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Abstract. Radiation therapy, either alone or combined with surgery
or chemotherapy, is one of the main treatment modalities for cancer.
Intensity-modulated radiation therapy (IMRT) is an advanced form of
radiation therapy, where the patient is irradiated using non-uniform ra-
diation fields from selected beam angle directions. The goal of IMRT
is to eradicate all cancer cells by delivering a radiation dose to the tu-
mor volume, while attempting to spare, simultaneously, the surround-
ing organs and tissues. Although the use of non-uniform radiation fields
can favor organ sparing, the selection of appropriate irradiation beam
angle directions – beam angle optimization – is the best way to en-
hance organ sparing. The beam angle optimization (BAO) problem is an
extremely challenging continuous non-convex multi-modal optimization
problem. In this study, we present a novel approach for the resolution
of the BAO problem, using a multistart derivative-free framework for a
more thoroughly exploration of the search space of the highly non-convex
BAO problem. As the objective function that drives the BAO problem
is expensive in terms of computational time, and a multistart approach
typically implies a large number of function evaluations, an accelerated
framework is explored. A clinical case of an intra-cranial tumor treated
at the Portuguese Institute of Oncology of Coimbra is used to discuss
the benefits of the accelerated multistart approach proposed for the BAO
problem.

Keywords: IMRT, Beam angle optimization, Multistart, Derivative-
free optimization



1 Introduction

Radiation therapy, either alone or combined with surgery or chemotherapy, is
one of the main treatment modalities for cancer. The goal of radiation therapy is
to eradicate all cancer cells by delivering a radiation dose to the tumor volume,
while attempting to spare, simultaneously, the surrounding organs and tissues.
Radiation therapy is used with curative intent or to palliate symptoms giving
important symptom relief. Intensity-modulated radiation therapy (IMRT) is an
advanced form of radiation therapy, where the radiation beam is modulated by a
multileaf collimator allowing its discretization into small beamlets of different in-
tensities. This discretization of the radiation beam enables the irradiation of the
patient using non-uniform radiation fields from selected beam angle directions.
The use of non-uniform radiation fields in IMRT provides an accurate control
of the different doses to be optimized which can favor organ sparing. However,
appropriate selection of individualized irradiation beam directions – beam angle
optimization (BAO) – depositing in an additive way the total radiation dose in
the tumor while attempting to spare the surrounding organs and tissues that
only receive radiation from a small subset of radiation beams, is the best way to
enhance a proper organ sparing.

Despite the fact that for some treatment sites, in particular for intra-cranial
tumors, BAO substantially improves plan quality [4], in clinical practice, copla-
nar equispaced beam directions, i.e. evenly spaced beam directions that lay on
the plane of rotation of the linear accelerator’s gantry, are still commonly used.
Alternatively, beam directions are manually selected on a long trial-and-error
procedure by the treatment planner, as commercial treatment planning systems
have limited resources available for BAO. One of the reasons for the scarce com-
mercial offer for beam angle directions optimal selection is the difficulty of solving
the BAO problem, a highly non-convex multi-modal optimization problem on a
large search space [12].

The BAO approaches can be separated into two different classes. The first
class considers a discrete sample of all possible beam angle directions and ad-
dresses the BAO problem as a combinatorial optimization problem. As the best
ensemble of beam angles cannot be obtained through exhaustive searches, in a
reasonable computational time, different methods are commonly used to guide
the searches including genetic algorithms [13], simulated annealing [14], particle
swarm optimization [15], gradient search [12], neighborhood search [1], response
surface [2], branch-and-prune [16] or hybrid approaches [5]. The combinatorial
formulation of the BAO problem leads to an NP hard problem. Thus, there is
no algorithm known capable of finding, in a polynomial run time, the optimal
solution of the combinatorial BAO problem [3]. Another common and success-
ful combinatorial approach is iterative BAO [3,8], where beams are sequentially
added, one at a time, to a treatment plan, significantly reducing the number of
beam combinations. The second class of BAO approaches considers a completely
different methodological approach by exploring the continuous search space of
the highly non-convex BAO problem [18,19,20].



