and transportation
costs to customers). Since the facilities are uncapacitated, all demands will be
assigned to the nearest open facility and the size of an open facility is computed as
the sum of the demands it serves. The UFLP has been extensively studied since [18]
and many variations and extensions of this problem along with solution methods
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(mainly heuristic and approximation algorithms) can be found in several books
and papers (e.g., [7, 16, 24]). In a dynamic setting, one of the earliest dynamic
uncapacitated facility location problem (DUFLP) is proposed in [35]. The authors
consider the problem of closing up to a pre-specified number of initially open and
operating facilities as demand declines over a given multiperiod planning horizon.
It is also presented in this work a branch and bound algorithm and near optimal
heuristic algorithms to solve the problem. In [36] the model is generalized to solve a
facility phase-in/phase-out problem (i.e., opening new facilities or closing initially
opened ones). A related model is proposed in [42] that considers the possibility of
removing and establishing facilities in each time period and additional restrictions
on the maximum number of facilities to be removed in each period. As solution
method the authors propose a dynamic programming approach. In [40] is also
considered the DUFLP, where new facilities can be opened and initially opened
facilities can be closed over the planning horizon. In this work the authors present
a branch-and-bound procedure incorporating a heuristic dual ascent method, the
latter initially developed in [5, 11] for the static UFLP. More recently, a new version
of the DUFLP is presented in [9] that not only allows for the opening and closing of
facilities over the time horizon but also their reopening, where fixed costs include
also reopening costs. A primal-dual heuristic is proposed to solve the problem.
Regarding the capacitated case, we refer to [12, 14], where not only introductions
to such problems are given and additional difficulties that arise in the capacitated
case are emphasized, but also earlier models and solution methods are discussed.
More recently, models and solution methods for dynamic capacitated problems are
suggested in [10, 38], where other references can be found.
As location problems envolve strategic decisions that are costly to revert and that

have consequences in the medium and long term, decision makers should consider
not only the present situation but also the future. Dynamic models are pursuing
this goal as the time dimension and a time horizon are explicitly considered in
such models. However, whenever it is necessary to explicitly consider a time hori-
zon, uncertainty appears due to unknown future conditions that may lead to a
limited knowledge about problem parameters [28]. If the parameters of dynamic
location models change deterministically over time, then it is not possible to in-
corporate the uncertainty inherent in real-world location problems even though
time dimension is explicitly represented. Considering both time and uncertainty in
location models allows the consideration of more realistic situations, although the
resulting models become more complex than static and deterministic ones. During
the last decades there has been considerable interest in location under uncertainty
and a large volume of work is now available in specialized papers and monographs.
For extensive reviews on location problems under uncertainty we refer to [22, 37].
In [21] a stochastic version of the UFLP is derived, in which demands, variable pro-
duction and transportation costs, and selling prices (incorporated in the model)
can be random. The problem is formulated as a two–stage stochastic program with
recourse, where the first–stage decisions are the location and the size (capacity) of
the facilities to be established, and the second–stage or recourse decisions are the
allocation of the available production to the most profitable demands. As opposed
to the deterministic case, the choice of both the demands to be served and the size
of the facilities to be established also becomes part of the decision process. Solution
methods are later presented in [23]. The authors propose a heuristic dual–based
procedure, inspired on the method developed in [11] for the classical (static and
deterministic) UFLP. More recently, a two-stage stochastic version of the UFLP
and an approximation algorithm to solve it is proposed in [31]. Here, demand and
fixed costs are both random, and facilities may be opened in either the first or
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second stage. A related two-stage stochastic program is proposed in [41] in which
service installation costs are also considered. The authors propose a primal-dual
approximation algorithm to solve the optimization problem. The UFLP plays a
central role in the location research field, not only by itself but also integrated in
other problems. In [25] it is proposed a conceptual framework for robust supply
chain design under demand uncertainty. The aim is to find a supply chain con-
figuration (or a group of configurations) that provides robust performance under
demand uncertainty. Uncertainty of demand is represented by discrete scenarios
with known probabilities. First the authors define various performance measures
of ”robustness“ (minimum total expected cost, minimum variance of total cost,
minimum of maximum deviation, multiple criteria) emphasizing different perspec-
tives of robust supply chain. As solution methods, the authors discuss explicit
enumeration methods and stochastic programming (SP) methods. In the SP ap-
proach the problem is formulated as a classic two-stage stochastic program. The
objective function is to minimize total expected cost, which includes fixed costs of
opening plants and warehouses, expected shipping cost from plants to warehouses
and from warehouses to customers, and expected outsourcing cost when customers
demands cannot be satisfied from warehouses. The authors discuss the difficulties
in using these approaches when the total number of scenarios is large and sug-
gest that this number could be reduced by a sampling based approach. Various
stochastic capacitated versions have been also proposed, among which are [19, 20].
Less works on a dynamic framework are known. We refer to the DUFLP under
uncertainty proposed in [15], where the fixed and variable costs are described via
a set of scenarios. To solve the dynamic and stochastic program, the authors use
the scenario and policy aggregation described in [33]. A dynamic capacity acqui-
sition and assignment problem under uncertainty is proposed in [2]. The problem
seeks a capacity expansion schedule for a set of resources and the assignment of
resource capacity to tasks over the multi-period planning horizon. The problem
can be viewed as the planning of locations and capacities of distribution centers
(DCs) and the assignment of customers to the DCs. The model explicitly incorpo-
rates uncertainty in task processing requirements and assignments costs via a set
of scenarios. Although the problem is a multi-period one, the capacity planning
decisions for all periods are made in period/stage one (thus, a two-stage stochastic
programming approach is adopted). In [34] is considered a dynamic facility loca-
tion problem with uncertain demand, described by scenarios. The problem seeks
the optimal decisions for production, inventory and transportation, to serve the
customers during a fixed number of periods. It is assumed that the production
sites have limited storage capacities. The model is first solved by dynamic pro-
gramming and then a heuristic is proposed, the Sample Average Approximation
Method (SSA) adapted to the multi-period case. For other multi-period stochastic
problems, we refer to [3, 13] and for facility location problems integrated in supply
chain to [1, 27, 29, 30].
In this work we consider a dynamic location problem where uncertainty is ex-

