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Abstract. We introduce the notion of hypersymplectic structure on a Cou-
rant algebroid and we prove the existence of a one-to-one correspondence bet-
ween hypersymplectic and hyperkähler structures. This correspondence provi-
des a simple way to define a hyperkähler structure on a Courant algebroid. We
show that hypersymplectic structures on Courant algebroids encompass hyper-
symplectic structures with torsion on Lie algebroids. In the latter, the torsion
existing at the Lie algebroid level is incorporated in the Courant structure.
Cases of hypersymplectic structures on Courant algebroids which are doubles
of Lie, quasi-Lie and proto-Lie bialgebroids are investigated.

1. Introduction

In the past years, hyperstructures on Courant algebroids received the attention of
several authors. Namely, we mention Bursztyn et al. [6] who discussed hyperkähler
structures and Stiénon [14] for the case of hypercomplex structures. In the present
article we introduce and study hypersymplectic structures and, more generally,
ε-hypersymplectic structures on Courant algebroids, a notion that encompasses
hypercomplex structures and hyperkähler structures. In fact, a very interesting
feature of hypersymplectic structures on Courant algebroids is that they are in
a one-to-one correspondence with hyperkähler structures. An important point to
notice, which is a direct consequence of the existence of this correspondence, is
that one gets a simpler way to define a hyperkähler structure because, contrary to
the case of hyperkähler structures, our definition of hypersymplectic structure does
not require the existence ab initio of a pseudo-metric on the Courant algebroid.
As we shall see in Section 6, the pseudo-metric is constructed out of the given
endomorphisms.

The basic example of a Courant algebroid is the vector bundle A⊕A∗ equipped
with the Dorfman bracket (or its skew-symmetrization, called the Courant bracket).
This Courant structure on A ⊕ A∗ is the double of a Lie bialgebroid structure on
(A,A∗), where A∗ is the null Lie algebroid. Doubles of more general cases of Lie
bialgebroids structures on (A,A∗) are also Courant structures on A ⊕ A∗. More
generally, doubles of quasi-Lie bialgebroids and of proto-Lie bialgebroids structures
on (A,A∗) determine Courant structures on A ⊕ A∗ [10, 13]. In the Lie algebroid
setting, and inspired by hypersymplectic structures on manifolds, defined by Xu in
[16], we have introduced in [3] the notion of hypersymplectic structure (see also [1]).
A hypersymplectic structure on a Lie algebroidA is a triple (ω1, ω2, ω3) of symplectic
forms on A, such that the squares of the transition morphisms, endomorphisms of
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A constructed out of the 2-forms ωi and their inverses, are equal to idA or to −idA.
The extension of the theory of hypersymplectic structures to Courant algebroids is
not straightforward, since the notion of symplectic section on a Courant algebroid
is not known. However, inspired by the generalized complex geometry à la Hitchin
[9], where a 2-form on a manifold M gives rise to an endomorphism of TM ⊕T ∗M ,
we replace the morphism ω♭ associated to a 2-form ω on A by an endomorphism
of A ⊕ A∗. More precisely, the idea which is behind our results is to associate
to each triple (ω1, ω2, ω3) of non-degenerate 2-forms on a Lie algebroid A, with

inverse (π1, π2, π3) ∈ (Γ(∧2A))3, a triple of endomorphisms Si =

[

0 εi π
♯
i

ω♭
i 0

]

,

εi = ±1, i = 1, 2, 3, of the vector bundle A ⊕ A∗, and to introduce an appropriate
notion of hypersymplectic structure on a Courant algebroid in such a way that the
following holds: (ω1, ω2, ω3) is a hypersymplectic structure on a Lie algebroid (A, µ)
if and only if (S1,S2,S3) is a hypersymplectic structure on the Courant algebroid
(A⊕A∗, µ). However, while considering the vector bundle A⊕A∗ equipped with a
Courant structure which is of type µ+ ψ, with ψ a trivector on A, we realize that
the previous equivalence fails. In fact, the structure that has to be considered on
A is a hypersymplectic structure with torsion, a notion that we study in a separate
article [5] and which is related to hyperkähler structures with torsion. Hyperkähler
structures with torsion on manifolds, also known as HKT structures, first appeared
in [7] in relation with sigma models in string theory and, since then, HKT and other
geometries with torsion caught the interest of many physicists and mathematicians.

