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Abstract

Surface energies of aluminium ((1 1 1), (1 1 0) and (1 0 0)) were calculated in second-order

perturbation theory based on the jellium model, and by full atomistic models using a Gaussian

basis set, in the framework of density functional theory. In both cases, surface energies were

extracted from slab calculations using the incremental method, which considers two slabs with

consecutive numbers of layers (6 and 7 layers). In the non-perturbative calculation, the fitting

method which involves a series of slabs up to 10 layers is also used to examine the limitations

of the incremental method and to improve it. Our results are compared with those from other

authors and with experiment being the limitations of the perturbative method discussed. The

predictions of the stabilized jellium model are also referred to.
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1. Introduction

The surface energy is, by definition, half of the energy necessary to break the bulk

solid in two pieces. The calculation of the surface energy of a given material may be
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performed in various ways. The extraction of the surface energy from a series of

slabs with different thickness turns out to be easier than the calculation of the semi-

infinite system. The extrapolation to the semi-infinite system from thin slabs is
necessary, since it is impracticable to evaluate the energy of a very thick slab. The

main drawback of these thin slab calculations is the presence of important quantum-

size effects, i.e., energy fluctuations induced by the finite size of the slab [1].

The energy of a slab with N layers can be written as the sum of a contribution

from the bulk, which is proportional to the volume V , and another from the surface,

which is proportional to area S, whence:
Eslab ¼ �bulkV þ 2rS; ð1Þ

where �bulk is the energy density of the bulk crystal and r the surface energy. From

this equation, we obtain
r ¼ 1

2S
ðEslab � �bulkV Þ: ð2Þ
The surface energy is small compared with the two terms from which it is cal-

culated. Therefore, it is expected to be numerically very sensitive to the precision of

those two terms.

Boettger [2] pointed out that the right-hand side of (2) diverges linearly with the

number of layers in the slab. This fact is due to the separate calculation of the bulk

energy density �bulk, so that the bulk term in the energy of the slab is not exactly

canceled by the energy of a bulk piece of the same size.

To avoid an independent calculation of the bulk energy, various methods for
extracting the surface energy from slab energies have been proposed [2–5]. Two

possibilities are considered in this work:

(i) taking the difference between the energies of two slabs;

(ii) and fitting the series of energies of several slabs.

In method (i), the bulk energy is approximated [2] by the difference between the

energy of two slabs, for instance, one with N and the other with N þ 1 atomic layers.
In this so-called incremental energy approximation, we obtain an approximation ��bulk
to the bulk energy density, viz.,
EslabðN þ 1Þ
S

� EslabðNÞ
S

¼ d��bulk; ð3Þ
where d is the thickness of a single layer. We rewrite (2), taking a slab with N þ 1

layers and ��bulk instead of �bulk, the result being
r ¼ 1

2

EslabðN þ 1Þ
S

�
� ��bulkðN þ 1Þd

�
: ð4Þ
Combining (4) and (3), the surface energy becomes
r ¼ 1

2S
½�NEslabðN þ 1Þ þ ðN þ 1ÞEslabðNÞ�; ð5Þ



C. Fiolhais et al. / Progress in Surface Science 74 (2003) 209–217 211
which can be easily implemented, since it only requires the energies of two slabs.

However, the oscillatory nature of the quantum size effects, which in some cases

persist even for considerable thick slabs [1], may cast doubts on the stability of the
result when N changes.

In contrast, method (ii) [1,6] is more stable. Considering a slab with N layers, (1)

may be written as
EslabðNÞ
S

¼ �bulk dN þ 2r: ð6Þ
Using a series of slabs with different N , it is possible to fit the parameters �bulk and
r. This is called the linear fitting method. We note that the incremental energy

method is equivalent to a linear fitting with the energies of just two slabs.