In this study, we present a novel approach that belong to the second class
of approaches for the resolution of the BAO problem. A multistart derivative-
free framework is sketched for a more thoroughly exploration of the continuous
search space of the highly non-convex BAO problem. As the objective function
that drives the BAO problem is expensive in terms of computational time, and a
multistart approach typically implies a large number of function evaluations, an
accelerated multistart framework is tested using a clinical case of an intra-cranial
tumor treated at the Portuguese Institute of Oncology of Coimbra (IPOC). The
paper is organized as follows. In the next Section we describe an accelerated
multistart framework for the BAO problem. Computational tests are presented
in Section 3. In the last Section we have the conclusions.

2 Multistart derivative-free framework for BAO

2.1 BAO formulation

The formulation of the BAO problem as a continuous optimization problem
was proposed in our previous works [18,19,20]. In order to model the BAO prob-
lem as a mathematical optimization problem, a measure of the quality of the
beam angles ensemble is required. The straightforward measure for driving the
BAO problem is the optimal solution of the fluence map optimization (FMO)
problem [1,3,8,12,13,14,16,18,19,20], the problem of finding the optimal radiation
intensities. Let n be the fixed number of (coplanar) beam directions, a continuous
formulation for the BAO problem is obtained by selecting an objective function
f such that the best set of beam angles is obtained for the function’s minimum:

min f(θ1, . . . , θn)

s.t. (θ1, . . . , θn) ∈ Rn,
(1)

where θi, i = 1, . . . , n are beam angles selected from all continuous beam irradia-
tion directions. For this study, the objective function f(θ1, . . . , θn) that measures
the quality of the beam angle ensemble θ1, . . . , θn was the FMO problem objec-
tive function, modeled as a multicriterial optimization problem. Nevertheless, as
the FMO model is used as a black-box function, the conclusions drawn using
this particular formulation of the FMO problem can be extended to different
FMO formulations.

2.2 FMO for an intra-cranial tumor case

Typically, the FMO problem is modeled as a weighted sum function with con-
flicting objectives which difficult their trade-off. Thus, treatment plan optimiza-
tion is inherently a multicriteria procedure. Different multicriteria approaches
have been proposed for the FMO problem where solutions can be selected from
a set of Pareto-optimal treatment plans a posteriori [11,17] or a set of criteria
(objectives and constraints) that have to be met is defined a priori [6,7,8]. The



latter approach is more suitable for a fully automated BAO procedure. Thus,
a multicriterial optimization procedure based on a prescription called wish-list
[6,7,8] is used to address the FMO problem.

Table 1 depicts the wish-list constructed for the clinical intra-cranial tumor
case treated at IPOC. Intra-cranial cases are complex tumors to treat with radi-
ation therapy due to the large number of sensitive organs in this region. Beyond
the planning target volume (PTV), i.e. the tumor to be irradiated, a large num-
ber of organs at risk (OARs) are included in the wish-list. Different dose levels
were defined for the tumor (PTV-T) and for the lymph nodes (PTV-N), accord-
ing to the IPOC protocols defined for this pathology. Several auxiliary structures
(PTV-T Ring, PTV-N Ring, PTV-N shell and External Ring) were constructed
by computerized volume expansions to support the dose optimization.

The wish-list contains 11 hard constraints, all maximum-dose constraints,
that have to be strictly met. It also contains 28 prioritized objectives that are
sequentially optimized following the priorities defined in the wish-list. For the
target dose optimization, the logarithmic tumor control probability (LTCP )

was considered [8], LTCP = 1
NT

∑NT

l=1 e
−α(Dl−Tl), where NT is the number of

voxels (small volume elements) in the target structure, Dl is the dose in voxel
l, Tl is the prescribed dose, and α is the cell sensitivity parameter. For most
OARs maximum-dose constraints were considered. For some OARs, a general-
ized Equivalent Uniform Dose (gEUD) objective was considered [8], gEUD =

k
(

1
NS

∑
l D

a
l

) 1
a , where k is the number of treatment fractions, NS the number

of voxels of the discretized structure, Dl the dose in voxel l and a is the tissue-
specific parameter that describes the volume effect.

