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Abstract Intensity Modulated Radiotherapy Treatment (IMRT) is a technique used1

in the treatment of cancer, where the radiation beams are modulated by a multileaf2

collimator allowing the irradiation of the patient using non-uniform radiation fields3

from selected angles. Beam angle optimization consists in trying to find the best set of4

angles that should be used in IMRT planning. The choice of this set of angles is patient5

and pathology dependent and, in clinical practice, most of the times it is made using6

a trial and error procedure or simply using equidistantly distributed angles. In this7

paper we propose a genetic algorithm that aims at calculating good sets of angles in an8

automated way, given a predetermined number of angles. We consider the discretiza-9

tion of all possible angles in the interval [0◦, 360◦], and each individual is represented10

by a chromosome with 360 binary genes. As the calculation of a given individual’s11

fitness is very expensive in terms of computational time, the genetic algorithm uses a12

neural network as a surrogate model to calculate the fitness of most of the individuals13

in the population. To explicitly consider the estimation error that can result from the14

use of this surrogate model, the fitness of each individual is represented by an interval15

of values and not by a single crisp value. The genetic algorithm is capable of finding16

improved solutions, when compared to the usual equidistant solution applied in clin-17

ical practice. The genetic algorithm will be described and computational results will18

be shown.19
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1 Introduction22

The goal of radiation therapy is to deliver a dose of radiation to the cancerous region23

to sterilize the tumor minimizing the damages to the surrounding healthy organs and24

tissues. Radiation therapy is delivered with the patient immobilized on a couch that can25

rotate around a vertical axis. For most types of cancer, radiation therapy is administered26

5 days each week for 5–8 weeks (Lim 2008). Using small radiation doses daily instead27

of few larger doses helps protect healthy tissues in the tumor region. Typically, high28

energy photon beam radiation is generated by a linear accelerator mounted on a gantry29

that can rotate along a central axis (Fig. 1) parallel to the couch. The rotation of the30

couch combined with the rotation of the gantry allows radiation from almost any angle31

around the tumor. The aim is to be able to plan a treatment that is in accordance with32

the medical prescription in terms of radiation dose distribution. Usually, the medical33

prescription will define prescribed doses to the target volumes (the regions that have to34

be irradiated), and mean or maximum tolerance doses to the organs at risk (the regions35

that should be spared). Despite the fact that almost all angles can be used in radiation36

delivery, the use of coplanar angles (without couch rotation) is the most usual option.37

This is a way to simplify an already complex problem, and the angles considered lie38

in the plane of the rotation of the gantry around the patient. Regardless the evidence39

presented in the literature that appropriate radiation beam incidence directions can40

lead to a plan’s quality improvement (Das and Marks 1997; Liu et al. 2006), in clinical41

practice, most of the time, the number of beam angles is assumed to be defined a priori42

by the treatment planner and the beam directions are still manually selected by the43

treatment planner who relies mostly on his experience.44

An important type of radiation therapy is intensity modulated radiation therapy45

(IMRT), where the radiation beams are modulated by a multileaf collimator. Multileaf46

collimators enable the transformation of the beam into a grid of smaller beamlets of47

independent intensities, as illustrated in Figs. 2 and 3. Here, we will consider IMRT48

optimization problems using coplanar angles and we will assume that the number of49

beam angles is defined a priori by the treatment planner.50

The decision-making process regarding IMRT treatment planning can be concep-51

tually understood as having three main steps.52

1. Beam Angle Optimization (BAO): deciding what is the best number of beam angles53

and their directions. This means deciding how many times does the gantry stop,54

and where should it stop.55

2. Fluence Map Optimization (FMO): deciding which are the best beamlet intensities56

for each gantry position. This means calculating the optimal radiation intensity57

profile that will be delivered to the patient every time the gantry stops, so that the58

medical prescription is satisfied.59

3. Leaf Sequencing Problem: determining how the leaves of the multileaf collimator60

should move, so that the optimal beamlet intensities calculated in the previous step61

are, in fact, delivered.62
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A genetic algorithm with neural network

Fig. 1 Linear accelerator

Fig. 2 Illustration of an MLC
(with nine pairs of leaves)

Fig. 3 Illustration of a beamlet
intensity map (9 × 9)

There are approaches that try to consider a beamlet-based approach, without the need63

to look at this problem using this three step framework, but those approaches lead to64

the development of large-scale optimization problems.65

Most of the efforts in the IMRT optimization community have been devoted at66

optimizing beamlet intensities (Craft 2007), and comparatively fewer research effort67

has been directed to the optimization of beam angles (Ehrgott et al. 2008).68

The BAO problem has been tackled using several different methodologies: scoring69

methods, where scores are assigned to beam angles based on geometric and dosimetric70

information (D’Souza et al. 2004); methods based on the concept of beam’s eye view71

(Goitein et al. 1983; Lu et al. 1997; Pugachev and Xing 2001a,b), where the area of72

the tumor and the area of the surrounding organs as seen by the beam are considered73

in the selection of the better candidates; response surface approach (Aleman et al.74
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2006); derivative-free approaches (Rocha et al. 2012); mixed integer programming75

approaches (Lee et al. 2006); among others (see, for instance, Das and Marks 1997;76

Ehrgott and Johnston 2003; Craft 2007; Lim and Cao 2012).77

Many authors have also applied metaheuristics to this problem like simulated78

annealing (Bortfeld and Schlegel 1993; Lu et al. 1997; Djajaputra et al. 2003) or79

particle swarm optimization (Li et al. 2005). Evolutionary algorithms have also been80

used. Wu et al. (2000), consider conformal radiotherapy treatment planning, and use81

a genetic algorithm to determine beam intensities. Li et al. (2004), describe a genetic82

algorithm where each chromosome has as many genes as angles that are encoded83

using integers. Schreibmann et al. (2004), describe a hybrid multiobjective evolution-84

ary algorithm that produces a set of efficient solutions for the multiobjective problem85

considered. Li and Yao (2006), use a genetic algorithm hybridized with an ant colony86

approach applied to BAO. Li et al. (2006), describe a genetic algorithm with a small87

population (the number of individuals is double the number of beams considered), that88

makes use of plan templates provided by experts. Bevilacqua et al. (2007), develop a89

genetic algorithm that can be applied to conformal, aperture-based and IMRT treat-90

ments, with the genetic representation changed accordingly. Lei and Li (2008), Li and91