In this article most results are established in the more general pre-Courant frame-
work, and hold without any change in the Courant algebroid case. The exception
is when we deal with hypersymplectic structures with torsion on Lie algebroids
(Section 9), where an additional condition must be considered when we pass from
pre-Courant to Courant algebroids. We show that, although hypersymplectic struc-
tures and hypersymplectic structures with torsion on Lie algebroids are different in
nature, when we look at them in the pre-Courant algebroid setting, they become
of the same type. Roughly speaking, when one goes from Lie to pre-Courant al-
gebroids, the torsion carried by the hypersymplectic structure on the Lie algebroid
passes to the pre-Courant structure itself. More precisely, we prove that having a
hypersymplectic structure (ω1, ω2, ω3) on A, with or without torsion, is equivalent
to having a hypersymplectic structure (S1,S2,S3) on A ⊕ A∗, with a suitable pre-
Courant structure. More involved situations are those where, besides the structures
considered on A, the vector bundle A∗ itself is endowed with a hypersymplectic
structure, with or without torsion, determined by (π1, π2, π3). We also prove that,
under some conditions, this is equivalent to (S1,S2,S3) being a hypersymplectic
structure on A⊕A∗.

This article contains an introduction and eight sections. Since many of the com-
putations are performed using the big bracket, Section 2 contains a brief review of
the supergeometric setting as well as the main notions concerning the Courant and
pre-Courant algebroid definitions. Section 3 is devoted to some properties of the Ni-
jenhuis torsion on pre-Courant algebroids, that are used in the remaining sections.
To the best of our knowledge some of these properties (Propositions 3.1 and 3.2) are
new. In Section 4 we introduce the notion of ε-hypersymplectic structure on a pre-
Courant algebroid (Definition 4.1) and we explore the properties of the morphisms
induced by this structure. Sections 5 and 6 treat the case ε1ε2ε3 = −1. The main
result of Section 5 is that the transition morphisms Ti are Nijenhuis (Theorem 5.3).
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We also show that (S1,S2,S3) is a hypersymplectic structure on a pre-Courant al-
gebroid (E,Θ) if and only if it is hypersymplectic for the pre-Courant structure on
E deformed by Ti or by Si (Theorem 5.5). In Section 6 we prove that there exists
a one-to-one correspondence between hypersymplectic and hyperkähler structures
on a pre-Courant algebroid (Theorem 6.8). Moreover, we show how the transition
morphisms Ti can play the role of the morphisms Si in order to define a new hy-
persymplectic structure on the pre-Courant algebroid (Theorem 6.9). Sections 7, 8
and 9 are devoted to examples of hypersymplectic structures on A⊕A∗, equipped
with several (pre-)Courant structures. First we treat the simplest case in Section 7.
We prove that (ω1, ω2, ω3) is a hypersymplectic structure on a Lie algebroid (A, µ)
if and only if (S1,S2,S3) is a hypersymplectic structure on the Courant algebroid
(A ⊕ A∗, µ) (Theorem 7.2). This case is illustrated with an example involving the
Heisenberg Lie group. In Section 8 the Courant structure on A⊕A∗ is the double of
a Lie bialgebroid ((A,A∗), µ, γ) and we prove that (S1,S2,S3) is a hypersymplectic
structure on (A⊕A∗, µ+γ) if and only if (ω1, ω2, ω3) is a hypersymplectic structure
on (A, µ) and (π1, π2, π3) is a hypersymplectic structure on (A∗, γ) (Theorem 8.1).
The particular case of a triangular Lie bialgebroid is also considered (Corollary 8.2).
The class of examples we give in Section 9 deals with the notion of hypersymplectic
structure with torsion on a Lie algebroid. This is a structure that generalizes the
hypersymplectic case, where the non-degenerate 2-forms ωi are not closed but sa-
tisfy the condition N1dω1 = N2dω2 = N3dω3, with Ni’s the transition morphisms.
We show that having a hypersymplectic structure with torsion (ω1, ω2, ω3) on a Lie
algebroid (A, µ) is equivalent to (S1,S2,S3) being a hypersymplectic structure on
the pre-Courant algebroid (A ⊕ A∗, µ + ψ), with ψ ∈ Γ(∧3A) (Proposition 9.3).
The corresponding result on the Courant algebroid (A ⊕ A∗, µ + ψ), which is the
double of the quasi-Lie bialgebroid ((A,A∗), µ, 0, ψ), requires the bivectors πi to be
weak-Poisson with respect to µ, that is, [πi, πi] has to be a cocycle with respect to µ
(Theorem 9.4). Finally, we treat the general case where both Lie algebroids (A, µ)
and (A∗, γ) are equipped with hypersymplectic structures with torsion. We show
that this is equivalent to having a hypersymplectic structure on the pre-Courant al-
gebroid (A⊕A∗, µ+γ+ψ+φ), with ψ ∈ Γ(∧3A) and φ ∈ Γ(∧3A∗) (Proposition 9.5).
As before, the corresponding result on the Courant algebroid (A⊕A∗, µ+γ+ψ+φ),
which is the double of the proto-Lie bialgebroid ((A,A∗), µ, γ, ψ, φ), requires addi-
tional conditions on the ωi’s and on the πi’s (Theorem 9.6).

