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Abstract

In this paper we consider numerical methods for integro-differential problems
based on time discretization via Laplace transformation. We focus our attention
in models arising in the context of non Fickian solute transport phenomena in
porous media. The mathematical models which describe the evolution of the
solute concentrations are characterized by Volterra equations. We present and
analyze an hybrid method which combines the Laplace transformation with
respect to the time variable with the finite element discretization in the spatial
variables. Numerical results illustrate the performance of the method.

Keywords: Integro-differential equation, Laplace transformation, finite
elements.

1. Introduction

In this paper we consider the following Volterra equation

∂c

∂t
(t) +Ac(t) +

∫ t

0

k(t− s)Bc(s) ds = f(t) , t > 0, (1)

with
Ac(t) = −∇.

(
A22∇c(t)

)
+∇.(A2c(t)) +A1c(t),

Bc(t) = −∇.
(
B22∇c(t)

)
+∇.(B2c(t)) +B1c(t),

where k denotes the kernel, and A22, B22, A2, B2, A1 and B1 represent functions
dependent on (x, y), being A22 = [aij ] and B22 = [bij ] 2 by 2 symmetric matrix
functions, A2 = [ai] and B2 = [bi] vectorial functions and A1 and B1 scalar
functions.

Solute transports in porous media are commonly characterized by the convection-
diffusion equation

∂c

∂t
+∇.(vc) = ∇.(D∇c) + f in Ω× (0, T ], (2)
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where c denotes the solute concentration, D denotes the dispersion tensor (which
can be c dependent) and v represents the fluid velocity. Ω is the spatial domain
with boundary ∂Ω. Equation (2) is established using the so called Fick’s law for
the mass flux due to molecular diffusion, Jd, and the convective flux, Jc, given
by, respectively,

Jd = −D∇c, (3)

and
Jc = vc . (4)

Then the mass flux J = Jd + Jc is given by

J = vc−D∇c , (5)

which combined with the mass conservation equation

∂c

∂t
+∇ · J = f , (6)

leads to the convection-diffusion equation (2).
When the memory effect of the fluid flow has an important role in the solute

transport, equation (2) should be modified in order to incorporate such effect.
One possible approach to accomplish this is to assume that the mass flux Jd is
given by

Jd(t) = −1

τ

∫ t

0

e−
t−s
τ D∇c(s) ds+ Jd(0), (7)

where τ is a relaxation parameter. Combining now J = Jc + Jd with Jd given
by (7) with the mass conservation equation (6) we arrive to

∂c

∂t
+∇ · (vc) =

1

τ

∫ t

0

e−
t−s
τ ∇ · (D∇c(s))ds+ f −∇Jd(0) in Ω× (0, T ], (8)

that replaces (2) for non Fickian flows.
Equation (8) is a particular case of an equation of type (1), which is the model

that we are going to study in this article. This type of equations have been pro-
posed in the literature to describe non Fickian diffusion processes as for instance
in [11], [23], [24], [27], [29]. The development of efficient and accuracy numerical
methods to solve the initial boundary value problem (IBVP) defined by (1) has
attracted the attention of several researchers during the last two decades. A
significative number of contributions can be found in the literature. Without
be exhaustive we mention [25], [26], [41], [44] for the study of finite element
semi-discrete approximations, [32] for the study of semi-discrete lumped mass
approximations, [16], [17] and [35] for the study of finite volume semi-discrete
approximations, [2], [4], [5], [6], [8], [18], [20] and [21] for finite difference meth-
ods presenting the same qualitative behavior of the integro-differential problem.

Integro-differential equations (1) can be rewritten as equivalent linear differ-
ential systems: a partial differential equation involving only a time derivative
and an integro-differential equation presenting only partial derivatives with re-
spect to the space variables. This approach was used, for instance, in [18] and
recently in [36] where mixed finite element methods were used for the disretiza-
tion. Systems of differential equations that are equivalent to nonlinear versions
of equation (1) were considered in [7] and [33].
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In what follows we will consider that Ω ⊂ R2 is bounded polygonal domain.
We will introduce an hybrid method for the IBVP defined by (1), with the
Dirichlet boundary condition

c(t) = ψ(t) on ∂Ω× R+, (9)

and with the initial condition

c(0) = c0 in Ω. (10)

The method is based on the use of Laplace transform to the IBVP (1), (9), (10)
which converts the IBVP in an elliptic boundary value problem that depends
on the Laplace parameter. The elliptic problem is solved by using finite element
methods for the spatial variables, for a choice of a finite set of quadrature points
in the Laplace domain. This set of elliptic equations can be solved in parallel.
Finally the numerical approximation for the solution on the physical time space
domain is obtained by using numerical inverse Laplace transforms. The use
of Laplace transforms to solve nonlocal flow and transport equations has been
discussed in the literature, as for instance in [22], [39], [40] and [43],. This type
of approach was also considered in [3], [15], [19], [34], [37], [38]. The convergence
analysis of methods designed using this procedure were presented e.g. in [9],
[28] and [42] (see also the references cited in these two last papers). The present
paper presents error bounds with respect H1-norm which are based on the
Paley–Wiener Theorem and the generalization of the classical arguments of the
finite element analysis to complex Sobolev spaces ([9]). This type of approach
allow us to consider more general differential and integro-differential operators
when compared with those studied in [28].