Lei (2010), describe a genetic algorithm applied to the beam selection problem where92

the representation of each individual is based on the DNA structure. A small population93

of 24 individuals is used in chest and oropharyngeal tumor examples. Nazareth et al.94

(2009), describe the use of a genetic algorithm that is run on a distributed computing95

platform such that each generation takes about 30 min to be completed. Holdsworth96

et al. (2010), consider a two level multiobjective optimization evolutionary algorithm97

where the lower level performs a deterministic beamlet intensity optimization using98

a weighted quadratic objective function, and the top level uses a randomly generated99

population of individuals to represent the objective function weights that determine the100

relative weighting between organs to spare and targets. Fiege et al. (2011), describe the101

application of a parallel multiobjective genetic algorithm (Ferret) to BAO and FMO.102

They demonstrate the feasibility of the proposed approach on two phantoms (artificial103

models used to simulate the effect of radiation). Other genetic algorithm applications104

in radiotherapy treatment planning that do not deal explicitly with BAO can also be105

found (Lahanas et al. 2003; Haas and Reeves 2005).106

The BAO problem is the first problem that should be solved in treatment planning,107

but in reality its optimal solution will be dependent on the optimal solutions of the two108

other sequential problems, especially on the optimal solution of the FMO. We need109

to know what are the optimal beamlet intensities associated with each set of angles110

to be able to compare different solutions (see, for instance, Das and Marks 1997;111

Haas et al. 1998; Schreibmann et al. 2004; Aleman et al. 2006; Craft 2007). When the112

BAO problem is not based on the optimal FMO solutions, the resulting beam angle113

set has no guarantee of optimality and has questionable reliability since it has been114

extensively reported that optimal beam angles for IMRT are often non-intuitive (Stein115

et al. 1997). Obtaining the optimal solution for a beam angle set is time costly and116

even if only one beam angle is changed in that set, a complete dose computation is117

required in order to compute and obtain the corresponding optimal FMO solution.118

This can cause a serious problem if we intend to use algorithms that require several119

objective function evaluations, as is the case with evolutionary algorithms, and we120
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have limited computational resources as is the case in many health institutions. One121

way of overcoming this problem is to use a surrogate model to calculate an estima-122

tion of the true objective function value. This idea has been used by several authors123

in different environments (see, for instance, El-Beltagy and Keane 1999; Emmerich124

et al. 2002; Jin and Sendhoff 2004; Jin and Branke 2005), but has never been applied125

to BAO.126

The main contribution of this paper is to introduce the use of surrogate models within127

an evolutionary algorithm framework applied to BAO. We present a genetic algorithm128

that considers a discretization of the interval of all possible angles and that uses a neural129

network as surrogate model to calculate the fitness function of most individuals in the130

population. The algorithm uses the standard genetic operators (selection, crossover,131

mutation) as well as migration and a special local search operator that is nothing more132

than a genetic algorithm considering a very small elite population.133

The paper is organized as follows: in the next section we describe the BAO problem134

formulation and the associated FMO problem formulation. Section 3 describes the135

surrogate model used. Section 4 describes the genetic algorithm. Clinical examples136

of head-and-neck cases used in the computational tests and some computational and137

clinical results are presented in Sect. 5. Section 6 presents the conclusions and some138

guidelines for future work.139

2 Beam angle optimization problem140

In beam angle optimization we aim at finding the best set of beams to be used in a given141

treatment. This means calculating the optimal number of beams, k, and figuring out142

what are the best k beam angles. This is a very important step in IMRT optimization143

since it directly influences both the quality of the treatment delivered and the overall144

treatment time. The treatment time increases with the increase in the number of beams.145

From the institution’s point of view, fewer beams means that more patients can be146

treated. From the patient point of view, the faster the treatment the better because it147

is more likely that the patient does not change his position significantly during the148

treatment, which contributes to more accurate treatment results.149

In this paper we consider that k is determined a priori. For each set of k beams, we150

will need to determine a way of assessing the goodness of this set. This assessment151

can only be done after considering how the radiation dose will be deposited into the152

patient cells, so the FMO problem needs to be first solved so that we can consider153

the optimized beamlet intensities for each beam. To solve the FMO problem, we need154

a way to calculate accurately the radiation dose distribution deposited in the patient,155

measured in Gray (Gy). Each structure’s volume is discretized in voxels (small volume156

elements) and the dose is computed for each voxel using the superposition principle,157

i.e., considering the contribution of each beamlet. Typically, a dose matrix D is such158

that each row of D corresponds to a voxel and each column to each possible beamlet.159

Thus, the number of rows of matrix D equals the number of voxels (V ) and the number160

of columns equals the number of beamlets (N ) from all beam directions considered.161

The element in row i and column j of matrix D corresponds to the dose contribution162

to voxel i from beamlet j with unit intensity. Therefore we can say that the total dose163
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received by the voxel i is given by
∑N

j=1 Di jw j , with w j representing the intensity164

(or fluence) of beamlet j . Usually, the total number of voxels considered reaches the165

tens of thousands, thus the row dimension of the dose matrix is of that magnitude.166