plicitly incorporated, represented by a finite and discrete set of future scenarios.
It is important to point out that the representation of uncertainty in optimization
models, applied also to location models, has been widely debated in the literature
(e.g., [8, 17, 26, 37, 39]). The scenario approach appears as ”an extremely power-
ful, convenient and natural way to represent uncertainty“ [8], especially under high
uncertain conditions such as those that may occur during a multi-period location
problem and, consequently, the available information may not be sufficient to sup-
port a stochastic programming approach. In our model, fixed and assignment costs
are scenario dependent, as well as the set of customers and the set of potential
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locations for facilities. We formulate our problem as an integer linear program,
that contains the UFLP and the DUFLP as particular problems (NP-hard prob-
lems [6]). We propose a primal–dual heuristic approach directly inspired on the
approaches developed in [11] and [40], designed for the static and dynamic versions
of the UFLP, respectively.
The remainder of this paper is organized as follows. In the following section, the

notation used in this paper is introduced and our problem is described. In section
3 the primal-dual heuristic is described. In section 4 computational experiments
with results are provided. Section 5 concludes this paper with some notes on future
work.

2. Problem description

Consider a planning horizon represented by a discrete set of time periods T =
{1, ..., t, ..., T}. The future will be one of a finite set of possibilities, represented by
a discrete set of scenarios S = {1, ..., s, ..., S}, where each scenario characterizes the
value of all uncertain elements. Suppose that each s ∈ S will occur with probability
ps such that

∑
s∈S ps = 1.

Let the set of potential facility sites be denoted by J = {1, ..., j, ...,M} and the
set of possible customer locations (or demand points) by I = {1, ..., i, ..., N}. In
reality, these sets include all the potential facility locations and all the potential
customers for all possible scenarios, despite the fact that for each scenario in par-
ticular possibly only a subset of potential locations and a subset of customers is
considered. The reason for this is that we consider uncertainty associated not only
with the fixed and variable costs, but also associated with the existence of cus-
tomers and the future existence of potential locations. Let us define δsit as equal to
1 if customer i has a demand that has to be fulfilled during period t for scenario s,
and 0 otherwise. Then we have to guarantee that all customers such that δsit = 1
are assigned to an open facility, for all (t, s) ∈ T × S.
In terms of costs, the model considers not only fixed costs (opening and oper-

ating), but also variable costs associated with the assignment of customers to the
facilities. For (j, t, s) ∈ J×T ×S, let f s

jt be the fixed cost of establishing (opening)
facility j at the beginning of period t plus the operating and subsequent costs in
period t, under scenario s; for (i, j, t, s) ∈ I × J ×T ×S, csijt represents the assign-
ment cost of customer i to facility j in period t and under scenario s. If it is not
possible to open facility j at the beginning of time period t, under scenario s, then
the corresponding fixed cost will be considered equal to +∞. We assume that once
a facility is opened, it stays open until the end of the planning horizon.
The decisions to be made are where and when to locate new facilities, and how

to assign the existing customers over the whole planning horizon and under each
scenario. Thus, we define the following binary decision variables: xjt equals 1 if
facility j is opened at the beginning of period t, and 0 otherwise; ysijt equals 1 if
customer i is assigned to facility j in period t and under scenario s, and 0 otherwise.
As a matter of fact, assignment decisions are considered to be taken a period at a
time, so they can be changed according to the scenario that came true. Location
decisions are hard to revert, so we have to live with the decision taken whatever
the scenario that came to occur. Our aim is to make the best location decisions,
considering the uncertainty associated with the future. Several different objective
functions could be considered, but in this paper we consider the minimization of
expected total costs.
We can formulate the problem as follows:
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min
∑
t∈T

∑
j∈J

∑
s∈S

psf s
jt xjt +

∑
s∈S

∑
t∈T

∑
i∈I

∑
j∈J

pscsijt y
s
ijt (1a)

subject to∑
j∈J

ysijt = δsit ∀i ∈ I, t ∈ T , s ∈ S, (1b)

t∑
τ=1

xjτ − ysijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S, (1c)

∑
t∈T

(−xjt) ≥ −1 ∀j ∈ J, (1d)

xjt ∈ {0, 1} ∀j ∈ J, t ∈ T , (1e)

ysijt ∈ {0, 1} ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S. (1f)

The objective function (1a) minimizes the expected total costs (fixed plus variable
costs). Constraints (1b) require that, under each scenario and in every time period,
an existing customer is assigned to exactly one facility. Constraints (1c) impose
that an existing customer can only be assigned to open facilities. A customer can
be assigned to different facilities at different time periods and different scenarios.
Constraints (1d) ensure that each facility is opened at most once during the time
horizon (located at the same site in all scenarios). Finally, (1e)–(1f) restrict the
decision variables to be binary.
The above formulation contains the UFLP ( |T | = |S| = 1 ) and the DUFLP

( |T | > 1, |S| = 1 ) as particular problems, and has |J | |T | + |J | |I| |T | |S| binary
variables and |I| |T | |S|+ |J | |I| |T | |S|+ |J | restrictions (not counting the zero-one
constraints). Even for moderate dimensions of these sets, (1a)–(1f) becomes a quite
large integer linear program.