2. Preliminaries on Courant algebroids

We begin this section by introducing the supergeometric setting, following the
same approach as in [15, 12] (see also [1]). Given a vector bundle A → M , we
denote by A[m] the graded manifold obtained by shifting the fibre degree by m.
The graded manifold T ∗[2]A[1] is equipped with a canonical symplectic structure
which induces a Poisson bracket on its algebra of functions F := C∞(T ∗[2]A[1]).
This Poisson bracket is sometimes called the big bracket (see [10]).

Let us describe locally this Poisson algebra. Fix local coordinates xi, p
i, ξa, θ

a,
i ∈ {1, . . . , n}, a ∈ {1, . . . , d}, in T ∗[2]A[1], where xi, ξa are local coordinates on
A[1] and pi, θa are their associated moment coordinates. In these local coordinates,
the Poisson bracket is given by

{pi, xi} = {θa, ξa} = 1, i = 1, . . . , n, a = 1, . . . , d,

while all the remaining brackets vanish.
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The Poisson algebra of functions F is endowed with an (N×N)-valued bidegree.
We define this bidegree (locally but it is well defined globally, see [15, 12]) as follows:
the coordinates on the base manifold M , xi, i ∈ {1, . . . , n}, have bidegree (0, 0),
while the coordinates on the fibres, ξa, a ∈ {1, . . . , d}, have bidegree (0, 1) and
their associated moment coordinates, pi and θa, have bidegree (1, 1) and (1, 0),
respectively. We denote by Fk,l the space of functions of bidegree (k, l) and we
verify that the big bracket has bidegree (−1,−1), i.e.,

{Fk1,l1 ,Fk2,l2} ⊂ Fk1+k2−1,l1+l2−1.

This construction is a particular case of a more general one [12] in which we
consider a vector bundle E equipped with a fibrewise non-degenerate symmetric
bilinear form 〈., .〉. In this more general setting, we consider the graded symplectic
manifold E := p∗(T ∗[2]E[1]), which is the pull-back of T ∗[2]E[1] by the map p :
E[1] → E[1] ⊕ E∗[1] defined by X 7→ (X, 12 〈X, .〉). We denote by FE the graded
algebra of functions on E , i.e., FE := C∞(E). The algebra FE is equipped with
the canonical Poisson bracket, denoted by {., .}, which has degree −2. Notice that
F0

E = C∞(M) and F1
E = Γ(E). Under these identifications, the Poisson bracket of

functions of degrees 0 and 1 is given by

{f, g} = 0, {f,X} = 0 and {X,Y } = 〈X,Y 〉,

for all X,Y ∈ Γ(E) and f, g ∈ C∞(M).
When E := A⊕A∗ (with A a vector bundle over M) and when 〈., .〉 is the usual

symmetric bilinear form:

(1) 〈X + α, Y + β〉 = α(Y ) + β(X), ∀X,Y ∈ Γ(A), α, β ∈ Γ(A∗),

the algebras F = C∞(T ∗[2]A[1]) and FA⊕A∗ are isomorphic Poisson algebras [12]
and the two constructions above coincide.