The size of D originates large-scale problems being one of the main reasons for the167

difficulty of solving the FMO problem. From a mathematical point of view, we are168

thus in the presence of two related problems. If we define � as the set of all possible169

angles, then a basic formulation for the BAO problem can be defined as follows:170

min f (θ1, θ2, . . . , θk) (1)171

subject to θ1, . . . , θk ∈ � (2)172

If we consider a discretization of � then we are in the presence of a combinatorial173

optimization problem.174

There is no consensual way of calculating optimal beamlet intensities. Many mathe-175

matical optimization models and algorithms have been proposed for the FMO problem,176

including linear models (Romeijn et al. 2003), mixed integer linear models (Lee et al.177

2003), nonlinear models (Cheong et al. 2005), and multiobjective models (Craft et al.178

2006). We have chosen to use a convex penalty function voxel-based nonlinear model179

(Aleman et al. 2008). According to this model, each voxel is penalized considering180

the square difference of the amount of dose received by the voxel and the amount of181

dose desired/allowed for the voxel. This formulation yields a quadratic programming182

problem with only linear nonegativity constraints on the fluence values (Romeijn et183

al. 2003):184

Minw

V
∑

i=1






λi



Ti −
N

∑

j=1

Di jw j





2

+

+ λ̄i





N
∑

j=1

Di jw j − Ti





2

+






(3)185

s.t. w j ≥ 0, j = 1, . . . , N (4)186

where Ti is the desired dose for voxel i, λi and λ̄i are the penalty weights of underdose187

and overdose of voxel i , respectively, and (·)+ = max {0, ·}.188

Although this formulation allows unique λi and λ̄i weights associated with each189

voxel, similarly to the implementation in Aleman et al. (2008), weights are assigned190

by structure only so that every voxel in a given structure has the weight assigned to that191

structure divided by the number of voxels of the structure. This nonlinear formulation192

implies that a very small amount of underdose or overdose may be accepted in clinical193

decision making, but larger deviations from the desired/allowed doses are decreasingly194

tolerated. It is beyond the scope of this study to discuss if this formulation of the FMO195

problem is preferable to others or not.196

3 Surrogate model197

For each set of k beam angles we will need to solve a FMO problem. The computational198

time spent solving one single instance of the FMO is dependent on the patient and199
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on k, but it is always computationally expensive. Table 2 shows the computational200

times in seconds of solving one instance of the FMO quadratic programming problem.201

Depending on the patient and number of beams considered, it can take from 40 s to more202

than 5 min to solve a single FMO optimization problem. This makes it difficult to use203

algorithms that require many objective function evaluations, like genetic algorithms.204

To try and overcome this difficulty, it is possible to use a surrogate model, that will205

be able to estimate the true objective function value in a tiny fraction of time than it206

takes to calculate its true value.207

In this work, we have decided to use a neural network (NN) to map sets of angles208

into objective function values. The use of NNs in radiotherapy problems is not new.209

Willoughby et al. (1996), describe the use of a NN to model the clinical judgment made210

by physicians when assessing treatment plans. Wells and Niederer (1998), develop an211

expert system based on NNs to plan standardized 3D conformal therapy treatments.212

Knowles et al. (1998), describe the use of NNs that will return the required treatment213

plan parameters after being trained (using evolutionary algorithms) with completed214

treatment plans. Rowbottom et al. (1999), consider prostate cancer patients treated with215

conformal therapy, and develop a NN that receives as inputs the patients’ geometry216

information and has as outputs the angles’ configuration. Gulliford et al. (2004), try217

to predict biological outcomes in prostate cancer patients after being submitted to218

radiotherapy treatments. Mathieu et al. (2005) and Vasseur et al. (2008), describe219

the use of NNs for accurate and fast dose calculation. Llacer et al. (2009), use NNs220

as part of an automatic non-coplanar beam orientation selection. The NNs work as221

classifiers, creating beam clusters based on the beam’s coverage of the tumor to be222

treated plus some safety margins, and are also used for the geometric definition of the223

patient. Kalantzis et al. (2011), investigate the use of NNs in reconstructing dose maps224

for IMRT, achieving good results. For an introduction to NNs and a survey of NNs225

applied to radiotherapy problems see, for instance, Goodband and Haas (2008).226

The main idea used in our work is as follows: we want to train a patient specific227

NN, that will receive sets of angles as inputs and that, for one particular patient, will228

return as output the value of the FMO objective function (3).229

First of all, it will be necessary to generate a set of samples. Sets of k randomly230

generated angles are considered, and for each of these sets the true value of the objective231

function, f , is computed by calculating the optimal solution of the FMO problem.232

These samples are then used to train a neural network. The trained neural network is233

then ready to calculate f ’ expecting this value to be as close to f as possible (Fig.234

4). This neural network should be capable of mapping a highly non-linear surface,235

with many local minima (Fig. 5). To facilitate the training of neural networks, and236

to improve their performance, both inputs and outputs are often normalized to lie in237

a fixed range (see, for instance, Shanker et al. 1996; Witten and Frank 2005; Han238

and Kamber 2006, pp. 70–72). We applied a normalization procedure as follows:239

considering the input angles, we decided to subtract 180◦ to each angle value and then240

divide by 180◦, so that all angle values are within the interval [−1,1]. Regarding the241

output values, their statistical mean and standard deviation were calculated, the mean242

was subtracted from each value and the result was divided by the standard deviation.243

This results in a set of values with mean approximately equal to zero and standard244

deviation approximately equal to one.245
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Fig. 4 Considering sets of 5 angles, the neural network will have five inputs (one input for each of the
angles) and will have as output the estimated objective function value. a while training; b after training

Fig. 5 Example of the objective function surface (defined by Eq. (3)) when we are considering sets of two
angles only

It is not easy to decide on the best neural network architecture to use, and it is246

expected that this best architecture will be dependent on the particular situation at hand247