3. Heuristic approach

We propose a primal-dual heuristic based on the approaches developed in [11, 40].
The main idea of the approach is to obtain good solutions from the dual problem of
the corresponding LP relaxation of the original problem, more precisely from the so
called condensed dual problem. The various procedures are designed to reduce the
duality gap between dual and primal function values. The dual ascent procedure
constructs a dual solution and an associated set of candidate facility locations. The
primal procedure yields a corresponding candidate primal solution. If the dual and
primal solutions satisfy all complementary slackness conditions, then the solutions
are optimal. If not, the heuristic continues with the adjustment procedures in order
to improve these solutions.
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In order to describe the heuristic, we begin by formulating the dual problem, the
condensed dual problem and the complementary slackness conditions between the
dual and primal problems.

3.1. Dual problem and complementary slackness conditions

Consider the LP relaxation of the primal problem defined by (1a)–(1d) and where
restrictions (1e) and (1f) are replaced by nonnegativity constraints. Defining in (1a)
Csijt = pscsijt and Fs

jt = psfs
jt , and considering dual variables vsit , ws

ijt and uj
associated with the restrictions (1b), (1c) and (1d), respectively, the dual problem
is given by:

max
∑
i∈I

∑
t∈T

∑
s∈S

δsit v
s
it −

∑
j∈J

uj (2a)

subject to

vsit − ws
ijt ≤ Csijt ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S, (2b)

∑
i∈I

∑
s∈S

T∑
τ=t

ws
ijτ − uj ≤

∑
s∈S
Fs
jt ∀j ∈ J, t ∈ T , (2c)

ws
ijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S, (2d)

uj ≥ 0 ∀j ∈ J. (2e)

For each (i, j, t, s), by constraints (2b) and (2d), we may set

ws
ijt = max{0, vsit − Csijt} ∀i, j, t, s, (3)

to obtain the condensed dual problem:

max
∑
i∈I

∑
t∈T

∑
s∈S

δsit v
s
it −

∑
j∈J

uj (4a)

subject to

∑
i∈I

∑
s∈S

T∑
τ=t

max{0, vsiτ − Csijτ} − uj ≤
∑
s∈S
Fs
jt ∀j, t, (4b)

uj ≥ 0 ∀j. (4c)
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The corresponding slack variables πjt for constraints (4b) are given by:

πjt =
∑
s∈S
Fs
jt −

∑
i∈I

∑
s∈S

T∑
τ=t

max{0, vsiτ − Csijτ} + uj ∀j, t. (5)

Then, the complementary slackness conditions are:

πjt xjt = 0 ∀j, t, (6a)

vsit

∑
j

ysijt − δsit

 = 0 ∀i, t, s, (6b)

ws
ijt

(
t∑

τ=1

xjτ − ysijt

)
= 0 ∀i, j, t, s, (6c)

uj

(
1−

∑
t

xjt

)
= 0 ∀j, (6d)

ysijt
(
vsit − Csijt − ws

ijt

)
= 0 ∀i, j, t, s. (6e)

3.2. Primal-Dual heuristic

For ease in the exposition, let us reindex, for each scenario s, Csijt for each (i, t)

in nondecreasing order as Cs(k)it , for k = 1, 2, ..., ksit, where ksit denotes the number

of facility-to-customer links for (i, t) under scenario s. Thus, Cs(1)it = minj∈J{Csijt}.
For convenience, we also include Cs(k

s
it+1)

it = +∞, ∀ (i, t, s).
Let I+ be the set of pseudo customers (i, t, s) corresponding to the dual variables

vsit that the procedure will try to increase. Initially, I+ will be equal to all possible
combinations (i, t, s) ∈ I × T × S, except those such that δsit = 0. Later, I+ will
be set within the respective procedures. We note that a customer without demand
does not contribute to the improvement of the dual objective function value and
does not also contribute to any violation of the complementary slackness conditions.
Thus, these customers are excluded from the ascent procedures.
The steps of the heuristic are as follows:

(1) Set vsit = C
s(1)
it , ∀ (i, t, s), and uj = 0, ∀ j.

Set I+ = {(i, t, s) ∈ I × T × S : δsit = 1}.
(2) Execute the dual ascent procedure.
(3) Execute the primal procedure. If an optimal solution is found, then stop.
(4) Execute the primal–dual adjustment procedure.

The heuristic stops when the optimal solution is found or when there are no
primal or dual improvements after a given number of trials within the adjustment
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procedure.