Definition 2.1. [2] A pre-Courant structure on (E, 〈·, ·〉) is a pair (ρ, [·, ·]), where
ρ : E → TM is a morphism of vector bundles called the anchor, and [·, ·] : Γ(E) ×
Γ(E) → Γ(E) is a R-bilinear (not necessarily skew-symmetric) bracket, called the
Dorfman bracket, satisfying the relations

(2) ρ(X) · 〈Y, Z〉 = 〈[X,Y ], Z〉+ 〈Y, [X,Z]〉

and

(3) ρ(X) · 〈Y, Z〉 = 〈X, [Y, Z] + [Z, Y ]〉,

for all X,Y, Z ∈ Γ(E).

From (2) and (3), we obtain the Leibniz rule [10]

[X, fY ] = f [X,Y ] + (ρ(X).f)Y,

for all X,Y ∈ Γ(E) and f ∈ C∞(M). If a pre-Courant structure (ρ, [·, ·]) satisfies
the Jacobi identity,

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]],

for all X,Y, Z ∈ Γ(E), then the pair (ρ, [·, ·]) is called a Courant structure on
(E, 〈·, ·〉).

There is a one-to-one correspondence between pre-Courant structures on (E, 〈·, ·〉)
and elements in F3

E . The anchor and Dorfman bracket associated to a given Θ ∈ F3
E

are defined, for allX,Y ∈ Γ(E) and f ∈ C∞(M), by the derived bracket expressions

(4) ρ(X) · f = {{X,Θ}, f} and [X,Y ] = {{X,Θ}, Y }.
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The next theorem shows how a Courant structure can be defined in the super-
geometric setting.

Theorem 2.2. [12] There is a 1− 1 correspondence between Courant structures on
(E, 〈., .〉) and functions Θ ∈ F3

E such that {Θ,Θ} = 0.

If Θ is a (pre-)Courant structure on (E, 〈·, ·〉), then the triple (E, 〈·, ·〉,Θ) is called a
(pre-)Courant algebroid. For the sake of simplicity, we often denote a (pre-)Courant
algebroid by the pair (E,Θ) instead of the triple (E, 〈·, ·〉,Θ).

When E = A ⊕ A∗ and 〈·, ·〉 is the usual symmetric bilinear form (1), a pre-
Courant structure Θ ∈ F3

E can be decomposed using the bidegrees:

Θ = µ+ γ + φ+ ψ,

with µ ∈ F1,2
A⊕A∗ , γ ∈ F2,1

A⊕A∗ , φ ∈ F0,3
A⊕A∗ = Γ(∧3A∗) and ψ ∈ F3,0

A⊕A∗ = Γ(∧3A).
We recall from [13] that, when γ = φ = ψ = 0, Θ is a Courant structure on
(A⊕A∗, 〈·, ·〉) if and only if (A, µ) is a Lie algebroid; the anchor and the bracket of
the Lie algebroid (A, µ) are given by (4), where a section X of A is identified with
X ⊕ 0 ∈ Γ(A ⊕ A∗). When φ = ψ = 0, Θ is a Courant structure on (A ⊕A∗, 〈·, ·〉)
if and only if ((A,A∗), µ, γ) is a Lie bialgebroid and when φ = 0 (resp. ψ = 0),
Θ is a Courant structure on (A ⊕ A∗, 〈·, ·〉) if and only if ((A,A∗), µ, γ, ψ) (resp.
((A∗, A), γ, µ, φ)) is a quasi-Lie bialgebroid. In the more general case, Θ = µ +
γ + φ + ψ is a Courant structure if and only if ((A,A∗), µ, γ, ψ, φ) is a proto-Lie
bialgebroid.

3. Nijenhuis torsion on pre-Courant algebroids

Let (E, 〈·, ·〉,Θ) be a pre-Courant algebroid with anchor and Dorfman bracket
defined by (4). Given an endomorphism I : E → E, the transpose morphism
I∗ : E∗ ≃ E → E∗ ≃ E is defined by 〈I∗u, v〉 = 〈u, Iv〉 for all u, v ∈ E. The
morphism I is orthogonal if I ◦I∗ = idE . If I = I∗ (resp. I = −I∗), the morphism
I is said to be symmetric (resp. skew-symmetric).