(the patient, the medical prescription, the number of angles, the number of samples248

available to train the NN).249

For this reason, several neural network configurations are tested before choosing250

the best one. This is done as follows:251
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Fig. 6 An example of a neural
network with three inputs (three

angles), two hidden layers with
four neurons each and one
output (objective function value)
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Fig. 7 a Linear transfer function; b Hyperbolic tangent sigmoid transfer function

1. Divide the set of available samples into three sets: training set (60 %), cross-252

validation set (20 %) and test set (20 %).253

2. For each NN configuration, train the network using the samples in the training set,254

and calculate the estimation error using the cross-validation set. The estimation255

error is calculated by averaging the squared differences between each estimated256

value calculated by the NN and the corresponding target value from the cross-257

validation set.258

3. Choose the NN configuration with the least estimation error.259

4. Train 20 NNs with the same configuration chosen at step 3, randomly initialized.260

5. Calculate the outputs for each of the 20 trained NNs using the test set, and consider261

the estimated values equal to the average value of all NN estimations. Calculate262

the expected estimation error using the test set.263
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Fig. 8 Estimation error diminishes with the increase in the number of NNs
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Fig. 9 Learning curve

The configurations tested in step 2 consider 1 to 5 hidden layers, and 1 to 40 neurons264

in each hidden layer (all hidden layers with the same number of neurons—Fig. 6). All265

hidden layers will have hyperbolic tangent sigmoid transfer functions, and the output266

layer will have a linear transfer function (Fig. 7).267

The reasoning of using not a single NN but a set of 20 different NNs has to do with268

the fact that this can contribute to a decrease in the estimation error (Fig. 8).269

As would also be expected, the error decreases with the increase in the number of270

available training samples (Fig. 9).271

4 Genetic algorithm272

The genetic algorithm developed considers the BAO problem as a combinatorial opti-273

mization problem, where the interval of all possible angles is discretized into 360274

possible degrees. This makes it trivial to think of each individual (solution) as being275

represented by a chromosome constituted by 360 binary genes: if a gene is equal276

to one then the corresponding angle is used in the treatment, otherwise it is not. As277

the number of angles to be used is fixed a priori and is equal to k, this means that278
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each individual will have exactly k genes equal to one. The initial population will be279

randomly generated. As several sets of angles were already generated so that the NN280

could be trained, we take advantage of these individuals and use them as the initial281

population.282

Two angles that are 4◦ or less apart from each other are considered similar from a283

clinical point of view. If a given individual has two angles that are less than 4◦ apart,284

then one of these angles is randomly chosen to be deleted (the corresponding gene285

is set to zero), and another randomly chosen gene is changed to 1. The procedure286

is repeated until there are no angles that are 4◦ or less apart. All individuals, in all287

generations, are submitted to such a procedure, so that we can guarantee that every288

individual will have angles that are at least 4◦ apart.289

4.1 Fitness evaluation290

For each individual in the population we can either calculate its fitness value by solving291

the FMO problem or by using the surrogate model. In the latter case, there will probably292

be an estimation error associated with the fitness value. This is why each individual293

will not have a single and crisp fitness value but its fitness will be represented by294

an interval. Each time the neural network is trained, we calculate the mean and the295

standard deviation of the estimation error using the test set. If we represent by µ296

the mean error and by σ the standard deviation, then if there were n samples in297

the test set and, for a given individual, the estimated fitness is given by f ′, then the298

individual’s fitness interval will be equal to [ f ′ + µ − 1.96 σ√
n
, f ′ + µ + 1.96 σ√

n
]. If299

the real fitness value is calculated using (3)–(4), then the upper and lower limit of this300

interval will be equal to the true fitness value.301

It is not trivial to choose between using the original but computationally expensive302

objective function value or the surrogate model fitness calculation. It will always be303

necessary to calculate the true objective function value for some individuals, otherwise304

the function to be optimized will be the one represented by the surrogate model and not305

the true objective function. There are authors that consider the calculation of the true306

fitness for at least 50 % of all individuals, to guarantee that the evolutionary algorithm307

will try to optimize the true objective function (Hüsken et al. 2005). We can think about308

individual or generation control procedures (Jin et al. 2002). In the first approach, a309

certain number of individuals (controlled individuals) are evaluated using the true310

objective function in each generation. In the latter, in every g generations (controlled311

generations), all individuals are evaluated using the original fitness function. In this312

paper we have chosen the first approach, mainly due to computational limitations313

(the latter is better used when it is possible to use parallelization).314

In each generation, two individuals are chosen and are passed directly to the next315

generation (elitist approach): the one that has the minimum fitness interval lower316

bound and the one that has the minimum fitness interval upper bound. Their true317

fitness function is calculated (if not known already). The choice of, in each generation,318

calculating the true objective value for two individuals, has to do with the fact that319

we need to assure the genetic algorithm is trying to reach an optimal solution for the320

“true” objective function, and is not optimizing the objective function defined by the321

surrogate model.322
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It was tried to maintain a lookup table, that would keep a record of every individual323

with a known true objective fitness function. Then, whenever a new individual was324

generated, the first thing to do would be to check if there is a match in the lookup325

table. Nevertheless, a match occurred in less than 0.5 % of the times, so this option326

was abandoned.327

4.2 Selection operator328

The selection operator is responsible for the selection of individuals that will generate329

the offsprings that will constitute the new generation. We have chosen to use the330

tournament selection operator. This means that two individuals are randomly chosen331

from the current population, and their fitness values are compared. The best individual332

is chosen with a given probability. The procedure is repeated so that a second individual333

is chosen. These two individuals are then used to generate two new individuals.334

As we are considering fitness intervals and not crisp fitness values, if the335

intervals do not overlap, then the comparison between individuals is trivial. If336

we are in the presence of two individuals such that their fitness intervals are,337

respectively,
[

f ′
1 + µ − 1.96 σ√

n
, f ′

1 + µ + 1.96 σ√
n

]

and

[

f ′
2 + µ − 1.96 σ√

n
, f ′

2 + µ338

+ 1.96 σ√
n

]

such that f ′
1 < f ′

2, then if
(

f ′
1 + µ + 1.96 σ√

n

)