3.2.1. Dual ascent procedure

This procedure, that may start with any feasible solution, will try to increase
the values of variables vsit belonging to set I+. The increase of such variables will
lead to an increase of the dual objective function value and, simultaneously, to the
decrease of some slacks’ values (see step 6). The maximum value that variables vsit
can take is limited by restrictions (4b). Equivalently, we can also consider slacks
defined by (5) and acknowledge that these slacks have to remain nonnegative.
Instead of increasing the value of each dual variable vsit as much as possible in
one single step, the procedure follows an iterative approach: in each iteration, the
algorithm will try to increase a dual variable vsit to the smallest Csijt that is greater
than or equal to the current vsit value. If this is not possible, due to the fact that
at least one slack would become negative, than the variable is increased as much
as possible guaranteeing that all slacks remain nonnegative (steps 4, 5 and 6). The
procedure is repeated until it is not possible to increase the value of any variable
vsit because of the slacks that are already equal to zero: if any variable was further
increased, there was at least one slack that would have to take a negative value.
The slacks that are equal to zero will define the set of candidate facility locations.

In what follows, (i, t, s)q, with q ≤ |I ×T ×S|, represents a given, but arbitrary,
sequence of pseudo customers.

(1) Consider any dual feasible solution {vsit} such that vsit ≥ C
s(1)
it , ∀ (i, t, s),

and πjt ≥ 0, ∀ (j, t).

For each (i, t, s) define k(i, t, s) = min{k : vsit ≤ C
s(k)
it }. If vsit = C

s(k(i,t,s))
it ,

then k(i, t, s)← k(i, t, s) + 1.
(2) (i, t, s)← (i, t, s)1 and q ← 1; r = 0.
(3) If (i, t, s) /∈ I+ ∨ δsit = 0, then go to step 7.
(4) Set ∆s

it = minj{πjτ : vsit − Csijt ≥ 0, τ ≤ t}.
(5) If ∆s

it > Cs(k(i,t,s))it − vsit, then ∆s
it = Cs(k(i,t,s))it − vsit; r = 1; k(i, t, s) ←

k(i, t, s) + 1.
(6) For all j ∈ J with vsit−Csijt ≥ 0, set πjτ = πjτ−∆s

it, τ ≤ t; set vsit = vsit+∆s
it.

(7) If q < |I+|, then q ← q + 1, (i, t, s)← (i, t, s)q , and return to step 3.
(8) If r = 1, then return to step 2, otherwise stop.

3.2.2. Primal procedure

From the dual ascent procedure results the dual feasible solution {vs+it } with an
objective function value v+D, and associated slacks {π+

jt}. A corresponding primal

feasible solution, {x+jt} and {y
s+
ijt}, can be constructed, with an objective function

value v+P .
In order to describe the primal procedure, let us first define the following sets:
J∗ = {(j, t) ∈ J × T : π+

jt = 0};
J∗
t = {j ∈ J : (j, τ) ∈ J∗, τ ≤ t}, ∀t ∈ T ;

J+
t = {j ∈ J : facility j is open at time t}, ∀t ∈ T .

In addition, define t1(j) = min{γ : j ∈ J+
γ } and t2(j) = max{γ ≤ t1(j) : (j, γ) ∈

J∗}. Then,
J+ = {(j, t2(j)) ∈ J × T : j ∈ J+

τ for some τ}.
The set J∗ corresponds to all (j, t) such that j can be opened at the beginning of

t without violating (6a); set J∗
t corresponds to all j that can be opened up to t; set

J+
t corresponds to all j that are actually open during t; set J+ ⊆ J∗ corresponds

to all j that open at the beginning of t, i.e., J+ dictates what facilities are actually
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opened and when (location decisions).
The facilities that are considered first (step 2) are the ones that at a given time

t should be assigned to a given customer (i, s), according to conditions (6c), called
essential facilities. Other facilities are only opened if strictly necessary (step 3). If a
facility j needs to be open at some time period(s) and the first time period when it
needs to be open is t, then it will be opened at the beginning of time period t2(j),
defined as being the time period closest to t such that the corresponding slack is
equal to zero. It should be noted that, as we are dealing with an uncapacitated
location problem, there will always be an admissible solution that can be built in
this way: we can be sure that there exists at least one facility j such that πj1 is
equal to zero (at least one facility can be opened at the beginning of the first time
period). If this was not true, then it would still be possible to improve the dual
solution by increasing at least one vsi1 dual variable.
The steps of the primal procedure are as follows:

(1) Set J+ = J+
t = ∅, ∀t. Build J∗ and J∗

t , ∀t.
(2) For each t ∈ T , if j ∈ J∗

t such that ∃(i, s) : vs+it ≥ Csijt and vs+it < Csij′t, ∀ j′ ∈
J∗
t \{j}, then J+

τ = J+
τ ∪ {j}, ∀τ ≥ t.

(3) For each (i, t, s), if @j ∈ J+
t with vs+it ≥ Csijt, then J+

τ = J+
τ ∪{

j ∈ J∗
t : Csijt = min{Csij′t : vsit ≥ Csij′t}

}
, ∀τ ≥ t.

(4) Build J+.
(5) Update J+

t , ∀t. Assign each (i, t, s) to facility j ∈ J+
t with lowest Csijt.

3.2.3. Primal–Dual adjustment procedure

The primal–dual adjustment procedure will try to enforce the conditions (6c) that
are still being violated by the current solution. The violation of these conditions
means that, for a given scenario s, time period t and customer i, there are at least
two variables ws

ijt different from zero such that the corresponding facilities j are
both open in period t. The only way of satisfying (6c) would be to assign customer i
to more than one opened facility, which is not admissible from the primal problem
point of view. This procedure will try to change the current dual solution, by
decreasing the value of at least one variable vsit (and thus decreasing the value of
the corresponding ws

ijt). At least two slacks will be increased with this operation,
that may lead to the increase of other dual variables and to a better solution.
In order to describe the primal–dual procedure, let us first consider the additional

sets:
Js∗
it = {j : ∃τ ≤ t | (j, τ) ∈ J∗ and vsit ≥ Csijt}, ∀(i, t, s);

Js+
it = {j : ∃τ ≤ t | (j, τ) ∈ J+ and vsit > Csijt}, ∀(i, t, s);

I+jt = {(i, τ, s) : Js∗
iτ = {j} for τ ≥ t}, ∀(j, t).