The slab energies Eslab are usually calculated solving the Kohn–Sham (KS)

equations of density functional theory [7]. The only approximation in the KS

equations is the density functional chosen to calculate the exchange and correlation
energy. The simplest approximation is the local density approximation (LDA),

which is based on the physics of the uniform electron gas [7]. Other approximations

have been proposed to improve the LDA. Corrections using density gradients

(generalized gradient approximations, GGA) are very popular. One of the most

successful GGA is that proposed by Perdew, Burke and Ernzerhof (PBE) [8], which

proved successful in many calculations, although the improvement of GGA with

respect to LDA is limited in solid-state calculations [9]. A new generation of ap-

proximations, which goes under the name of Meta-GGA (namely, the PKZB [10],
due to Perdew and co-workers), is nowadays being offered.

The jellium model, where the ions are replaced by a uniform positive background,

is a good benchmark for testing functional approximations. LDA-KS results of

surface energies for the jellium model using a semi-infinite system [11] are rather

close to results that are supposed to be almost exact, namely, a refinement of the

RPA [12] called RPA+ [13]. On the other hand, GGA-PBE surface energies are

generally lower [14]. This paradox has been discussed by Almeida et al. [15]. Meta-

GGA-PKZB has been employed to improve the GGA surface energy of the jellium
model [14].

In this paper, two types of density-functional calculations are presented for the

surface energies of aluminium. One is perturbative, relying on the jellium model, and

the other is non-perturbative. Both use slabs with unrelaxed ionic planes (faces

(1 1 1), (1 1 0) and (1 0 0)). According to Ho and Bohnen [16], the effect of multilayer

relaxation in aluminium surface energies is small (<2%).

We start by presenting second-order perturbative corrections to the surface en-

ergy of a jellium, which are due to the ionic structure of the real metal [17–19]. The
core potentials are described by a local pseudopotential, such as the local form of

the Heine–Abarenkov (HA) [20,21], i.e., independent of the angular momentum.

The potential depth is u ¼ �0:3321 and the core radius Rc ¼ 1:4017, both in atomic

units. Since the pseudopotential is weak, perturbation theory based on jellium

works for the bulk [22] and should work reasonably well for the surface of simple

metals.
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The first-order perturbative correction to the surface energy is well-known [11].

For aluminum, it is large enough to make positive the surface energy, which is

negative in the jellium model.
The second-order term, which should be added to the former, was evaluated with

the incremental energy method indicated by (5). This correction to the surface energy

of a 7 layer slab was obtained from the energies of slabs with 6 and 7 layers,
rð2Þ ¼ 1

S
½�6Eð2Þ

ps ð7Þ þ 7Eð2Þ
ps ð6Þ�: ð7Þ
We have also performed ab-initio non-perturbative calculations considering full

potentials, which are, in principle, more accurate. Our all-electron calculations re-

quired Gaussians functions as the basis to describe the KS orbitals [23]. The surface

energies of aluminium were extracted, using not only the incremental method, but
also the more reliable linear fitting method (6), which in our calculations included a

series of slabs going from 1 to 10 layers.

We adopted a method similar to that of Fiorentini and Methfessel [3]. By

checking the convergence of the surface energy, with respect to the number of slabs

included in the fitting, we verified the better accuracy of this method relatively to the

incremental method.

More details on the non-perturbative and perturbative methods are given in the

following section. In Section 3, we present and discuss our results. The conclusions,
namely, the comparisons between the incremental and the fitting methods, appear in

Section 4.
2. Calculation methods

In the second-order perturbative correction to the jellium model [24], the elec-

tronic density of a slab changes, due to the linear response of the difference between

the sum of ion pseudopotentials and the jellium background potential, i.e.,
dVpp ¼ Vpp � Vjellium: ð8Þ
The second-order energy of a slab is given by
Eð2Þ ¼ 1