<

(

f ′
2 + µ − 1.96 σ√

n

)

339

we can conclude that individual 1 has a better fitness than individual 2. If this does not340

happen, meaning that
(

f ′
1 + µ + 1.96 σ√

n

)

≥
(

f ′
2 + µ − 1.96 σ√

n

)

, then the fitness341

intervals overlap and we have to see if it is possible to conclude whether the fitness342

values are comparable or not (Knezevic 2008). If
(

f ′
2 − f ′

1

)

> 1.96 σ√
n

√
2 we consider343

that individual 1 has a better fitness than individual 2, otherwise we consider that we344

cannot reach a conclusion and we choose randomly one of them to participate in the345

crossover operator.346

4.3 Crossover operator347

The crossover operator used is as follows: each pair of parents will generate two twins.348

Each twin will have all angles belonging to each of the parents (Fig. 10). As we must349

have k and only k genes equal to one, these twins will correspond to non-admissible350

solutions (unless both parents are identical). So, a random procedure is applied, where351

genes that are equal to one are randomly selected and are changed to zero until k352

angles are reached.353

Other crossover operators were tried (like one-point and two-point crossover), but354

better results were obtained with this procedure.355

4.4 Mutation operator356

Each offspring will, with a given probability, suffer a mutation. This means that one357

randomly chosen gene that is equal to one will be changed to zero, and one randomly358

chosen gene equal to zero will be changed to one.359
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Fig. 10 Crossover operator a the two parents above will generate two twins. b these twins will be randomly
changed so that only k genes keep their values equal to 1

4.5 Migration360

Whenever some number of generations is evolved without an improvement in the361

objective function value of the BAO problem, a certain percentage of the population362

is substituted by randomly generated individuals. This procedure can be interpreted363

as a migration using a population with a high mutation rate, and contributes to the364

increase of the population diversity.365

4.6 Local search366

After running the described genetic algorithm, a local search procedure is executed.367

This local search procedure is, in fact, another genetic algorithm composed by exactly368

the same procedures of the genetic algorithm described, but with two main differences:369

the population is constituted by a very small number of individuals, and it is initialized370

by considering mutations of the best individual found so far; the fitness of all the371

individuals in this elite population is calculated by solving the FMO problem. Due to372

computational time limitations, the population will only evolve during a small number373

of generations.374

4.7 Retraining the NN375

In every generation of the genetic algorithm, the true objective function is calculated376

for the best individuals in the population. This means that these individuals can be377

considered as new samples. From time to time, the NN is retrained using this new378

and enlarged sample set. As the number of training samples increases, the standard379

deviation and the average error are expect to decrease, so that as the genetic algorithm380

evolves better estimations are produced by the surrogate model.381
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4.8 The whole picture382

The complete algorithm is now described:383

1. Generate a set of samples, by randomly generating k angles and calculating the384

corresponding FMO objective function value (3).385

2. Find the best NN architecture.386

3. Train a set of NNs.387

4. Execute the genetic algorithm388

a. Initialize the population389

b. While the termination condition is not met (maximum time or maximum num-390

ber of iterations has not been reached)391

i. The true fitness value is calculated for two “best” individuals, that are392

immediately passed on to the next generation393

ii. Selection394

iii. Crossover395

iv. Mutation396

v. If the objective function does not improve during n consecutive genera-397

tions then migration398

vi. If m new samples have been created, retrain the NNs399

5. Execute the local search400

5 Computational and clinical results401

The described algorithm was tested considering ten clinical examples of already treated402

patient cases of head-and-neck tumors at the Portuguese Institute of Oncology of403

Coimbra (IPOC). A typical head-and-neck treatment plan consists of radiation deliv-404

ered from 5 to 9 equally spaced coplanar orientations around the patient. We consid-405

ered treatments with 5 coplanar beams because the importance of beam angle selection406

increases when a lower number of beam angles is considered. Furthermore, 5 angles407

is the usual starting point for the trial and error procedure conducted by planners.408

An increase in the number of angles is only considered if they are unable to reach a409

clinically acceptable solution.410

In order to facilitate convenient access, visualization and analysis of patient treat-411

ment planning data, as well as dosimetric data input for treatment plan optimiza-412

tion research, the computational tools developed within MATLAB and CERR—413

computational environment for radiotherapy research (Deasy et al. 2003) are used414

widely for IMRT treatment planning research. The ORART—operations research415

applications in radiation therapy (Deasy et al. 2006) collaborative working group416

developed a series of software routines that provide the necessary dosimetry data to417

perform optimization in IMRT. CERR was elected as the main software platform to418

embody our optimization research.419

Our tests were performed on a Intel Core i7 CPU 2.8 GHz computer with 4GB RAM420

and Windows 7. We used CERR 3.2.2 version and MATLAB 7.4.0 (R2007a). The dose421

was computed using CERR’s pencil beam algorithm (QIB). For each of the ten head-422

and-neck cases, the voxel size considered was 0.3 cm × 0.3 cm × 0.3 cm. Table 1423
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Table 1 Prescribed doses for all the structures considered for IMRT optimization