Given a skew-symmetric endomorphism I : E → E, we define a deformed pre-
Courant algebroid structure (ρI , [·, ·]I) on E by setting

{

ρI = ρ ◦ I
[X,Y ]I = [IX,Y ] + [X, IY ]− I[X,Y ], ∀X,Y ∈ Γ(E).

The deformed pre-Courant structure (ρI , [·, ·]I) corresponds to the function ΘI :=
{I,Θ} ∈ F3

E , (via (4)). The deformation of ΘI by a skew-symmetric morphism
J is denoted by ΘI,J , i.e. ΘI,J = {J , {I,Θ}}. The concomitant CΘ(I,J ) is the
element of F3

E defined as [2]:

(5) CΘ(I,J ) = ΘI,J +ΘJ ,I .

Recall that a skew-symmetric endomorphism I : E → E on a pre-Courant algebroid
(E, 〈·, ·〉,Θ) is a Nijenhuis morphism if its Nijenhuis torsion TΘI vanishes, where

(6) TΘI(X,Y ) = [IX, IY ]− I ([X,Y ]I) ,

for all X,Y ∈ Γ(E).
When I is skew-symmetric and satisfies I2 = λ idE , for some λ ∈ R, we have

[8, 1]

(7) TΘI =
1

2
(ΘI,I − λΘ).
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If I2 = −idE (resp. I2 = idE) then I is said to be an almost complex (resp.
almost para-complex ) structure. If moreover TΘI = 0, then I is a complex (resp.
para-complex ) structure.

Next, we prove some results that will be used in Section 5.

Proposition 3.1. Let I be a skew-symmetric endomorphism on a pre-Courant alge-
broid (E,Θ), such that I2 = λ idE, for some λ ∈ R\{0}. Then, TΘI = 0 ⇔ TΘI

I = 0.

Proof. The statement TΘI = 0 ⇒ TΘI
I = 0 follows directly from the equality

(8) TΘI
I(X,Y ) = TΘI(IX,Y ) + TΘI(X, IY )− I (TΘI(X,Y )) ,

that holds for all sections X,Y of E (see [2]). Let us now suppose that TΘI
I = 0.

Evaluating (8) on pairs of sections of E of type (IX,Y ) and of type (X, IY ), we
obtain

(9) I (TΘI(IX,Y )) = λTΘI(X,Y ) + TΘI(IX, IY )

and

(10) I (TΘI(X, IY )) = λTΘI(X,Y ) + TΘI(IX, IY ),

respectively. Equations (9) and (10) yield

I (TΘI(IX,Y )) = I (TΘI(X, IY )) ,

which implies

(11) TΘI(IX,Y ) = TΘI(X, IY ).

Substituting (11) in (8), we get

(12) 2TΘI(IX,Y ) = I (TΘI(X,Y )) .

Applying I to both sides of (12), we get

(13) 2I (TΘI(IX,Y )) = λTΘI(X,Y ).

On the other hand, replacing X by IX in (12), we obtain

(14) 2λTΘI(X,Y ) = I (TΘI(IX,Y )) .

From (13) and (14) we conclude that TΘI = 0, as claimed. �

Proposition 3.2. Let I and J be two anti-commuting skew-symmetric endomor-
phisms on a pre-Courant algebroid (E,Θ), such that CΘ(I,J ) = 0 and I2 = λ idE,
for some λ ∈ R\{0}. Then, TΘJ = 0 ⇔ TΘI

J = 0.

Proof. The statement TΘJ = 0 ⇒ TΘI
J = 0 is an immediate consequence of Pro-

position 4.18 in [2]. In fact, when CΘ(I,J ) = 0, that proposition gives

(15) TΘI
J (X,Y ) = −TΘJ (IX, Y )− TΘJ (X, IY )− I (TΘJ (X,Y )) ,

for all sections X,Y of E. Let us now suppose that TΘI
J = 0. Evaluating (15) on

pairs of sections of E of type (IX,Y ) and of type (X, IY ) and doing computations
similar to those in the proof of Proposition 3.1, we obtain

(16) TΘJ (IX,Y ) = TΘJ (X, IY ).

Substituting (16) in (15), we get

(17) 2TΘJ (IX,Y ) = −I (TΘJ (X,Y )) .

Applying I to both sides of (17), yields

(18) 2I (TΘJ (IX,Y )) = λTΘJ (X,Y ).