The paper is organized as follows. In Section 2 we introduce the variational
formulation of the IBVP (1), (9), (10) and its finite element formulation. The
weak variational problem in the Laplace space is introduced in Section 3 and
the existence and uniqueness of the solution of this problem are also studied in
this section. In Section 4 we describe the finite element approximation of the
variational problem introduced in the previous section and an error estimate for
such approximation is established. Using the Paley–Wiener Theorem we return
to the initial variables and we estimate the error for Laplace inverse of the finite
element solution in the Laplace space. Finally some numerical experiments
illustrating the convergence results are also included.

2. Weak solution and its Ritz-Galerkin approximation

Let L2(Ω), H1(Ω) be the usual Sobolev spaces endowed, respectively, with
the usual inner products (., .), (., .)H1(Ω) and norms ‖.‖L2(Ω), ‖.‖H1(Ω). The space
of functions v ∈ H1(Ω) such that v = 0 on ∂Ω, is denoted by H1

0 (Ω). By
L2(R+, H1(Ω)) we denote the space of functions v : R+ → H1(Ω) such that∫

R+

‖v(s)‖2H1(Ω) ds <∞ (11)

and by H1(R+, L2(Ω)) we denote the space of functions v : R+ → H1(Ω) such
that ∫

R+

(
‖v(s)‖2L2(Ω) + ‖dv

dt
(s)‖2L2(Ω)

)
ds <∞. (12)
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In (12), the time derivative is in the weak sense.
The weak solution for the IBVP (1), (9), (10) is obtained solving the follow-

ing problem: find c ∈ L2(R+, H1(Ω))
⋂
H1(R+, L2(Ω)) such that c(t) = ψ(t) on

∂Ω and, for any T > 0,

(
∂c

∂t
(t), v) + ((A22∇c(t),∇v))− ((c(t)A2,∇v)) + (A1c(t), v)

+

∫ t

0

k(t− s)
(

((B22∇c(s),∇v))− ((B2c(s),∇v))

+(B1c(s), v)
)
ds = (f(t), v) a.e. in (0, T ), ∀v ∈ H1

0 (Ω),

c(0) = c0.

(13)

We remark that we use the notation

((u, v)) =

2∑
i=1

(ui, vi)

for u = (u1, u2), v = (v1, v2), ui, vi ∈ L2(Ω), i = 1, 2.
To compute the the semi-discrete Ritz-Galerkin approximation cH for the

weak solution c defined by (13), we introduce in Ω an admissible triangulation
TH and the corresponding finite dimension space

VH,m = {u ∈ C0(Ω) : u(x) = Pm(x), x ∈ ∆,∆ ∈ TH},

where Pm(x) denotes a polynomial in space variables with degree ≤ m.
Then, given c0,H ∈ VH,m, cH is obtained solving the following problem: find

cH ∈ L2(R+, H1
0 (Ω))

⋂
H1(R+, L2(Ω)) such that cH(t) = ψ(t) on ∂Ω and, for

any T > 0,

(
∂cH
∂t

(t), vH) + ((A22∇cH(t),∇vH))− ((cH(t)A2,∇vH)) + (A1cH(t), vH)

+

∫ t

0

k(t− s)
(

((B22∇cH(s),∇vH))− ((cH(s)B2,∇vH))

+(B1cH(s), vH)
)
ds = (f(t), vH) a.e. in (0, T ), ∀vH ∈ VH,m,

cH(0) = c0,H .
(14)

In what follows we present an approach that allows us to compute an ap-
proximation for the weak solution of the IBVP (1), (9), (10) avoiding the com-
putation of the solution of the integro-differential problem (14). We will also
derive error estimates for the numerical solution.

3. Weak solution in Laplace space

In what follows we replace the IBVP (1), (9), (10) by the corresponding
problem obtained applying the Laplace transform L.

Applying Laplace transform to (1) we obtain(
Id +

1

p
A+

k̃

p
B

)
c̃ =

1

p

(
c0 + f̃

)
in Ω, (15)

4



where Id is the identity operator, k̃, f̃ denote the Laplace transforms of k and f ,
respectively, and c̃ is the Laplace transform of c. Equation (15) is complemented
with the boundary condition

c̃ = ψ̃ on ∂Ω, (16)

where ψ̃ represents the Laplace transform of ψ.
In order to define the weak solution for the boundary value problem (15),

(16) we introduce now the set of functional spaces need to this definition. We
denoted by Re z the real part of z ∈ C. Let H1(Ω,C+

σ ) and L2(Ω,C+
σ ) be the

Sobolev spaces of functions that depend on the complex number p ∈ C+
σ = {p ∈

C : Re p ≥ σ > 0} where they are analytic. In L2(Ω,C+
σ ) we consider the inner

product

(ũ, ṽ) =

∫
Ω

ũṽ dx, ũ, ṽ ∈ L2(Ω,C+
σ ), (17)

and the corresponding norm

‖ũ‖L2(Ω,C+
σ ) = (ũ, ũ)1/2, ũ ∈ L2(Ω,C+

σ ).