Structure Spinal
cord

Brainstem Left
parotid

Right
parotid

PTV1 PTV2 Body

Mean dose – – 26 Gy 26 Gy – – –

Maximum dose 45 Gy 54 Gy – – – – 80 Gy

Prescribed dose – – – – 70 Gy 59.4 Gy –

# voxels case 1 1,382 1,715 1,576 1,390 4,001 31,119 1,790,592

# voxels case 2 3,567 2,072 1,536 1,807 1,485 43,649 1, 413,138

# voxels case 3 3,265 2,087 2,538 2,367 16,860 69,748 1,608,589

# voxels case 4 1,424 1,569 676 684 4,856 28,721 6,64,886

# voxels case 5 1,115 983 1,372 1,265 31,924 2,292 2,073,296

# voxels case 6 1, 101 1,518 1,176 1,140 30,047 6,613 1,560,070

# voxels case 7 985 851 668 631 19,835 3,973 1,110,882

# voxels case 8 1,160 1,223 1,405 1,323 29,786 4,450 1,710,982

# voxels case 9 829 1,135 782 1,096 11,348 1,153 1,016,083

# voxels case 10 533 2,907 1,056 662 25,461 11,066 1,553,317

presents the number of voxels for each patient and for each structure considered.424

An automated procedure for dose computation for each given beam angle set was425

developed, instead of the traditional dose computation available from CERR’s menu426

bar. This automation of the dose computation was essential for integration in our BAO427

algorithm. To address the convex nonlinear formulation of the FMO problem we used a428

trust-region-reflective algorithm (fmincon) of MATLAB 7.4.0 (R2007a) Optimization429

Toolbox. For this set of patients, each instance of the FMO problem can take from430

56 to 350 s to be calculated, depending on the patient and on the set of beam angles431

considered (Table 2).432

5.1 Clinical examples433

Ten clinical examples of already treated patient cases of head-and-neck tumors at the434

Portuguese Institute of Oncology of Coimbra are used to test the genetic algorithm435

described. The selected clinical examples were signalized at IPOC as complex cases436

where proper target coverage and organ sparing, in particular parotid sparing, proved437

to be difficult to obtain. The patients’ CT sets and delineated structures were exported438

via Dicom RT to CERR (see Fig. 11). Since the head-and-neck region is a complex439

area where, e.g., the parotid glands (the two largest salivary glands) are usually in440

close proximity to or even overlapping with the target volume, careful selection of the441

radiation directions can be essential to obtain a satisfying treatment plan. The spinal442

cord and the brainstem are some of the most critical organs at risk (OARs) in the head-443

and-neck tumor cases. These are serial organs, i.e., organs such that if only one subunit444

is damaged, the whole organ functionality is compromised. Therefore, if the tolerance445

dose is exceeded, it may result in functional damage to the whole organ. Thus, it446

is extremely important not to exceed the tolerance dose prescribed for these types of447

organs. Other than the spinal cord and the brainstem, the parotid glands are also impor-448
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Table 2 Computational times (in seconds) needed to solve one instance of the FMO quadratic programming
problem (considering a sample of 100 instances for each patient)

Patient 5 angles 7 angles 9 angles

Min. Average Max. Min. Average Max. Min. Average Max.

1 43.20 94.30 102.20 126.51 130.89 137.33 98.48 185.71 226.22

2 56.44 66.17 75.96 81.01 97.61 113.85 136.79 106.98 218.36

3 50.85 117.02 126.70 157.94 169.38 174.12 133.54 235.30 255.91

4 45.68 110.45 122.63 71.00 89.98 101.33 107.55 124.70 142.12

5 89.17 96.64 113.85 122.06 139.38 153.36 170.47 191.95 236.05

6 71.07 82.73 96.16 99.38 121.32 206.72 131.46 157.21 250.99

7 59.20 77.34 91.97 97.35 123.39 152.48 140.24 186.24 227.21

8 78.26 95.33 105.46 124.21 138.98 158.59 157.84 191.27 323.66

9 73.39 91.98 194.84 102.75 128.98 164.13 148.03 185.64 350.94

10 83.60 93.62 103.00 119.23 131.40 147.64 162.98 185.62 228.50

Fig. 11 CERR environment

tant OARs. The parotid glands are the largest of the three salivary glands. A common449

complication due to the irradiation of parotid glands is xerostomia (the medical term450

for dry mouth due to lack of saliva). This decreases the quality of life of patients451

undergoing radiation therapy of head-and-neck, causing difficulties to swallow.452

The parotids are parallel organs, i.e., if a small volume of the organ is damaged,453

the rest of the organ functionality may not be affected. Their tolerance dose depends454

strongly on the fraction of the volume irradiated. Hence, if only a small fraction of455

the organ is irradiated the tolerance dose is much higher than if a larger fraction is456

irradiated. Thus, for these parallel structures, the organ mean dose is generally used457

instead of the maximum dose as an objective for planning. In general, the head-and-458
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neck region is a complex area to treat with radiotherapy due to the large number459

of sensitive organs in this region (e.g., eyes, mandible, larynx, oral cavity, etc.). In460

this study, the OARs used for treatment optimization were defined by the medical461

physicists as being the spinal cord, the brainstem and the parotid glands. The tumor to462

be treated plus some safety margins is called planning target volume (PTV). For the463

head-and-neck cases in study it was separated in two parts with different prescribed464

doses: PTV1 and PTV2. The prescription dose for the target volumes and tolerance465

doses for the organs at risk considered in the optimization are presented in Table 1. The466

parotid glands are in close proximity to or even overlapping with the PTV which helps467

explaining the difficulty of sparing them. Adequate beam directions are an integral468

and important part of IMRT optimization, and can be determinant for achieving the469

sparing of parotid glands.470

5.2 Computational results for NN471

Neural networks were implemented by using the Matlab Neural Network Toolbox.472

The surrogate model was tested considering the ten different patients. To assess the473

behavior of the model in different settings, we considered five, seven and nine angles.474