A primal-dual interior-point algorithm tailored for multicriteria IMRT treat-
ment planning, 2pϵc [6], was used for optimization of the FMO problem using the
described wish-list. The 2pϵc algorithm automatically generates a single Pareto
optimal IMRT plan for a given number of beams. For a detailed description of
the 2pϵc algorithm see Breedveld et al.[6].

2.3 Multistart approach for the continuous BAO problem

Multistart approaches have two phases that can be designated as global and
local phases [10]. In the global phase, a number of starting points is selected
for which the objective function is evaluated. Then, local search procedures are
used to improve each of the starting points outcome. In previous works, we have
shown that a beam angle set can be locally improved in a continuous manner
using Pattern Search Methods (PSM) [18,19,20]. An important feature of PSM is
its ability to converge globally, i.e., from arbitrary points to local minimizers [21].
Furthermore, PSM have the ability to avoid local entrapment and require few
function evaluations to converge. Thus, PSM were selected for the local search
procedure to be embedded in the multistart framework.

In the global phase, typically, starting points (beam ensembles) are randomly
selected. However, for search spaces with peculiar characteristics as the BAO
continuous search space, different strategies need to be adopted. As the order of



Table 1. Wish-list for the intra-cranial tumor case.

Structure Type Limit

PTV-T max. 74.9 Gy (=107% of prescribed dose)
PTV-N max. 63.6 Gy (=107% of prescribed dose)

PTV-N shell max. 63.6 Gy (=107% of prescribed dose)
Brainstem max. 54 Gy
Spinal cord max. 45 Gy

Constraints Retinas max. 45 Gy
Optics max. 55 Gy

PTV-T Ring max. 59.5 Gy (=85% of prescribed dose)
PTV-N Ring max. 50.5 Gy (=85% of prescribed dose)
External Ring max. 45 Gy

Body max. 70 Gy

Structure Type Priority Goal Sufficient Parameters

PTV-N LTCP 1 1 0.5 Tl = 59.4 Gy; α= 0.75
PTV-T LTCP 2 1 0.5 Tl = 70 Gy; α= 0.75

PTV-N shell LTCP 3 1 0.5 Tl = 59.4 Gy; α= 0.75
External ring max. 4 42.75 Gy – –
Spinal cord max. 5 42.75 Gy – –
Brainstem max. 6 51.3 Gy – –
Optics max. 7 52.25 Gy – –
Retinas max. 8 42.75 Gy – –
Lens gEUD 9 12 Gy – a=12
Ears mean 10 50 Gy – –

Parotids mean 11 50 Gy – –
Oral cavity mean 12 45 Gy – –

Objectives TMJ max. 13 66 Gy – –
Mandible max. 14 66 Gy – –
Esophagus mean 15 45 Gy – –
Larynx mean 16 45 Gy – –
Optics gEUD 17 48 Gy – a=12
Retinas gEUD 18 22 Gy – a=12
Lens gEUD 19 6 Gy – a=12
Ears mean 20 45 Gy – –

Parotids mean 21 26 Gy – –
Oral cavity mean 22 35 Gy – –
Oesophagus mean 23 35 Gy – –

Larynx mean 24 35 Gy – –
Brain gEUD 25 54 Gy – a=12

Pituitary gland gEUD 26 60 Gy – a=12
Thyroid mean 27 27.5 Gy – –
Lungs mean 28 5 Gy – –



the beam directions of a beam angle ensemble is irrelevant, the BAO continuous
search space has symmetry properties. This means that different solutions can in
reality correspond to the same solution, the only difference being that the same
angles appear in different positions. This simple observation allows for a drastic
reduction of the search space by simply ordering the angles in each solution.
For n-beam directions, by keeping the beam angles sorted, the search space is
reduced by 2n. E.g., for the 7-beam angle search space, the reduced search space
is only 0.78% of [0, 360]7. However, the reduced search space may take a peculiar
shape. Thus, a strategy to sample the reduced search space is required.

The strategy sketched for selecting the starting points considers all the possi-
ble distributions of the sorted beam angle directions by quadrants. For illustra-
tion purposes, all possible distributions of 3-beam angle directions by the four
quadrants are depicted in Fig. 1. Examples of 3-beam angle directions for each
one of the 20 possible distributions by the four quadrants are displayed in Fig.
1(a) while Fig. 1(b) displays the corresponding painted cubes of the reduced
search space. In general, for the n-beam angle direction search space, the to-
tal number of (hyper)cubes of the entire search space is 4n while the number
of (hyper)cubes of the reduced search space is the combination with repetition

of
(
n+4−1

4

)
= (n+4−1)!