The inner product (17) allows us to introduce in L2(Ω,C+
σ ) × L2(Ω,C+

σ ) the
following inner product

(((ũ1, ũ2), (ṽ1, ṽ2))) =

2∑
i=1

(ũi, ṽi), (ũ1, ũ2), (ṽ1, ṽ2) ∈ L2(Ω,C+
σ )× L2(Ω,C+

σ ).

The space H1(Ω,C+
σ ) is endowed with the inner product

(ũ, ṽ)H1(Ω,C+
σ ) = (ũ, ṽ) + ((∇ũ,∇ṽ)) , ũ, ṽ ∈ H1(Ω,C+

σ ), (18)

which induces the following norm

‖ũ‖H1(Ω,C+
σ ) = (ũ, ũ)

1/2

H1(Ω,C+
σ )
, ũ ∈ H1(Ω,C+

σ ). (19)

By |.|H1(Ω,C+
σ ) we denote the following semi-norm in H1(Ω,C+

σ )

|ũ|H1(Ω,C+
σ ) = ((∇ũ,∇ũ))1/2, ũ ∈ H1(Ω,C+

σ ).

The subspace of H1(Ω,C+
σ ) composed by the functions vanishing on ∂Ω is rep-

resented by H1
0 (Ω,C+

σ ).
Let ap(., .) : H1(Ω,C+

σ )×H1(Ω,C+
σ )→ C be the sesquilinear form

ap(ũ, ṽ) = (ũ, ṽ) +
1

p

(
a(ũ, ṽ) + k̃b(ũ, ṽ)

)
(20)

where
a(ũ, ṽ) = ((A22∇ũ,∇ṽ))− ((A2ũ,∇ṽ)) + (A1ũ, ṽ) (21)

and
b(ũ, ṽ) = ((B22∇ũ,∇ṽ))− ((B2ũ,∇ṽ)) + (B1ũ, ṽ) (22)

for ũ, ṽ ∈ H1(Ω,C+
σ ). By ` : H1(Ω,C+

σ )→ C we denote the following functional

`(ṽ) =
1

p
(c0 + f̃ , ṽ). (23)
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We associate with the sesquilinear form ap(., .) the following operator L :
H1

0 (Ω,C+
σ )→ H1

0 (Ω,C+
σ )′,

Lũ(ṽ) = ap(ũ, ṽ),

where H1
0 (Ω,C+

σ )′ denotes the dual space of H1
0 (Ω,C+

σ ).
The existence and uniqueness of the solution of the variational problem: find

c̃ ∈ H1(Ω,C+
σ ) such that c̃ = ψ̃ on ∂Ω and

ap(c̃, ṽ) = `(ṽ), ∀ṽ ∈ H1
0 (Ω,C+

σ ), (24)

is established in the next result. To simplify the proof we consider homogeneous
boundary conditions.

Theorem 1. Let f ∈ L2(R+, L2(Ω)), c0 ∈ L2(Ω) and aij , bi,j , ai, bi, A1, B1 ∈
L∞(Ω), i, j = 1, 2. If there exists σ ∈ R+ and e : C+

σ → R+ such that, for
p ∈ C+

σ , holds the following

Re ap(ũ, ũ) ≥ e(p)‖ũ‖2
H1(Ω,C+

σ )
, ∀ũ ∈ H1

0 (Ω,C+
σ ), (25)

then the variational problem (24) with ψ = 0 has only one solution c̃ ∈ H1
0 (Ω,C+

σ ).

Proof: In the proof of this result we use the Lax-Milgram Theorem. We
start by noticing that if f ∈ L2(R+, L2(Ω)), c0 ∈ L2(Ω) then the linear func-
tional ` : H1(Ω,C+

σ )→ C defined by (23) belongs to H1
0 (Ω,C+

σ )′. In what follows
we prove that the sesquilinear form ap(., .) : H1

0 (Ω,C+
σ ) ×H1

0 (Ω,C+
σ ) → C de-

fined by (20) is elliptic, that is, there exist positive constants ac,p and ae,p such
that

|ap(ũ, ṽ)| ≤ ac,p‖ũ‖H1(Ω,C+
σ )‖ṽ‖H1(Ω,C+

σ ), ∀ũ, ṽ ∈ H
1
0 (Ω,C+

σ ), (26)

and
|ap(ũ, ũ)| ≥ ae,p‖ũ‖2H1(Ω,C+

σ )
, ∀ũ ∈ H1

0 (Ω,C+
σ ). (27)

To establish (26) we need only to use the fact that the coefficients functions
are assumed to be in L∞(Ω). The condition (27) is a trivial consequence of the
assumption (25).