It is not trivial to determine how should the performance of a surrogate model be475

measured, especially when this surrogate model is being used to guide an evolutionary476

algorithm (see, for instance, Hüsken et al. 2005). In this paper we will analyze the477

results obtained by considering the relative estimation error, especially looking at its478

average value and standard deviation. The results shown in Table 3 consider a training479

set of 100 samples. As can be observed, the error standard deviation decreases with480

the increase in the number of angles. This means that it will be possible to use fewer481

samples when dealing with more angles, without deteriorating in a significant way the482

quality of the estimation, as can be seen by looking at Table 4 that considers a training483

set of 50 samples.484

If we try to fit a probability distribution to the estimation errors obtained, most of485

the times the normal and the logistic distributions are the most adequate considering486

the Anderson-Darling statistic.1487

5.3 Computational results for GA488

In the computational tests for GA we will consider IMRT treatments with five angles.489

The genetic algorithm was implemented considering an initial population of 100490

individuals (the individuals used to train the initial set of neural networks). The selec-491

tion operator will choose the best individual with 80 % probability. We chose to use a492

high mutation rate of 50 %. Whenever 25 generations evolve without an improvement493

in the objective function value, 25 % of the population is replaced by randomly gener-494

ated individuals. The local search procedure considers an initial population of only 10495

individuals, created by mutating the best individual found so far, and this population496

is evolved during at most 10 generations.497

1 These tests were performed using the fit distribution option of software @Risk.
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Table 3 Computational results for NN (N-Number of neurons in each level; L-number of hidden layers;
SD-relative error standard deviation; A-average relative error), 100 samples

Patient 5 angles 7 angles 9 angles

Best NN
configuration

Relative error Best NN
configuration

Relative error Best NN
configuration

Relative error

N L SD (%) A (%) N L SD (%) A (%) N L SD (%) A (%)

1 25 2 14 −2 8 5 9 −1 17 1 7 0

2 33 2 17 2 18 4 12 −1 33 2 8 0

3 20 3 9 0 37 2 6 −1 40 2 6 0

4 21 2 11 0 36 1 6 1 25 1 5 0

5 19 3 10 0 38 1 6 −1 37 2 4 0

6 29 2 15 0 22 2 9 2 30 4 6 0

7 40 2 25 0 16 4 20 9 36 2 13 −1

8 33 2 14 0 39 3 14 −1 35 3 10 0

9 23 2 15 0 28 3 12 0 35 2 8 −1

10 30 2 12 3 26 2 8 1 22 5 6 0

Table 4 Computational results for NN (N-Number of neurons in each level; L-number of hidden layers;
SD-relative error standard deviation; A-average relative error), 50 samples

Patient 5 angles 7 angles 9 angles

Best NN
configuration

Relative error Best NN
configuration

Relative error Best NN
configuration

Relative error

N L SD(%) A (%) N L SD (%) A (%) N L SD (%) A (%)

1 27 2 15 −3 12 4 9 −1 3 4 7 1

2 40 2 20 3 12 3 13 0 10 2 8 1

3 22 5 9 −2 25 1 7 −2 28 2 6 −1

4 10 5 9 1 38 2 7 −1 9 2 5 0

5 16 4 12 0 36 2 6 −2 32 3 5 0

6 31 1 18 −1 5 4 10 0 17 5 6 −1

7 33 2 33 5 1 4 22 14 11 5 13 −3

8 33 1 19 6 33 3 15 −1 30 2 11 0

9 19 4 18 0 40 3 12 1 17 2 9 0

10 29 2 14 4 24 1 8 −2 3 4 7 −1

If we want to be able to apply these procedures in a clinical setting, then we have to498

consider some time constraints. It is important that planning the treatment of a given499

patient does not take more than one night. This means that we should consider as a500

time limit more or less 12 h. That is why we have chosen to terminate the genetic501

algorithm when 400 generations are reached or if 10 h have elapsed, whatever occurs502

sooner (notice that the time starts counting with the generation of the sampling sets503

used to train the NN). Then we allow the local search procedure to take at most 2 h.504
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Table 5 Computational results
for GA

Patient Average
BAO-GA solution

Standard
deviation

Equi

solution (%)

1 326.98 1.53 4.3

2 66.78 0.01 6.4

3 174.52 0.81 9.0

4 138.28 1.61 8.7

5 244.49 1.23 9.0

6 152.41 0.96 9.8

7 30.86 0.44 10.5

8 134.16 0.20 10.6

9 95.82 0.51 10.7

10 152.84 0.95 6.2

Table 6 Generating random
solutions: computational results

Patient Best random
solution

Standard
deviation

Equi

solution (%)

1 336.57 5.81 1.5

2 67.70 3.25 5.1

3 182.66 3.28 4.8

4 141.78 2.73 6.4

5 261.83 1.66 2.5

6 162.95 1.37 3.5

7 34.70 1.26 0.0

8 151.10 1.34 0.0

9 103.49 1.00 3.5

10 162.21 4.22 0.5

The results of BAO optimization concerning the improvement of the objective505

function value for the ten cases of head-and-neck tumors using our BAO algorithm,506

denoted BAO-GA are presented in Table 5. Due to the random nature of the genetic507

algorithm, it is not sufficient to present results considering a single execution of the508

algorithm. We chose to execute the algorithm five times for each patient, and we509

present average and standard deviation results. The fourth column presents the average510

decrease in the objective function value when compared with the traditional 5-beam511

equispaced coplanar treatment plans, denoted equi.512

Using the surrogate model implies the random generation of a set of solutions. It513

could be interesting to compare the results obtained by using the genetic algorithm514

with the results obtained using a simple random generation procedure. To be able to515

draw conclusions, it would not be advisable to compare the results of the GA with516

a single set of random solutions. As calculating the objective function value of each517

solution is very time consuming, we decided to randomly generate and evaluate 300518

solutions. This is our base set. Then, using this set, we consider a random withdrawal of519

100 solutions and calculate the best solution among the 100 solutions. This process is520

then repeated 100 times (so that in each time we get a possibly different sample of 100521

solutions randomly taken from the base set). Table 6 presents the best solution found,522

the standard deviation calculated, and the improvement regarding the equi solution.523
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Fig. 12 Comparison of target irradiation metric obtained by BAO-GA and equi treatment plans