4!(n−1)! . E.g., for the 7-beam angle optimization problem, the re-

duced search space has 120 (hyper)cubes while the entire search space has 16384.
A good strategy for sampling the reduced search space consists in selecting one
starting point for each one of the (hyper)cubes of the reduced search space. Such
strategy guarantees that the starting points belong to the reduced search space,
they are well spread and most importantly they cover well all the reduced search
space.

A major drawback of multistart methods, particularly for a parallel setting,
is that the same region of the search space may be simultaneously searched by
local procedures originated from starting points of different regions. Thus, the
same local minima can be found more than once wasting precious computational
time. A generalization of the notion of region of attraction of a local minimum
can be used to avoid overlap of local searches and simultaneously accelerate the
optimization procedure. One can define each (hyper)cube of the reduced search
space as a region of attraction of a local minimum and allow a single “active”
local search for each region of attraction. If two local searches end up simultane-
ously searching the same (hyper)cube during the optimization procedure, only
the local search with the current best solution, i.e. with the solution correspond-
ing to the lowest objective function value, will remain active which accelerates
the overall optimization process.

At the end of the global phase of the multistart method, the objective func-

tion value is evaluated at the N = (n+4−1)!
4!(n−1)! initial beam ensembles selected,

x0
i ∈ [0, 360]n, i = 1, . . . , N . For many of the regions, the starting points will

lead to poor objective function results. E.g., beam ensembles with many (or all)
beams in the same quadrant will have beams too close to produce good results.
Thus, another strategy to accelerate the multistart framework is to explore only
the most promising regions at each iteration. In order to do so, a boolean vec-
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Fig. 1. Distribution of 3-beam directions by the four quadrants – 1(a) and the corre-
sponding cubes in the search space [0, 360]3 – 1(b).

tor, ActiveN×1, that stores the information of which regions have active local
search procedures is updated in every iteration and the overall best objective
function value fk

∗ = f(xk
∗) = min{f(xk

1), f(x
k
2), . . . , f(x

k
N )} is determined at

each iteration k. The regions i where local searches remain active, Activei = 1,



correspond to the regions whose best objective function value is not worst than
the overall best objective function value f∗ within a defined threshold p ≥ 0,
i.e. fi ≤ (1 + p)f∗. The different local search procedures can always progress
towards regions whose local procedures are not currently active. The accelerated
multistart derivative-free algorithm is described in Algorithm 1.

Algorithm 1 Accelerated multistart derivative-free algorithm framework

Initialization:

– Choose x0
i ∈ [0, 360]n, i = 1, . . . , N ;

– Evaluate, in parallel, the objective function value at x0
i ∈ [0, 360]n, i = 1, . . . , N ;

– Set xbest
i ← x0

i , i = 1, . . . , N and fbest
i ← f(x0

i ), i = 1, . . . , N ;
– Determine the best initial beam ensemble x0

∗ and the corresponding best initial
objective function value f∗ ← f(x0

∗);
– Choose p ≥ 0. Set Activei ← 1 if f0

i ≤ (1 + p)f0
∗ , Activei ← 0 otherwise;

– Set k ← 1;
– Choose a positive spanning set, a step size s1i > 0, i = 1, . . . , N and a minimum

step size smin for PSM algorithm;

Iteration:

1. Using PSM, perform local search, in parallel, for the active regions;
2. For each active region i do

If local search is successful, i.e. f(xk+1
i ) < f(xk

i ) then
If xk+1

i remains in region i then
xbest
i ← xk+1

i ;
fbest
i ← f(xk+1

i );
Else

Activei ← 0;
Find j ̸= i where xk+1

i is;
If f(xk+1

i ) < f(xbest
j ) then

xbest
j ← xk+1

i ;
fbest
j ← f(xk+1

i );
Activej ← 1;

Else
sk+1
i ← ski

2
;

If sk+1
i < smin then
Activei ← 0;

3. Determine the overall best beam ensemble xk
∗ and the corresponding overall best

objective function value f∗ ← f(xk
∗);

4. Set Activei ← 1 if fk
i ≤ (1 + p)fk

∗ , Activei ← 0 otherwise;
5. Set k ← k+1. If any region is still active then return to step 1 for a new iteration.