HYPERSYMPLECTIC ON COURANT ALGEBROIDS 7

On the other hand, replacing X by IX in (17), we obtain

(19) 2λTΘJ (X,Y ) = I (TΘJ (IX,Y )) .

From (18) and (19) we conclude that TΘJ = 0, as pretended. �

Proposition 3.3. Let I and J be two anti-commuting skew-symmetric endomor-
phisms on a pre-Courant algebroid (E,Θ), with vanishing Nijenhuis torsion. Then,

i) CΘ(I, IJ )(X,Y ) = I
(

CΘ(I,J )(X,Y )
)

, for all sections X,Y ∈ Γ(E).

Moreover, if I2 = λI idE and J 2 = λJ idE , for some λI , λJ ∈ R\{0}, then

ii) CΘ(I,J ) = 0.

Proof. Part i) is directly obtained from Proposition 3.13 in [2].

ii) From I2 = λI idE we have J = λ−1
I

I(IJ ) and, for all X,Y ∈ Γ(E),

(20) CΘ(I,J )(X,Y ) = λ−1
I CΘ(I, I(IJ ))(X,Y ) = λ−1

I I(CΘ(IJ , I)(X,Y )),

where, in the last equality, we used (i) and the fact that CΘ(·, ·) is symme-
tric. Using J 2 = λJ idE and (i), Equation (20) becomes

CΘ(I,J )(X,Y ) = λ−1
I λ−1

J I(CΘ(IJ , IJ (J ))(X,Y ))

= λ−1
I λ−1

J I(IJ )(CΘ(IJ ,J )(X,Y )) = −λ−1
J J (CΘ(J I,J )(X,Y )),

where we used the fact that IJ = −JI in the last equality. Finally,
applying (i) once more, we get

CΘ(I,J )(X,Y ) = −λ−1
J

J 2(CΘ(I,J )(X,Y )) = −CΘ(I,J )(X,Y ).

Therefore,
CΘ(I,J )(X,Y ) = 0,

for all X,Y ∈ Γ(E).

�

Let us recall a result from [2] that will be used later.

Proposition 3.4. Let I and J be two anti-commuting endomorphisms on a pre-
Courant algebroid (E,Θ). Then, for all sections X and Y of E,

(21) 2 TΘ(I ◦ J )(X,Y ) =

(

TΘI(JX,J Y )− J (TΘI(JX,Y ) + TΘI(X,J Y ))−

− J 2(TΘI(X,Y ))

)

+ 	
I,J

,

where 	
I,J

stands for permutation of I and J . In particular, if I and J have

vanishing Nijenhuis torsion then so has I ◦ J .

4. Hypersymplectic structures on pre-Courant algebroids

In this section we introduce the notion of an ε-hypersymplectic structure on a
pre-Courant algebroid (E,Θ) and study the main relations and properties of the
induced morphisms.

In the rest of the paper, when I and J are endomorphisms of E, the composition
I◦J will be denoted simply by IJ . Also, we consider 1, 2 and 3 as the representative
elements of the equivalence classes of Z3, i.e., Z3 := {[1], [2], [3]}. Although we omit
the brackets, and write i instead of [i], the indices in the corresponding computations
must be thought of as elements in Z3 := Z/3Z.
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Definition 4.1. An ε-hypersymplectic structure on a pre-Courant algebroid (E,Θ)
is a triple (S1,S2,S3) of skew-symmetric endomorphisms Si : E → E, i = 1, 2, 3,
such that

i) Si
2 = εi idE,

ii) SiSj = ε1ε2ε3SjSi, i 6= j ∈ {1, 2, 3},
iii) ΘSi,Si

= εiΘ,

where the parameters εi = ±1 form the triple ε = (ε1, ε2, ε3).

From conditions i) and iii) of Definition 4.1, and using formula (7), we immedi-
ately obtain the following proposition.

Proposition 4.2. Let (S1,S2,S3) be an ε-hypersymplectic structure on a pre-
Courant algebroid (E,Θ). Then, S1,S2 and S3 are Nijenhuis morphisms.

Remark 4.3. Notice that according to Proposition 4.2, condition iii) in Definition
4.1 can be replaced by

iii’) TΘSi = 0, i = 1, 2, 3.