As can be seen, the genetic algorithm presents better results, and also a more reliable524

behavior, since the standard deviations are considerable when applying only a random525

procedure.526

Since a small standard deviation was obtained for the results of the different runs527

of the BAO-GA algorithm, for the remainder of this section we will use the treatment528

plans corresponding to the best BAO-GA solution.529

Despite the improvement in FMO value, the quality of the results can be perceived530

considering a variety of metrics. A metric usually used for plan evaluation is the vol-531

ume of PTV that receives 95 % of the prescribed dose. Typically, 95 % of the PTV532

volume is required. This metric is displayed for the ten cases in Fig. 12. The hori-533

zontal lines represent 95 % of the prescribed dose. Satisfactory treatment plans should534

obtain results above these lines. By simple inspection we can verify the advantage of535

BAO-GA treatment plans that have an improved tumor irradiation metric for most cases536

compared to equi treatment plans.537

In order to verify organ sparing, mean and/or maximum doses of OARs are usually538

displayed. For each OAR, the corresponding metric is displayed for the ten cases539

in Fig. 13. The horizontal lines represent the tolerance mean or maximum dose for540

the corresponding structures. Satisfactory treatment plans should obtain results under541

these lines. For spinal cord and brainstem, treatment plans fulfill the maximum dose542

tolerance in all tested cases. However, as expected, the mean dose limit for parotids543

was only achieved few times mostly by BAO-GA treatment plans. Moreover, observing544

Fig. 13, it is perceivable that BAO-GA treatment plans outperform equi treatment plans545

in terms of mean dose obtained. In fact, in average, BAO-GA treatment plans reduced546

the mean dose of the parotid glands by 0.96 Gy compared to the equi treatment547

plans.548

Typically, results are judged by their cumulative dose-volume histogram (DVH).549

The DVH displays the fraction of a structure’s volume that receives at least a given550

dose. DVH results for the sixth patient illustrate the numbers presented in Fig. 14.551

Since parotids are the most difficult organs to spare, as shown in Fig. 13, for clarity,552

the DVHs only include the targets and the parotids and were split in left and right553

parotid. The asterisks indicate 95 % of PTV volumes versus 95 % of the prescribed554
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Fig. 13 Comparison of organ sparing metrics obtained by BAO-GA and equi treatment plans

Fig. 14 Cumulative dose volume histogram comparing the results obtained by BAO-GA and equi treatment
plans for the sixth patient

doses. The results displayed in Fig. 14 confirm the benefits of using the optimized555

beam directions, in particular using the directions obtained and used in the BAO-GA556

treatment plan.557
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6 Conclusions and future research558

Beam angle optimization in radiotherapy treatment planning, especially in IMRT, can559

lead to significant improvements in the quality of treatments delivered to patients. It560

can lead to better preservation of the organs at risk, without jeopardizing the treatment561

efficacy, leading to an increase in the quality of life of patients. The need for beam562

angle optimization increases with the decrease in the number of angles to be used563

in a given treatment. Although better results can be expected with an increase in the564

number of directions used, using fewer angles is beneficial not only for the patient but565

also from the health institution’s point of view: fewer angles means faster treatments,566

so more patients can be treated; faster treatments means better treatment precision567

because the probability of maintaining the patient immobilized in the desired position568

with no significant intrafraction setup errors (errors caused by organ motion or patient569

position change during treatment) is increased.570

In this paper we introduce the use of patient dependent surrogate models embedded571

into an evolutionary algorithm optimization framework for BAO. The BAO problem572

is usually characterized by the existence of many local minima, and a highly nonlinear573

optimization surface. Genetic algorithms or evolutionary algorithms in general, are574

known to be able to tackle this kind of problems, due to their diversification capabilities575

and ability to escape from local minima. Nevertheless, due to the computational time576

needed to assess each given individual (solution), that can take from 1 min to more577

than 5 min, the use of genetic algorithms may not be compatible with clinical practice,578

especially with limited availability of computational resources. In clinical practice we579

should take no more than 12 h to generate an improved treatment. To try and overpass580

this difficulty, we propose the use of a surrogate model (a trained neural network) that581

will be used to calculate the fitness of most individuals in the population.582

The computational results obtained show that the use of surrogate models combined583

with genetic algorithms can be an interesting path of research to follow.584

Regarding future work, we will consider not only the improvement of the genetic585

algorithm, but also try to improve the surrogate model. In the latter case, instead of586

considering as inputs the angles, we can consider using scores associated with these587

angles (see, for instance, Pugachev and Xing 2002). The neural network will then588

receive information that is expected to be more related with the objective function589

value than only the angles. Another possibility is to consider a neural network that,590

instead of calculating an estimate of the objective function value, will be able to591

compare two individuals stating if one individual is better or worse than the other. As592

a matter of fact, in the genetic algorithm evolution, the selection procedure drives the593

evolution process, and more than knowing precisely the objective function values we594

need a way of comparing individuals in a fast and reliable way (it is more important to595

ensure the correct selection than to reproduce exactly the true fitness values—Hüsken596

et al. 2005). Another change would be to consider diminishing the number of times597

the real fitness function is calculated as the genetic algorithm evolves, as we will be598

dealing with a surrogate model that is improved whenever the neural networks are599

retrained.600

In this paper we consider a discretization of the interval [0◦, 360◦] in 360 values. We601

now feel that this may be too ambitious. New experiments will be made considering602
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at first a more coarse discretization, and only in later stages considering a larger set of603

discretized values.604

Looking at the FMO problem, and thinking of an evolutionary algorithm, it is605

almost inevitable to think of multiobjective approaches to deal with this problem that606

is multiobjective by nature: we want to give the prescribed radiation to the target607

volumes, and as little radiation as possible to the organs at risk, which in most cases608

are contradictory objectives.609
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