3 Computational results

A modern 8-core workstation was used to perform the computational tests.
An in-house optimization platform written in MATLAB, named YARTOS, de-
veloped at Erasmus MC Cancer Institute in Rotterdam [6,7,8], was used to im-
port DICOM images, create new structures, compute dosimetric input, compute
the optimal fluence dose maps and compute/visualize dosimetric output. The
YARTOS fluence map optimizer, 2pϵc, was used to obtain the optimal value of
the FMO problem required to drive our multistart derivative-free BAO frame-
work. As the FMO model is treated as a black-box function, other FMO models
can be easily coupled with this multistart BAO framework.

The PSM algorithm implemented for the local search procedure of the multi-
start derivative-free framework used the maximal positive basis ([I − I]), where
I is the n-dimensional identity matrix. These directions correspond to the rota-
tion of each beam direction clockwise and counter-clockwise for a certain amount
(step-size) at each iteration. The initial step-size considered was s1 = 25 = 32
and the minimal value allowed was one smin = 1, defining the stopping criteria.
As the step-size is halved at unsuccessful iterations, this choice of initial step-
size implies that all beam directions will be integer until the termination criteria,
when the step-size becomes inferior to one. No trial point was computed in the
search step to avoid increasing the number of FMO evaluations.

Treatment plans with 7-beam angle directions, obtained using the multistart
derivative-free framework and denoted Multistart BAO, were compared against
treatment plans with 7-beam angle directions, obtained using iterative BAO and
denoted Iterative BAO. These treatment plans were compared against treat-
ment plans with 7-beam angle equispaced coplanar ensembles, denoted Equi,
commonly used at IPOC and in clinical practice to treat intra-cranial tumor
cases [1] and used here as benchmark.

The performance of a BAO algorithm should be evaluated using two crite-
ria. While the main goal is to obtain the best objective function value possible,
another important goal is to obtain a good solution as fast as possible. For
the BAO problem, the computation of the optimal value of the FMO problem
dominates the computational time, consuming more than 95% of the overall
computational time. In our accelerated multistart framework, the total number
of FMO evaluations depends on the threshold p that defines which regions have
active local search procedures. Obviously, by decreasing p the number of func-
tion evaluations will decrease. The main goal of this study is to acknowledge
how much can we decrease that parameter, accelerating the multistart strat-
egy, without significantly deteriorating the objective function value. We tested
p = 1, p = 0.5, p = 0.1, p = 0.05 and p = 0.01 corresponding to consider, at each
iteration, all regions active, regions for which the best objective function value
is not 50% (10%, 5% or 1%, respectively) worst than the overall best objective
function value. The results of these tests are displayed in Fig. 2. In Fig. 2(a)
the relative FMO improvement comparing the benchmark beam ensemble, Equi,
(0% improvement) and the best treatment plan, Multistart BAO with p = 1,
(100% improvement) is displayed. The number of FMO evaluations required to
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Fig. 2. Relative FMO value improvement – 2(a) and corresponding number of function
evaluations – 2(b).

obtain the corresponding solutions are displayed in Fig. 2(b). It can be seen that
the results in terms of objective function value slowly deteriorate until p = 0.1.
For smaller values of p the deterioration of the optimal FMO value is more ac-
centuated. A steep decrease on the number of FMO evaluations is seen as the
value of p decreases. E.g., the number of function evaluations for p = 0.1 is infe-



rior to half of the number of function evaluations for p = 1 at a very small cost
of objective function deterioration.