In addition, we denote a best source and a second-best source for (i, t, s) in J+
t

by j(i, t, s) and j′(i, t, s), respectively:
Csij(i,t,s)t = minj∈J+

t
{Csijt}, ∀(i, t, s);

Csij′(i,t,s)t = minj∈J+
t ,j ̸=j(i,t,s){Csijt}, ∀(i, t, s) for |J

s+
it | > 1.

And we define, Cs−it = maxj{Csijt : vsit > Csijt}.

For a given (i, t, s), the set Js∗
it represents all facilities j that can be open at

period t (because a slack πjτ is equal to zero for some τ ≤ t) and such that if j is
open then customer i can be assigned to j at period t under scenario s. Similarly,
for a given (i, t, s), the set Js+

it considers all facilities that are in operation during
period t in the current primal solution, and such that customer i would have to
be assigned to j in period t under scenario s to guarantee the satisfaction of (6c).
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Table 1. Parameters used in

the random generation of the

test problems.

S 2 5 10 20
T 5 10 15 —
M 5 10 20 50
N 20 50 100 200

If |Js+
it | > 1, for some (i, t, s), then a complementary slackness condition (6c) is

violated. In such case, the decrease of the variable vsit causes the increase of at least
two slacks πjτ , associated with distinct facilities (step 4). Set I+jt corresponds to all
variables vsiτ whose value can be increased with the increase of slacks πjτ , τ ≤ t,
and that must be constructed to the execution of the dual ascent procedure (step
5).
The steps of the primal-dual adjustment are:

(1) (i, t, s)← (i, t, s)1, q ← 1; set vD = v+D and vP = v+P ; set r = 0.
(2) If |Js+

it | ≤ 1, then go to step 9.
(3) If I+j(i,t,s)t = ∅ and I+j′(i,t,s)t = ∅, then go to step 9.

(4) For each (j, τ), with τ ≤ t and vsit > Csijt, set πjτ = πjτ + vsit − C
s−
it ; set

vsit = C
s−
it .

(5) a) Set I+ = I+j(i,t,s)t ∪ I+j′(i,t,s)t and execute the dual ascent procedure.

b) Set I+ = I+ ∪ {(i, t, s)} and execute the dual ascent procedure.
c) Set I+ = I × T × S and execute the dual ascent procedure.

(6) If vsit is changed, then return to step 2.
(7) Execute the primal procedure.
(8) If neither v+D > vD nor v+P < vP , then r ← r + 1; otherwise r ← 0 and

update vD and vP .
(9) If vD ≥ vP , or r = rmax or q = |I × T × S|, then stop; otherwise q ←

q + 1, (i, t, s)← (i, t, s)q, and return to step 2.

4. Computational experiments

This section is devoted to the presentation and discussion of the computational
experiences carried out to evaluate the performance of the heuristic both in terms
of solution quality and time. As we are not aware of the existence of benchmark
problem instances that could be easily adapted to the presented model, we have
chosen to randomly generate different problem instances, by varying the number S
of scenarios, number T of time periods, number M of possible facility locations and
number N of possible customers according to Table 1. As we are in the presence
of a dynamic problem under uncertainty, data must change simultaneously over
time and among the different scenarios. For each combination of (S, T,M,N), with
N > M , five instances were randomly generated according to the procedure that
is described in Appendix A. Different random seeds were used for each of the
instances. We have, in total, 780 instances, that were solved by the heuristic and
by a general solver (LpSolve). We decided to stop the solver if its solution time
exceeded 7200 seconds (s). We note that the smallest instance considered has 1025
variables with 1205 constraints but the largest has 3000750 variables with 3060050
constraints.
Data for all test problems are available from the authors. The proposed

heuristic approach was coded in C–language and LPSolve v5.5.2.0 [4] was used
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as LP solver1. The computational experiences have been carried out on a AMD
Turion(tm) X2 Dual–Core Mobile RM–70 processor at 2.00GHz with 3.00GB of
RAM.

In tables 2–5 we summarize the computational results obtained. Each table cor-
responds to a given number of scenarios. We report the minimum and maximum
number of opened facilities (dimension of the set J+) as well as the minimum,
average and maximum gap on the five instances solved for each combination of
(T,M,N). Gap is given by (fP −fLB)/fLB, in percentage, where fP represents the
primal objective function value found by the heuristic and fLB is the best known
lower bound on the optimal value, which is equal to the optimum solution provided
by the solver (for problems the solver was able to solve), or is equal to the dual ob-
jective function value found by our heuristic. The primal–dual heuristic was able
to solve all the 780 instances. The following tables also show the solution times
(in seconds) of the heuristic and the solver. We report the minimum, average and
maximum time spent by our algorithm and by the solver to solve each group of five
instances. We note that time results do not include the time required to read the
problems, only the time to solve them. As far as the solver results are concerned,
the solver could not solve some of the five instances, due to lack of memory to read
the problem or the execution time has exceeded 7200 s. We report these cases and
statistics refer only to those instances that were solved. Whenever the solver was
not able to solve any of the five instances, the solver time is given as ’ * ’. Only on
the larger instances, with (S, T,M,N) = (20, 15, 50, 200), the heuristic exceeded
the time limit established à priori. In terms of solution quality, the worst gap,
4.02%, was observed with instances with 20 scenarios and with T = 15, M = 50
and N = 100. Within each S-scenario problems, in average, the larger gaps were
observed in instances with largest M and N .
The average results for all S–scenario problems are reported in the last row of