2S

X
~GGk

Z L

0

Z L

0

dVpsð�~GGkjzÞvSð~GGkjz; z0ÞdVpsð~GGkjz0Þdz0 dz; ð9Þ
where L is the width of a box containing the jellium electronic density, z the coor-

dinate perpendicular to the surface, and vS the linear response function obtained in

the RPA [12]. All quantities inside the integrals are 2D Fourier transformed, ~GGk
being surface reciprocal lattice vectors. Details of the calculations can be found in

[17,19]. We used the LDA parametrization for the correlation energy in the form

proposed by Perdew and Wang [25].
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On the other hand, we performed atomistic calculations of surface energies using

the CRYSTAL98 program package [26], which implements the KS equations with

full potentials using Gaussians as basis set.
The exponents of the most outer shells of the basis sets, which have been calcu-

lated in a previous work for the bulk system [27], were reoptimized using a slab with

three layers and taking the [1 0 0] surface as reference. The convergence with respect

to number of k-points in the Brillouin zone was checked. In order to achieve better

convergence, a temperature smearing of 0.001 hartree of the Fermi surface was done.

We used the same LDA formula as in the perturbative case.
3. Results

Table 1 shows our surface energies results for three different surfaces of alumin-

ium (fcc), corresponding to (1 1 1), (1 0 0) and (1 1 0) Miller indexes, compared with

those obtained by other authors. We take for the lattice parameter the experimental

value 4.05 �AA.

Our second-order perturbation results appear in column 2 (HA pseudopotential)

of Table 1. There are only a few second-order perturbation calculations to compare

with; one of them is that made by Rose and Dobson [28], presented in column 5 of
Table 1, which, instead of taking slabs, used the semi-infinite jellium system. Those

authors took the Ashcroft empty-core pseudopotential [29] and a quasi-local ap-

proximation to the response function. Their results show the same trend as ours,

although the values are higher.

We note that our perturbative results agree roughly with experimental values.

However, the comparison between calculated and experimental surface energies
Table 1

Comparison of LDA surface energies of the most packed Al faces

Face Our results Other results Experiment

Perturbative Non-perturbative Perturbative Non-perturbative

HA AE-i AE-f RD FCD PW

(1 1 1) 865 1458 1272 1065 1368 939

(1 0 0) 925 1546 1499 1160 1520 1081

(1 1 0) 1549 1699 1543 1700 1459 1090

1143, 1169

HA denotes second-order perturbative results using HA pseudopotential, and taking the incremental en-

ergy method for slabs with 6 and 7 layers. AE-i indicates all-electron calculations using the CRYSTAL98

code and the incremental method (same slabs). AE-f refers the same all-electron calculation, but making a

fit to a series of slabs containing 1 to 10 layers. RD denotes Rose and Dobson second-order perturbative

results for semi-infinite jellium using the Ashcroft pseudopotential [28]. FCD denotes the full charge

density results (we added our estimates of the differences between PBE and LDA to the AE values of Vitos

et al. [32]). PW refers to plane-wave calculations of slabs using Hamann-Schluter norm-conserving

pseudopotentials [16,34,35]. The experimental values, taken from Refs. [30,31], are face independent. All

energies are in erg/cm2.
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must be done with some care. Experimental values, which are obtained for an un-

differentiated face are not very reliable. They arose from measurements of the gas-

solid surface tension, which were extrapolated to zero temperature [30]. Another way
to obtain the surface energy uses elastic constants and bulk modulus measurements

[31]. Thus, we are led to give more importance to the comparison of the non-per-

turbative results with good ab-initio results than with experimental data.

Columns 3 (AE-i) and 4 (AE-f) of Table 1 show the results of our fully atomistic

calculations with the CRYSTAL98 code. In the first case (AE-i), the surface energies

were obtained by the incremental method, using slabs with 6 and 7 layers, while in

the second case (AE-f) they were found by the linear fitting method, using slabs

containing 1 to 10 layers. In contrast with the perturbative results, non-perturbative
ones do not depend so much on the exposed face. Furthermore, our non-pertur-

bative results are higher than perturbative ones.