Given an ε-hypersymplectic structure (S1,S2,S3) on (E,Θ), let us define the
morphisms T1, T2 and T3 by setting

(22) Ti := εi−1Si−1Si+1.

The morphisms Ti, i = 1, 2, 3, can be seen as transition maps between the mor-
phisms Sj , j = 1, 2, 3. In fact we have, for all i ∈ Z3,

Si−1Ti = Si+1.

The picture in Figure 1 helps to visualize these relations. For example, the
bottom triangle shows that S2T3 = S1 and ε1T3S1 = ε2S2. For the latter equality
we use the fact that the inverse of morphism Si is εiSi.

<

>

>

<

> <
S
1

S
3

S2

T
2T 1

T3

Figure 1.

Proposition 4.4. Let (S1,S2,S3) be an ε-hypersymplectic structure on a pre-
Courant algebroid (E,Θ). The morphisms T1, T2 and T3 satisfy the following rela-
tions for all i = 1, 2, 3:

i) Ti
∗ = ε1ε2ε3Ti;

ii) Ti
2 = εi idE;

iii) Ti−1Ti+1 = ε1ε2ε3Ti+1Ti−1 = εiTi;
iv) T3T2T1 = ε1ε2ε3T1T2T3 = idE.

Proof. Using conditions i) and ii) of Definition 4.1 and also equation (22), we have:
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i) Ti
∗ = (εi−1Si−1Si+1)

∗ = εi−1Si+1Si−1 = εiεi+1Si−1Si+1 = ε1ε2ε3Ti,
where we also used the fact that the endomorphisms Si are skew-symmetric;

ii) Ti
2 = Si−1Si+1Si−1Si+1 = ε1ε2ε3S

2
i−1S

2
i+1 = εi idE ;

iii) Ti−1Ti+1 = εi+1εiSi+1SiSiSi−1 = εi+1Si+1Si−1 = εiεi−1Si−1Si+1 = εiTi.
This proves one part of the statement and we use it to prove the second
equality of the statement. In fact, from (Ti−1Ti+1)

2 = (εiTi)
2 = εi idE and

using item ii), we have

Ti−1Ti+1 = εi(Ti−1Ti+1)
−1 = εi(Ti+1)

−1(Ti−1)
−1 = ε1ε2ε3Ti+1Ti−1.

iv) By item iii), T3T2 = ε1T1; then, using item ii),

T3T2T1 = ε1T
2
1 = idE .

Furthermore, using item iii) three times, we can change the order of Ti’s in
the product T3T2T1 to get

T3T2T1 = (ε1ε2ε3)
3T1T2T3 = ε1ε2ε3T1T2T3.

�

Remark 4.5. In the particular case where ε1 = ε2 = ε3 = −1 and (E,Θ) is a
Courant algebroid, the triple (T1, T2, T3) is an almost hypercomplex structure on
(E,Θ) in the terminology of [14].

Given an ε-hypersymplectic structure (S1,S2,S3) on a pre-Courant algebroid
(E,Θ), we may define an endomorphism G : E → E by setting, for all i = 1, 2, 3,

(23) G := Si+1SiSi−1.

Notice that G is well defined by (23). In fact, since SiSj = ε1ε2ε3SjSi, for i 6= j,
we obviously have G = S3S2S1 = S1S3S2 = S2S1S3.

Proposition 4.6. Let (S1,S2,S3) be an ε-hypersymplectic structure on a pre-
Courant algebroid (E,Θ). Then, the morphism G, given by (23), satisfies the follo-
wing properties:

i) G∗ = −ε1ε2ε3G;
ii) G2 = idE .

Proof. i) An easy computation using the skew-symmetry of each Si and con-
dition ii) in Definition 4.1, gives

G∗ = (Si+1SiSi−1)
∗ = −Si−1SiSi+1 = −ε1ε2ε3Si−1Si+1Si = −ε1ε2ε3G.

ii) The proof is immediate using properties of Si from Definition 4.1:

G2 = (S3S2S1)
2 = ε1ε2ε3 S

2
3S

2
2S

2
1 = idE .

�

The next proposition shows that, for each i, the morphisms G, Si and Ti commute
pairwise and each one is obtained out of the other two.