the corresponding tables. We can see that the number of scenarios considered do
not result in markedly different solution qualities. However, the execution times
required by the solver are clearly higher than those required by the heuristic,
especially for large sized problems. In most of the test problems with large dimen-
sions the solver could not solve them in less than 7200 s. The heuristic time can
vary a lot, even for problems with the same size. For example, for instances with
(S, T,M,N) = (10, 15, 20, 200) the execution time ranges from 0.28 to 1231.29 s,
in average 508.18 seconds.
The computational results show that the heuristic is capable of finding very

good quality solutions in reasonable computational times, clearly outperforming
the general solver.
As it is well known, when solving integer programming problems general solvers

tend to reach a good admissible (sometimes optimal) solutions fast, and then spend
a lot of time trying to improve this solution or proving that the solution is optimal.
So comparing the computational time of a dedicated heuristic to that of a general
solver can be seen as unfair to the general solver. That is why we have repeated all
the computational tests but now using the general solver as an heuristic procedure:
for each set of instances, we have limited the maximum computational time spent
by the general solver considering this maximum time equal to the maximum time
spent by the heuristic and then compare the quality of the solutions found by the
two approaches. When this time limit was considered, and for all test problems,
the solver was not able to find any admissible solution (upper and lower bounds of

1mantemos isto? Há um que não gosta do LP solver, mas é...optimizer?
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Table 2. Computational results for 2–scenario problems.

T M N |J+| gap (%) Heur. time Solver time

min max min aver max min aver max min aver max

5 5 20 2 4 0.00 0.00 0.00 0.00 0.01 0.02 0.08 0.11 0.16
5 5 50 2 4 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.64 0.83
5 5 100 4 5 0.00 0.00 0.00 0.00 0.00 0.00 2.23 2.64 3.32
5 5 200 5 5 0.00 0.00 0.00 0.00 0.04 0.09 7.85 8.62 9.91
5 10 20 3 4 0.00 0.11 0.44 0.00 0.02 0.06 0.19 0.38 0.53
5 10 50 5 7 0.00 0.13 0.36 0.00 0.06 0.17 1.48 2.33 3.42
5 10 100 5 7 0.00 0.03 0.14 0.00 0.08 0.27 5.51 7.36 8.81
5 10 200 7 9 0.00 0.00 0.00 0.00 0.37 1.81 18.24 25.13 31.51
5 20 50 5 9 0.00 0.41 1.52 0.05 0.13 0.30 4.56 6.57 9.66
5 20 100 8 10 0.00 0.05 0.15 0.03 0.83 1.51 20.65 23.25 27.02
5 20 200 10 13 0.00 0.01 0.04 0.02 3.24 12.29 74.54 101.52 121.56
5 50 100 13 16 0.19 0.64 1.85 0.48 3.23 5.13 75.04 169.58 264.31
5 50 200 18 22 0.11 0.33 0.67 6.29 13.41 19.44 391.73 471.97 620.62
10 5 20 3 4 0.00 0.00 0.00 0.00 0.00 0.02 0.30 0.37 0.45
10 5 50 4 5 0.00 0.00 0.00 0.00 0.00 0.02 1.79 2.43 3.03
10 5 100 5 5 0.00 0.00 0.00 0.00 0.03 0.11 8.14 8.53 9.24
10 5 200 5 5 0.00 0.00 0.00 0.02 0.03 0.08 24.16 31.05 43.01
10 10 20 3 6 0.00 0.03 0.12 0.00 0.01 0.02 0.86 1.34 1.89
10 10 50 6 8 0.00 0.00 0.00 0.00 0.01 0.03 4.62 5.61 7.27
10 10 100 7 10 0.00 0.00 0.00 0.00 0.01 0.02 16.91 19.99 21.40
10 10 200 9 10 0.00 0.00 0.00 0.00 0.02 0.08 72.24 87.83 109.93
10 20 50 8 12 0.00 0.06 0.32 0.08 0.58 1.25 13.43 23.38 33.29
10 20 100 11 15 0.00 0.04 0.20 0.11 0.98 2.26 71.04 82.84 101.03
10 20 200 16 19 0.00 0.01 0.06 0.09 1.72 6.77 233.77 270.59 361.19
10 50 100 19 23 0.37 1.08 2.39 1.95 6.33 11.25 398.89 546.24 746.12
10 50 200 26 30 0.19 0.35 0.61 40.17 52.61 90.46 1510.53 1737.18 1880.55
15 5 20 3 5 0.00 0.00 0.00 0.00 0.01 0.06 0.70 0.91 1.28
15 5 50 4 5 0.00 0.00 0.00 0.00 0.00 0.00 4.09 5.09 6.19
15 5 100 5 5 0.00 0.00 0.00 0.00 0.04 0.09 16.65 19.49 22.07
15 5 200 5 5 0.00 0.00 0.00 0.00 0.34 1.64 71.09 80.89 91.23
15 10 20 4 7 0.00 0.00 0.00 0.00 0.00 0.02 1.72 2.70 3.67
15 10 50 7 9 0.00 0.00 0.00 0.00 0.01 0.03 11.00 12.75 14.56
15 10 100 8 10 0.00 0.00 0.00 0.00 0.03 0.11 37.30 49.85 67.16
15 10 200 10 10 0.00 0.00 0.00 0.02 0.02 0.02 155.06 215.19 247.49
15 20 50 9 12 0.00 0.03 0.13 0.31 1.02 1.97 47.00 54.76 71.79
15 20 100 14 16 0.00 0.07 0.21 0.02 1.62 7.47 114.54 168.61 217.79
15 20 200 17 20 0.00 0.00 0.00 0.27 1.16 3.23 620.72 696.22 878.47
15 50 100 23 28 0.35 0.76 1.31 2.39 5.40 9.50 1064.62 1768.31 2946.97
15 50 200a 32 37 0.00 0.52 2.28 58.62 106.15 210.16 2699.81 3370.90 3957.47