With the purpose of providing reference values Vitos et al. [32] calculated the

surface energies of the same three aluminium faces by the full charge density (FCD)

method, which does not require slabs. In Table 4 of [32], they report values of surface

energies, which were produced with the GGA-PBE [8] functional instead of the

LDA. In Table 2, we compare their values with our own PBE calculations of the

same surface energies (not self-consistently performed, but taking LDA densities).
The close agreement of these results make us confident of our calculations of alu-

minium surface energies. Looking at our Tables 1 and 2, we see a systematic energy

drop of 12–13% from LDA to GGA-PBE in our AE calculations. Thus, it is expected

that the result of FCD calculations will also be higher in LDA than in GGA-PBE by

the same magnitude. Based on this, we estimated the FCD surface energies in the

LDA, which are shown in column 6 of Table 1. Our LDA-AE values, obtained by

the fitting method, are also close to the FCD values in the same approximation.

Column 7 of Table 1 shows the results of other authors [16,34,35] using plane
waves and norm-conserving pseudopotentials to evaluate slab energies. These re-

sults, which are very close to experimental data, lie below the FCD ones.

Let us now return to the jelllium model. The stabilized jellium model [36] is a

simple extension of the jellium model, whose surface energies are positive for all

density parameters. Starting with the surface energy of stabilized jellium at rs ¼ 2:07
bohr (952 and 871 erg/cm2 for LDA and GGA-PBE, respectively), we can obtain

various surfaces energies multiplying them by convenient corrugation factors, which

were calculated by Perdew et al. [33]. In Table 3, we show the resulting surface
Table 2

GGA-PBE surface energies of the most packed Al faces

Face AE FCD

(1 1 1) 1103 1199

(1 0 0) 1326 1347

(1 1 0) 1355 1271

AE denotes all-electron results obtained with CRYSTAL98 and the fitting method for a series of slabs

with 1 to 10 layers. FCD denotes results of the full charge-density method by Vitos et al. [32]. All energies

are in erg/cm2.
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energies for LDA and GGA-PBE. The ordering of the three surface energies coin-

cides with our above calculations, either non-perturbative or perturbative. We note

the small face anisotropy found by the stabilized jellium model, in agreement with
our non-perturbative results.

Let us now examine, in more detail, the incremental and linear fitting methods.

The surface energy in the incremental method depends strongly on the considered

slab. Fig. 1 shows the variation of the surface energy with the thickness of the slab

for our AE calculations.

On the other hand, Fig. 2 shows the variation of the surface energy with respect to

the number of slabs included in the fitting procedure. The results appear convergent,

so that we may estimate an uncertainty in the surface energy of about 5% fitting 10
slabs. By comparing Figs. 1 and 2 we conclude that the uncertainty of the surface

energy obtained by the fitting method is lower than that obtained by the incremental

method.
Table 3

Stabilized jellium surface energies using a convenient corrugation factor [33] for each face

Face LDA PBE

(1 1 1) 1095 1002

(1 0 0) 1161 1063

(1 1 0) 1311 1199

All energies are in erg/cm2.
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Fig. 1. Dependence of surface energy on number of layers of slabs in the incremental method. Slab

energies calculated using all-electron code CRYSTAL98 in the LDA.
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Fig. 2. Dependence of LDA surface energy on number of fitted slabs. Slabs used in fitting procedure are

always thickest ones, going from 11–N to 10 layers.
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4. Conclusions

We performed non-perturbative and perturbative calculations of aluminium

surface energies. Our perturbative results are similar to those of Rose and Dobson
[28], which are one of the very few perturbative surface calculations available. Per-

turbative values depend more on the considered face than non-perturbative ones. On

the other side, better results are obtained from atomistic calculations using Gaus-

sians as basis set. Our values agree with FCD calculations [32], but not with old

plane-wave calculations [16,34,35]. The incremental method is a quick way to

evaluate the surface energy from slab results, but the fitting method is more reliable,

and should be used whenever results for several slabs are available.
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