In the next results we specify necessary conditions that guarantee that the
assumption (25) holds true. We start associating with a(., .) defined by (21) the
following sesquilinear forms

aI(ũ, ṽ) = ((A22∇ũ,∇ṽ)), ũ, ṽ ∈ H1(Ω,C+
σ ), (28)

aII(ũ, ṽ) = −((A2ũ,∇ṽ)) + (A1ũ, ṽ), ũ, ṽ ∈ H1(Ω,C+
σ ). (29)

Analogously, we associate with the sesquilinear b(., .) defined by (22) the sesquilin-
ear forms bI(., .) and bII(., .)

bI(ũ, ṽ) = ((B22∇ũ,∇ṽ)), ũ, ṽ ∈ H1(Ω,C+
σ ), (30)

bII(ũ, ṽ) = −((B2ũ,∇ṽ)) + (B1ũ, ṽ), ũ, ṽ ∈ H1(Ω,C+
σ ). (31)

We remark that, for ũ ∈ H1(Ω,C+
σ ),

aI(ũ, ũ) ∈ R, bI(ũ, ũ) ∈ R.
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Lemma 1. Let ae and Cb be positive constants such that

aI(ũ, ũ) ≥ ae|ũ|2H1(Ω,C+
σ )
, ũ ∈ H1(Ω,C+

σ ), (32)

|bI(ũ, ũ)| ≤ Cb|ũ|2H1(Ω,C+
σ )
, ũ ∈ H1(Ω,C+

σ ), (33)

If Re p ≥ σ > 0 and |pk̃| ≤ C̃, then there exists a positive constant e(p) such
that (25) holds.

Proof: From (32) and (33) we find

Re ap(ũ, ũ) ≥ ‖ũ‖2
L2(Ω,C+

σ )
+

1

|p|2
(
aeRe p− CbC̃

)
|ũ|2

H1(Ω,C+
σ )
.

To have (25) it is sufficient to choose σ such that

σ >
CbC̃

ae
. (34)

As an example we notice that, for the kernel k(t) =
1

τ
e−

t
τ , τ > 0, which was

introduced in equation (8), we have pk̃ =
p

1 + τp
and then |pk̃| ≤ 1

τ for Re p ≥ 0.

For more general sesquilinear forms ap(., .) we have the following sufficient
conditions:

Lemma 2. Let us suppose that aI(., .) defined by (28) satisfies (32). If

|b(ũ, ũ)| ≤ Cb‖ũ‖2H1(Ω,C+
σ )
, ũ ∈ H1(Ω,C+

σ ), (35)

and
|k̃| = O(|p|−1) (36)

then there exists σ > 0 such that for p ∈ C+
σ , ap(., .) defined by (20) satisfies

(25).

Proof: Using convenient algebraic manipulations, we can show that

|1
p
aII(ũ, ũ)| ≤ 1

|p|2
1

4ε2
‖A2‖2∞|ũ|2H1(Ω,C+

σ )
+
(

2ε2 +
1

|p|
‖A1‖∞

)
‖ũ‖2

L2(Ω,C+
σ )
, (37)

∀ũ ∈ H1(Ω,C+
σ ), for all ε 6= 0. From (28) and (35) we get the estimate

Re ap(ũ, ũ) ≥ e1(p)|ũ|2
H1(Ω,C+

σ )
+ e0(p)‖ũ‖2

L2(Ω,C+
σ )
, ∀ũ ∈ H1

0 (Ω,C+
σ ), (38)

with e1(p) and e0(p) defined respectively by

e1(p) =
1

|p|2
(
aeRe p− 1

4ε2
‖A2‖2∞ − Cb|k̃||p|

)
(39)

and

e0(p) = 1− 2ε2 − 1

|p|
‖A1‖∞ − Cb

|k̃|
|p|
. (40)

Now we use (36) and we conclude that there exists ε 6= 0 and σ ∈ R+ such that
e1(p) and e0(p) satisfy

ei(p) > 0, ∀p ∈ C+
σ , i = 0, 1. (41)
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Lemma 3. Let us suppose that aI(., .) defined by (28) satisfies (32). If the
sesquilinear form bI(., .) satisfies

bI(ũ, ũ) ≥ be|ũ|2H1(Ω,C+
σ )
, ũ ∈ H1(Ω,C+

σ ), (42)

Re
k̃

p
> 0, (43)

and
|k̃| = O(1), (44)

then there exists σ > 0 such that for p ∈ C+
σ , ap(., .) defined by (20) satisfies

(25).