Aver 0.03 0.12 0.33 2.84 5.12 9.94 200.09 258.54 331.95

a Solver was unable to solve one of the instances with T = 15, M = 50 and N = 200.

the primal objective function value were equal to ’+∞’ and ’−∞’, respectively).
It should be noted that the minimum times presented by the solver (see tables
2–5) are greater than the maximum times spent by the heuristic to compute the
solution for the same problems.

5. Conclusions and future work

In this paper we have described an uncapacitated discrete dynamic location prob-
lem that considers uncertainty in many of the problems’ parameters. The uncer-
tainty is represented by a set of possible future scenarios. An efficient primal-dual
heuristic was developed that is able to calculate very good quality solutions in
reasonable computational times, even for large dimension instances. In this model,
an objective function that considers the minimization of the expected cost is being
considered. In fact, if the decision maker is considered as being risk neutral, this
objective function value will probably be the most adequate one. But when we
are dealing with uncertainty, different decision makers with different risk profiles
will probably consider different solutions as optimal: they can also be interested
in minimizing the maximum regret, or considering the best solution in the worst
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Table 3. Computational results for 5–scenario problems.

T M N |J+| gap (%) Heur. time Solver time

min max min aver max min aver max min aver max

5 5 20 1 2 0.00 0.00 0.00 0.00 0.00 0.02 0.47 0.51 0.56
5 5 50 2 3 0.00 0.00 0.00 0.00 0.01 0.02 3.42 4.29 5.54
5 5 100 4 4 0.00 0.00 0.00 0.00 0.01 0.02 10.48 14.21 18.70
5 5 200 4 5 0.00 0.00 0.00 0.00 0.01 0.03 38.05 51.95 61.87
5 10 20 2 3 0.00 0.00 0.00 0.00 0.02 0.06 1.50 2.06 3.42
5 10 50 3 5 0.00 0.07 0.36 0.00 0.19 0.55 8.80 11.93 17.44
5 10 100 5 7 0.00 0.00 0.00 0.00 2.63 10.19 35.65 41.94 53.42
5 10 200 7 8 0.00 0.00 0.00 0.00 0.24 0.66 138.92 176.28 204.44
5 20 50 5 6 0.00 0.39 1.41 0.08 0.74 1.89 33.79 51.27 66.67
5 20 100 7 8 0.00 0.19 0.56 0.02 5.38 10.78 93.54 184.33 240.07
5 20 200 9 13 0.00 0.08 0.26 2.14 34.26 52.57 602.52 840.71 1084.33
5 50 100 10 12 0.00 0.15 0.49 4.57 14.99 23.76 687.40 984.75 1292.27
5 50 200 14 18 0.16 0.24 0.34 49.97 94.49 188.82 3258.87 4243.81 5243.82
10 5 20 2 4 0.00 0.06 0.29 0.00 0.04 0.20 2.26 2.50 3.00
10 5 50 4 5 0.00 0.06 0.31 0.00 0.14 0.50 10.95 15.89 21.92
10 5 100 4 5 0.00 0.00 0.00 0.02 0.02 0.03 44.06 46.75 51.28
10 5 200 5 5 0.00 0.00 0.00 0.02 0.03 0.05 201.49 226.94 273.97
10 10 20 3 4 0.00 0.29 1.46 0.00 0.31 1.11 6.68 9.70 11.59
10 10 50 4 7 0.00 0.10 0.33 0.00 0.86 3.48 36.16 51.28 65.13
10 10 100 7 8 0.00 0.00 0.00 0.02 0.17 0.56 154.46 185.67 238.81
10 10 200 9 10 0.00 0.00 0.00 0.03 0.04 0.05 364.87 566.97 853.41
10 20 50 7 9 0.00 0.25 0.57 1.45 4.93 8.81 128.76 205.82 276.32
10 20 100 8 13 0.00 0.02 0.12 0.27 9.71 27.44 489.92 688.11 914.27
10 20 200 13 18 0.00 0.01 0.01 2.18 19.64 68.11 1766.34 2640.57 3348.20
10 50 100 15 19 0.30 0.74 1.34 11.22 50.01 82.74 3048.36 4795.48 7152.59
10 50 200 20 24 0.83 1.05 1.40 210.62 344.60 432.31 * * *
15 5 20 2 4 0.00 0.00 0.00 0.00 0.01 0.02 5.65 5.99 6.13
15 5 50 4 5 0.00 0.00 0.00 0.02 0.02 0.03 29.97 33.62 41.12
15 5 100 4 5 0.00 0.00 0.00 0.03 0.07 0.19 107.89 126.81 140.43
15 5 200 5 5 0.00 0.00 0.00 0.05 0.06 0.09 493.69 554.62 653.95
15 10 20 3 5 0.00 0.00 0.00 0.22 0.68 1.95 15.91 18.10 20.97
15 10 50 6 7 0.00 0.00 0.00 0.00 0.04 0.11 96.13 124.75 148.18
15 10 100 8 9 0.00 0.01 0.04 0.03 1.97 8.94 444.77 489.07 561.88
15 10 200 10 10 0.00 0.00 0.00 0.06 0.32 1.36 1187.18 1471.82 1701.38
15 20 50 7 9 0.00 0.11 0.39 2.81 10.82 25.55 316.88 353.42 404.52
15 20 100 9 15 0.00 0.13 0.41 4.99 23.75 48.55 1043.98 1300.18 1491.25
15 20 200 14 18 0.00 0.01 0.03 1.75 53.01 156.41 4576.93 5245.83 6506.93
15 50 100a 17 24 0.68 1.47 2.72 23.43 60.40 120.53 6564.31 6882.34 7200.37
15 50 200 24 30 0.42 1.30 1.87 20.58 338.01 639.04 * * *