Iterative BAO results for different discrete samples of all possible beam ir-
radiation directions are also depicted in Fig. 2. Gantry angles are typically dis-
cretized into equally spaced beam directions with a given angle increment. We
considered angle increments of 10, 5 and 1 degrees, originating 3 discrete samples
with 36, 72 and 360 beam angles. The iterative BAO greedy strategy drastically
reduces the number of FMO problem evaluations compared to the combinatorial
BAO, particularly for larger angle increments. However, since the search space is
truncated at each iteration, at the very first iteration this strategy can disregard
the best ensembles with n-beam directions. In Fig. 2(a) the consequences of that
greedy strategy are clearly seen with worse FMO improvements even for larger
numbers of FMO evaluations (for 360 beam angles).

In clinical practice, the quality of the results is typically assessed by cu-
mulative dose-volume histograms (DVHs). The DVH displays the fraction of a
structure’s volume that receives at least a given dose. DVH results for Multistart
BAO with p = 0.1, Iterative BAO with 360 angles and Equi treatment plans
are displayed in Fig. 3. For clarity, DVH curves were divided into two figures
and only spinal cord, brainstem, oral cavity, parotids and tumor volumes are
displayed. The DVH curves show that for a similar tumor coverage, a better or-
gan sparing is generically obtained by the treatment plans using the optimized
beam directions, in particular by Multistart BAO treatment plans. In Fig. 3(a),
Multistart BAO DVH curves show a better sparing of spinal cord and oral cavity
compared to Iterative BAO DVH curves, corresponding to better maximum and
mean doses for spinal cord and oral cavity (26.1 Gy vs 28.7 Gy and 33.6 Gy
vs 34.3 Gy, respectively). At IPOC, two of the salivary glands, submandibular
glands and sublingual glands, are included in the oral cavity structure. These
two salivary glands, along with parotids, are very important in saliva produc-
tion. Thus, the enhanced oral cavity sparing is of the utmost interest to prevent
xerostomia caused by over-irradiation of salivary glands. In Fig. 3(b), both Mul-
tistart BAO and Iterative BAO DVH curves show a better sparing of brainstem
compared to Equi DVH curves, corresponding to an improvement of 3 Gy on
the brainstem maximum dose. The significant sparing obtained for brainstem is
very important, e.g. for re-irradiation cases. Parotids show similar results for all
treatment plans.

4 Conclusions and Future Work

Multistart methods with local search procedures are globally convergent [9]
and their interest and application fields continue to rise [10]. For an extremely
challenging non-convex optimization problem as the BAO problem, a multi-
start derivative-free framework is a suitable approach. This approach combines
a global strategy for sampling the search space with a local strategy for improving
the sampled solutions. While the local strategy using PSM proved, in previous
works, to be successful in improving locally beam angle ensembles, requiring few
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Fig. 3. Cumulative dose volume histogram comparing the results obtained by Multi-
start BAO with p = 0.1, Iterative BAO with 360 angles and Equi treatment plans.

function evaluations and avoiding local entrapment, the global strategy inher-
ently requires a larger number of function evaluations. Several strategies were
embedded in this methodology to reduce, as much as possible, the number of
function evaluations, including the non-random strategy sketched to take ad-
vantage of a reduced search space and the use of a generalization of regions of



attraction of a local minimum. Knowing in advance that some regions would
most probably produce poor solutions, a strategy to explore locally the most
promising regions at each iteration was also drafted and tested in this study.

The accelerated multistart derivative-free framework was tested using a clin-
ical intra-cranial tumor treated at IPOC to acknowledge how much can we speed
up the optimization process before significant deterioration of results occur. For
the intra-cranial clinical case retrospectively tested, FMO optimal values of treat-
ment plans obtained using Multistart BAO beam directions suffer small deterio-
ration if up to 10% of the most promising regions where locally explored at each
iteration corresponding to a decrease superior to 50% on the number of function
evaluations. Thus, for the accelerated multistart derivative-free framework, the
results indicate that a good compromise between the number of function eval-
uations and the quality of the solutions is the threshold p = 0.1. Furthermore,
treatment plans obtained using Multistart BAO beam directions clearly outper-
form results obtained by Iterative BAO treatment plans even when the number
of function evaluations was large (360 beam angle set).

As future work, different strategies for accelerating the proposed multistart
derivative-free framework will be tested including the truncation of the number
of iterations of the FMO. The multistart framework presented is tailored for
coplanar beam directions and in future work this framework will be extended to
include noncoplanar beam directions as well.
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