Proof: Let us suppose now that the sesquilinear form bI(., .) satisfies (42).
For bII(., .) we can prove that

|1
p
k̃bII(ũ, ũ)| ≤ |k̃|

2

|p|2
1

4η2
‖B2‖2∞|ũ|2H1(Ω,C+

σ )
+
(

2η2 +
|k̃|
|p|
‖B1‖∞

)
‖ũ‖2

L2(Ω,C+
σ )
,

(45)
∀ũ ∈ H1(Ω,C+

σ ), for η 6= 0. As (43) holds, from (42) and (45), we conclude that

Re ap(ũ, ũ) ≥ e1(p)|ũ|2
H1(Ω,C+

σ )
+ e0(p)‖ũ‖2

L2(Ω,C+
σ )
, ∀ũ ∈ H1

0 (Ω,C+
σ ), (46)

with e1(p) and e0(p) defined respectively by

e1(p) =
1

|p|2
(
aeRe p+ beRe (k̃p)− 1

4ε2
‖A2‖2∞ −

1

4η2
|k̃|2‖B2‖2∞

)
(47)

and

e0(p) = 1− 2ε2 − 2η2 − 1

|p|
‖A1‖∞ −

|k̃|
|p|
‖B1‖∞, (48)

for all ε, η 6= 0. Using now condition (44) we guarantee that there exist ε, η 6= 0
and σ ∈ R+ such that e1(p) and e0(p) satisfy (41).

It is clear that if ai = bi = 0, i = 1, 2, A1 = B1 = 0 and A22, B22 are diagonal
matrices such that

aii ≥ αe > 0 in Ω,

and
bii ≥ βe > 0 in Ω,

then (32), (42) and (35), respectively, hold with ae = αe, be = βe and Cb =
‖B22‖∞.

If we consider the kernel k(t) =
1

τ
e−

t
τ , τ > 0, introduced in (8), then

k̃ =
1

1 + τp
satisfies (36).
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4. Discretization in the Laplace space

4.1. The finite element solution

In order to simplify the presentation, in what follows we consider homoge-
neous Dirichlet boundary conditions, that is, ψ = 0. By C0(Ω,C+

σ ) we represent
the space of functions ũ : Ω× C+

σ → C depending on x, p, continuous in Ω and
analytic in C+

σ .
By Pm(x, p) we denote a polynomial in space variables of degree ≤ m with

coefficients depending on p analytic in C+
σ . We consider a sequence of triangu-

lations TH , with diameter H = max
∆∈TH

diam(∆), obtained by regular refinement

(see [31]). By Λ we denote the sequence of diameters of the sequence of triangu-
lations. Let VH,m(C+

σ ), H ∈ Λ, be the corresponding sequence of finite element
spaces:

VH,m(C+
σ ) = {ũ ∈ C0(Ω,C+

σ ) : ũ = 0 on ∂Ω,

ũ(x, p) = Pm(x, p), x ∈ ∆,∆ ∈ TH , p ∈ C+
σ }. (49)

We denote by VH,m(C+
σ )′ the dual space of VH,m(C+

σ ).
We remark that VH,m(C+

σ ) ⊂ H1
0 (Ω,C+

σ ). Let {φ, i = 1, . . . , nH} be a finite
element basis of VH,m(C+

σ ), where φi depends only on x. The Ritz-Galerkin
approximation for the solution of (24) is a function c̃H ∈ VH,m(C+

σ ) such that

ap(c̃H , ṽH) = `H(ṽH), ∀ṽH ∈ VH,m(C+
σ ), (50)

where ap(., .) is defined by (20) and `H : VH,m(C+
σ )→ C,

`H(ṽH) = `(ṽH), ṽH ∈ VH,m(C+
σ ),

with ` defined by (23).
The existence and uniqueness of the previous finite element solution is con-

sequence of the ellipticity of the bilinear form ap(., .).

Theorem 2. If f ∈ L2(R+, L2(Ω)), c0 ∈ L2(Ω) and under the assumption of
Theorem 1, there exists a positive σ such that, for each p ∈ C+

σ , the problem
(50) has a unique solution c̃H ∈ VH,m(C+

σ ).

The finite element solution c̃H ∈ VH,m(C+
σ ), c̃H =

nH∑
i=1

aiφi, where ai depends

on p, is obtained solving the linear system

[ap(φi, φj)][ai] = [`(φj)]. (51)

We remark that the variational equation (50) is equivalent to the following
problem: find c̃H ∈ VH,m(C+

σ ) such that

LH c̃H = `H in VH,m(C+
σ ), (52)

with LH : VH,m(C+
σ )→ VH,m(C+

σ )′, defined by

LH ũH(ṽH) = ap(ũH , ṽH), ũH , ṽH ∈ VH,m(C+
σ ).

Theorem 2 establishes a sufficient condition for the existence of a unique solution
of the equation (52), c̃H = L−1

H `H .
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4.2. Error estimates for the finite element solution

Let ΠH : H1
0 (Ω,C+

σ ) → VH,m(C+
σ ) be the finite element projection opera-

tor. Under the assumption of Theorem 1, there exists a unique solution c̃ ∈
H1

0 (Ω,C+
σ ) of (24) and a unique solution c̃H ∈ VH,m(C+

σ ) of (50). As H1
0 (Ω,C+

σ )
and VH,m(C+

σ ) are Hilbert spaces we consider ΠH : H1
0 (Ω,C+

σ )′ → VH,m(C+
σ )′.