Aver 0.06 0.17 0.38 8.63 27.50 49.17 690.82 882.44 1091.36

a Solver was unable to solve three of the instances with T = 15, M = 50 and N = 100.

scenario. This means that other objective functions should be considered, that can
better represent the attitude towards risk of different decision-makers. This will
certainly be one of the developments to be followed. We also intend to consider
capacity constraints, as well as considering the possibility of closing already opened
facilities, to increase the range of applicability of this model.
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Table 5. Computational results for 20–scenario problems.

T M N |J+| gap (%) Heur. time Solver time

min max min aver max min aver max min aver max
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10 10 200 9 10 0.00 0.00 0.00 0.30 1.62 3.76 * * *
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Appendix A. Generation of test problems

Below we provide the approach used in the generation of test problems (in general).
As far as scenario probabilities (ps) are concerned, these were randomly generated
such that the sum of all probabilities is equal to 1. Table A1 presents some in-
put values that were considered and that must be known before the generation
procedure.
For ease in the exposition, let us first consider the following additional notation:
Js
t : Set of potencial facility locations that can be selected (opened) at the be-

ginning of time period t ∈ T for scenario s ∈ S,
Ist : Set of customer locations with demand during period t ∈ T for scenario

s ∈ S,
where Js

t ⊆ J and Ist ⊆ I.

(1) Random generation of (x, y)−coordinates in a rectangular area of size
MaxX ×MaxY corresponding to the location of |J |+ |I| nodes (potencial
facility sites plus possible customer locations).

(2) Random generation of arcs between the network nodes with probability
parc; afterwards, if there isn’t an arc between two nodes “close” (the Eu-
clidean distance between them is less than d), an arc is created between
them with probability parcc > parc.

(3) For s = 1 (basic scenario):

3.1 for t = 1: random generation of costs associated with arcs, according
to a Uniform distribution U [lc, uc];
for each t ≥ 2, each arc cost is equal to the cost in period t− 1 plus a
changing factor randomly generated.

3.2 for each t ≥ 1:
i. calculation of the shortest path between each possible customer

location and each potential facility location—assignment costs—
using the Floyd-Warshall algorithm.

ii. random generation of set J1
t , with J1

1 ̸= ∅, and fixed costs:
each location j is included in J1

t with probability p1f ;

− if j ∈ J1
t , then the fixed cost at j is randomly generated from

a Uniform distribution U [lf, uf ], and for each τ > t the fixed
cost is increased by a changing factor randomly generated;

− if j /∈ J1
t , then the fixed cost at j is set to +∞.

iii. random generation of set I1t : each customer i is included in I1t
with probability p1c ; in addition, for t ≥ 3, if i was included in I1t−2

and excluded from I1t−1, then i is included in I1t with probability
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Table A1. Input values.

parc 0.75
d 50
parcc 0.80
psf 0.80 for s = 1 and 0.5 ∀s ̸= 1

psc 0.80 for s = 1 and 0.3 ∀s ̸= 1
pc 0.10
psa 0.40
pscf 0.60

pc < 0.5.

(4) For s ̸= 1 (other scenarios):

4.1 for t = 1, consider the data generated for the basic scenario and t = 1.
4.1 for each t ≥ 2:

i. each arc cost that was generated for time period t of the basic
scenario (basic cost) changes in time period t of scenario s with
probability psa; if a variation occurs, then the arc cost is equal to
the basic cost plus a changing factor Θa randomly generated.

ii. calculation of the shortest path between each possible customer
location and each potential facility location.

iii. random generation of set Js
t and fixed costs:

each location j is included in Js
t with probability psf ;

− if j ∈ Js
t ∩ J1

t , then the fixed cost at j that was generated
for time period t of the basic scenario (basic cost) changes in
time period t of scenario s with probability pscf ; if a variation
occurs, then the fixed cost is equal to the basic cost plus a
changing factor Θf randomly generated;

− if j ∈ Js
t but j /∈ J1

t , then the fixed cost at j is randomly
generated from a Uniform distribution U [lf, uf ], and for each
τ > t the fixed cost is increased by a changing factor randomly
generated;

− if j /∈ Js
t , then fixed cost at j is set to +∞.

iv. random generation of set Ist : the demand state of customer i that
was generated for time period t of the basic scenario changes in
time period t of scenario s with probability psc.