Let SH : H1
0 (Ω,C+

σ )→ VH,m be defined by

SH = L−1
H ΠHL.

This operator satisfies
SH = Id in VH,m. (53)

In the next theorem we establish the error estimate for c̃H .

Theorem 3. Let us suppose that the finite element spaces VH,m(C+
σ ), for H ∈

Λ, are constructed using a sequence of triangulations TH , with diameter H ∈ Λ,
obtained by regular refinement. Under the assumption of Theorem 1, there exists
a unique solution c̃ ∈ H1

0 (Ω,C+
σ ) of (24), a unique solution c̃H ∈ VH,m(C+

σ ) of
(50) and a positive constant C, independent of c̃, H and p, such that, for H ∈ Λ
small enough, we have

‖c̃− c̃H‖H1(Ω,C+
σ ) ≤ CH

m‖c̃‖Hm+1(Ω,C+
σ ) (54)

provided that c̃ ∈ Hm+1(Ω,C+
σ ).

Proof: Following the proof of Theorems 3 of [9] we start by proving that

‖c̃− c̃H‖H1(Ω,C+
σ ) ≤ C‖c̃− ṽH‖H1(Ω,C+

σ ), ∀ṽH ∈ VH,m(C+
σ ). (55)

As by using (53) we have
ṽH = SH ṽH ,

then

‖c̃− c̃H‖H1(Ω,C+
σ ) ≤ ‖c̃− ṽH‖H1(Ω,C+

σ ) + ‖c̃H − ṽH‖H1(Ω,C+
σ )

= ‖c̃− ṽH‖H1(Ω,C+
σ ) + ‖SH(c̃− ṽH)‖H1(Ω,C+

σ )

and we conclude that

‖c̃− c̃H‖H1(Ω,C+
σ ) ≤

(
1 + ‖SH‖)‖c̃− ṽH‖H1(Ω,C+

σ ),

for ṽH ∈ VH,m(C+
σ ), where ‖SH‖, for H ∈ Λ with H small enough, has a bound

independent of p ∈ C+
σ .

Moreover Theorem 4 of [9] allows us to conclude that there exists a positive
constant C independent on c̃, H and p such that, for H small enough, we have

‖c̃−ΠH c̃‖H1(Ω,C+
σ ) ≤ CH

m‖c̃‖Hm+1(Ω,C+
σ ). (56)

From (55) and (56) we finally obtain (54).

10



5. Returning to the initial variables

To return to the initial variables we need to apply the Laplace inverse to
both members of an inequality of type (56) with convenient norms.

An essential tool to recover the initial variables is the Paley-Wiener Theorem.
To present such lemma we introduce the space L2(R+, H1(Ω), σ) as the space
of functions v : R+ → H1(Ω) such that

‖v‖L2(R+,H1(Ω),σ) =
(∫

R+

e−2σt‖v(t)‖2H1(Ω) dt
)1/2

(57)

is finite. In L2(R+, H1(Ω), σ) we consider the inner product

(u, v)L2(R+,H1(Ω),σ) =

∫
R+

(u(t), v(t))H1(Ω)e
−2σt dt , u, v ∈ L2(R+, H1(Ω), σ)

(58)
which induces the norm defined by (57). We also consider the Hardy space
H2(C+

σ , H
m+1(Ω)) of holomorphic functions f̃ : C+

σ → Hm+1(Ω) such that

‖f̃‖H2(C+
σ ,Hm+1(Ω)) =

(
sup
p1>σ

∫
R
‖f̃(p1 + ip2)‖2Hm+1(Ω) dp2

)1/2

<∞.

Lemma 4. [Paley-Wiener Theorem] The Laplace transform
L : L2(R+, Hm+1(Ω), σ)→ H2(C+

σ , H
m+1(Ω)) is an isometric isomorphism.

Inequality (54) allows us to write

‖c̃− c̃H‖H2(C+
σ ,H1(Ω)) ≤ CH

m‖c̃‖H2(C+
σ ,Hm+1(Ω)). (59)

Applying Paley-Wiener Theorem we get the main result of this paper:

Theorem 4. Let us suppose that the finite element spaces VH,m(C+
σ ), for H ∈

Λ, are constructed using a sequence of triangulations TH , with diameter H ∈ Λ,
obtained by regular refinement. Under the assumption of Theorem 1 there exist
a unique solution c̃ ∈ H1

0 (Ω,C+
σ ) of (24), a unique solution c̃H ∈ VH,m(C+

σ ) of
(50) and a positive constant C, independent of c̃, H and p, such that, for H ∈ Λ
small enough, c = L−1c̃, cH = L−1c̃H satisfy

‖c− cH‖L2(R+,H1(Ω),σ) ≤ CHm‖c‖L2(R+,Hm+1(Ω),σ), (60)

provided that c̃ ∈ L2(R+, Hm+1(Ω), σ).

6. Numerical simulation

In this section we give one example of application of the method based
on the Laplace transform described in Section 4 combined with the algorithm
developed in [1] for the inverse Laplace transform.

We consider the integro-differential equation (1) with Ω = (0, 1)×(0, 1), A =

B = −∆, where ∆ denotes the Laplace operator and k(s) =
1

τ
e−

s
τ , τ = 0.01.
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linear elements quadratic elements

N Error Rate Error Rate

10 0.000173033 1.01 9.57556e-006 1.99
20 8.61843e-005 1.00 2.40258e-006 2.00
30 5.74128e-005 1.00 1.06856e-006 2.00
40 4.30481e-005 1.00 6.01213e-007 2.00
50 3.44342e-005 1.00 3.84821e-007 2.00
60 2.86932e-005 1.00 2.67253e-007 2.00
70 2.45932e-005 1.00 1.96357e-007 2.00
80 2.15184e-005 - 1.50339e-007 -

Table 1: Errors and rates obtained for linear and quadratic elements computed with the norm
‖.‖

H1(Ω,C+
σ )

.

The function f , the initial and boundary conditions are such that the IBVP has
the following solution

c(x, t) = cos(t)x1x2(1− x1)(1− x2), (x1, x2) ∈ Ω, t ∈ R+
0 .

In Ω we introduce a triangulation TH induced by a uniform rectangular grid
defined considering, in [0, 1]× [0, 1], (N + 1)× (N + 1) equally spaced points.

First we illustrate the convergence result of Theorem 3 by comparing the
numerical and the exact solution in the Laplace space. Let c̃ be the solution of
(15), that is,

c̃(x) =
p

p2 + 1
x1x2(1− x1)(1− x2), (x1, x2) ∈ Ω,

and c̃H ∈ VH,m(C+
σ ) be the solution of (50), where σ = 100 and p = 100 + 100i.

We consider m = 1, 2, that is, we use linear and quadratic finite elements.
Assuming that ‖c̃− c̃H‖H1(Ω,C+

σ ) ' CHq, we show that q ' m. The conver-
gence rate is computed using the formula

Rate =

ln

(
‖c̃−c̃H1

‖
H1(Ω,C+

σ )

‖c̃−c̃H2
‖
H1(Ω,C+

σ )

)
ln
(
H1

H2

) ,

where H1 and H2 are the diameters of two consecutive triangulations. We show
the numerical results in Table 1. In Figure 1, the logarithm of the norm of the
error, ln(‖c̃ − c̃H‖H1(Ω,C+

σ )), is plotted versus the logarithm of the mesh size.
The straight lines are the least-squares fit to the points and have slopes 1.0022
and 1.9979 for linear and quadratic elements, respectively. The experiments
show that the convergence rates are, approximately, 1 and 2 when linear and
quadratic elements are used, respectively, agreeing with the estimate of Theorem
3.

Let us now illustrate the convergence behavior of the numerical solution in
the initial variables. For each time t, the Laplace inverse of the finite element
solution is computed using the algorithm developed in [1] with the following
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Figure 1: ln(‖c̃− c̃H‖H1(Ω,C+
σ )

) versus ln(H).

parameters, according the notation used in the mentioned paper: α = 0, T =

0.8t, ER = 10−8, γ = − ln(ER)
1.6T , M = 50 and Tol =

T

e2γTN2
.

We remark that we observe the bound

‖c(t)− cH(t)‖H1(Ω) ≤ CHm, (61)

which is a stronger estimate when compared with the result in Theorem 4,∫
R+

e−2σt‖c(t)− cH(t)‖2H1(Ω)dt ≤ CH
2m‖c‖2L2(R+,Hm+1(Ω),σ).

In Table 2 we present the numerical error Error(t) = ‖c(t)−cH(t)‖H1(Ω) and
Rate(t),

Rate(t) =
ln
(‖c(t)−cH1

(t)‖H1(Ω)

‖c(t)−cH2
(t)‖H1(Ω)

)
ln
(
H1

H2

) ,

whereH1 andH2 are the diameters of two consecutive triangulations, for t = 0.1,
t = 1 and t = 10 computed using linear elements. The numerical results show
that the convergence rate is 1 when linear elements are used.

The numerical errors Error(t) and Rate(t) for t = 0.1, t = 1 and t = 10, for
quadratic elements, are presented in Table 3. The numerical results show that
the convergence rate is about 2 when quadratic elements are used.

Figure 2, plots the data from both tables 2 and 3 and illustrates the bounds
established by Theorem 4.

When N increases we observe a deterioration of the convergence rates. This
behavior was expected since, for large values of N , the error of the spatial
discretization is very small and the error ‖c(t) − cH(t)‖H1(Ω) is dominated by
the error induced by numerical Laplace inversion.

Finally we present some results obtained considering the L2 norm in the
measurement of the error. In Table 4 we present the results obtained with
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N Error(0.1) Rate(0.1) Error(1) Rate(1) Error(10) Rate(10)

10 0.0241023 1.00 0.0130785 0.99 0.0203103 0.99
20 0.0120958 1.00 0.00656704 1.00 0.0101984 1.00
30 0.00806943 1.00 0.00438147 1.00 0.00680427 1.00
40 0.00605353 1.00 0.00328701 1.00 0.00510461 1.00
50 0.00484337 1.00 0.00262995 1.00 0.00408422 1.00
60 0.00403639 1.00 0.00219179 1.00 0.00340375 1.00
70 0.00345989 1.00 0.00187876 1.00 0.00291763 1.00
80 0.00302749 - 0.00164398 - 0.00255301 -

Table 2: Errors and rates obtained for linear elements at t = 0.1, 1, 10, computed with the
norm ‖.‖H1 .

N Error(0.1) Rate(0.1) Error(1) Rate(1) Error(10) Rate(10)

10 0.00134738 1.99 0.000731614 1.99 0.00113616 1.99
20 0.000338144 1.99 0.000183679 1.98 0.00028516 1.99
30 0.000150626 1.97 8.21509e-05 1.89 0.000127113 1.97
40 8.54939e-005 1.87 4.76761e-05 1.63 7.21529e-05 1.84
50 5.63455e-005 1.61 3.31572e-05 1.01 4.78133e-05 1.49
60 4.20235e-005 - 2.75704e-05 - 3.64293e-05 -

Table 3: Errors and rates obtained for quadratic elements at t = 0.1, 1, 10, computed with the
norm ‖.‖H1 .
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t=10, P1, Slope=0.9707

t=0.1, P2, Slope=1.9516

t=1, P2, Slope=1.8695

t=10, P2, Slope=1.9413

Figure 2: ln(‖c(t)− cH(t)‖H1(Ω)) versus ln(H).

linear elements that show a second order convergence rate. The errors and
rates obtained with quadratic elements are presented in Table 5. These results
show a third order convergence rate. However, when N increases we observe,
as before, a deterioration of this rate because the error ‖c(t) − cH(t)‖L2(Ω) is
dominated by the error of the numerical Laplace inversion.

Also, we can only expect that the numerical Laplace inverse is computed
with a high degree of accuracy for moderate values of t. In fact, for the example
considered in the experiments, when we consider large values of t (e.g. t = 100)
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N Error(0.1) Rate(0.1) Error(1) Rate(1) Error(10) Rate(10)

10 0.000923419 1.99 0.000516432 1.99 0.000788718 1.99
20 0.000232886 2.00 0.000130441 2.00 0.000199163 2.00
30 0.000103637 2.00 5.80592e-05 2.00 8.86341e-05 2.00
40 5.83169e-005 2.00 3.26734e-05 2.00 4.98842e-05 2.00
50 3.7338e-005 2.00 2.09267e-05 2.00 3.19352e-05 2.00
60 2.59387e-005 2.00 1.45307e-05 2.00 2.21752e-05 2.00
70 1.90528e-005 2.00 1.06773e-05 2.00 1.62915e-05 2.00
80 1.45901e-005 - 8.17607e-06 - 1.24722e-05 -

Table 4: Errors and rates obtained for linear elements at t = 0.1, 1, 10, computed with the
norm ‖.‖L2 .

N Error(0.1) Rate(0.1) Error(1) Rate(1) Error(10) Rate(10)

10 1.43765e-005 3.00 7.81467e-06 3.01 1.21519e-05 3.01
20 1.78621e-006 2.99 9.69927e-07 2.97 1.50822e-06 2.99
30 5.30795e-007 2.91 2.91427e-07 2.71 4.48644e-07 2.92
40 2.29777e-007 2.64 1.33718e-07 2.07 1.93656e-07 2.55
50 1.27406e-007 2.17 8.41604e-08 1.36 1.09575e-07 1.94
60 8.57563e-008 - 6.57133e-08 - 7.68772e-08 -

Table 5: Errors and rates obtained for quadratic elements at t = 0.1, 1, 10, computed with the
norm ‖.‖L2 .

we don’t observe a good agreement between the exact and numerical solution
due to the limitations of the algorithm for the numerical Laplace inversion.

7. Conclusions

In this paper we consider a hybrid numerical method for the IBVP (1), (9),
(10). The method is composed by three steps: in the first step, applying Laplace
transforms, the given initial boundary value problem is replaced by an elliptic
boundary value problem that depends on the Laplace parameter; in the second
step the solution of this boundary value problem is approximated using the
finite element method, for a choice of a finite set of quadrature points in the
Laplace domain; finally, in the third stage, the numerical solution on the physical
time space domain is obtained using numerical inverse Laplace transforms. The
main result of this paper, Theorem 4, shows the theoretical error estimates for
c−cH . Although the norm used in the estimate (60) doens’t give information for
the error at a specific value of t, since it involves an integration over the time
and a negative exponential in the variable t, the numerical results illustrate,
for moderate values of t, that the method proposed has similar convergence
behavior when compared to the results known for the standard finite element
method for elliptic or parabolic problems.
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