Proposition 4.7. Let (S1,S2,S3) be an ε-hypersymplectic structure on a pre-
Courant algebroid (E,Θ). The morphisms Si, Ti and G, i = 1, 2, 3, satisfy the follo-
wing relations:

i) TiSi = SiTi = εi−1G;
ii) GSi = SiG = εi−1εiTi;
iii) GTi = TiG = εi−1εiSi.
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Moreover, for all i 6= j ∈ {1, 2, 3},

iv) SjTi = ε1ε2ε3TiSj =

{

Si+1, j = i− 1
εiSi−1, j = i+ 1.

Proof. i) Using (22) and the condition ii) of Definition 4.1 twice, we get

TiSi = εi−1Si−1Si+1Si = εi−1SiSi−1Si+1 = SiTi.

On the other hand, from (22) and (23) we have

TiSi = εi−1Si−1Si+1Si = εi−1G.

ii) From item i) we have TiSi = εi−1G and composing with Si, on the right,
we get Ti(Si)

2 = εi−1GSi or, equivalently, εi−1εiTi = GSi. For the other
equality, we start with SiTi = εi−1G and compose with Si, on the left, to
obtain (Si)

2Ti = εi−1SiG; so that εi−1εiTi = SiG.
iii) Analogous to the proof of item ii), but composing with Ti instead of Si.
iv) Let us prove the case j = i−1. Using (22) and the condition i) of Definition

4.1, we have

Si−1Ti = εi−1S
2
i−1Si+1 = Si+1.

Moreover, by (22) and conditions i) and ii) of Definition 4.1, we get

TiSi−1 = εi−1Si−1Si+1Si−1 = εiεi+1S
2
i−1Si+1 = ε1ε2ε3Si+1,

which completes the proof of the statement. The case j = i+1 is analogous.
�

The relations between Si, Tj and G, for all i, j ∈ {1, 2, 3}, may be visualized in
Figure 2.

>

<
<

< >

<

>

>

<

T1

T 2

T
3

S1S1

S 2

S 2

S
3

S
3

<

>

>

<

>

>

<

>

>

<

>

>

ε
1T

2

ε
3
T
1

ε2
T3

ε3
ε2
T3

ε
3
S
1

ε
2ε

1S
2

ε3
ε2
S3

ε
1
ε
3
T
1

ε
1S

2

ε2
S3

ε
1
ε
3
S
1

ε
2ε

1T
2

D

D

D
A

B C

Figure 2.
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This is to be understood as the pattern for a tetrahedron ABCD. The metric
G does not appear in Figure 2. But in Figure 3, after building the tetrahedron, G
appears as the altitude of the tetrahedron ABCD.

G

D

A

B

C

Figure 3.

Remark 4.8. When G = idE, we have εiSi = εi−1Ti and there is an identification
between the upper edges of the tetrahedron ABCD and their projections onto the
face ABC (see Figure 3). In other words, in this case the tetrahedron degenerates
into a (flat) triangle.

The next proposition shows the behaviour of the bilinear map 〈., .〉 under the
endomorphisms G and Ti, i = 1, 2, 3.

Proposition 4.9. Let (S1,S2,S3) be an ε-hypersymplectic structure on a pre-
Courant algebroid (E, 〈., .〉,Θ). The maps G and Ti, i = 1, 2, 3, satisfy

〈GTi(X), Ti(Y )〉 = εi−1εi+1〈G(X), Y 〉,

for all X,Y ∈ Γ(E).

Proof. Using Proposition 4.4 i) and ii) and Proposition 4.7 iii) we have:

〈GTi(X), Ti(Y )〉 = ε1ε2ε3〈TiGTi(X), Y 〉 = ε1ε2ε3〈GT
2
i (X), Y 〉 = εi−1εi+1〈G(X), Y 〉.

�

5. Hypersymplectic structures on deformed pre-Courant algebroids

The results of Section 4 (Propositions 4.4, 4.6 and 4.7) show that the value of the
parameter ε1ε2ε3 = ±1 is determinant for some basic properties of the morphisms
Ti, Sj and G, i, j ∈ {1, 2, 3}, and for the relations between them. In this section
we consider an ε-hypersymplectic structure (S1,S2,S3) on a pre-Courant algebroid
(E,Θ) such that ε1ε2ε3 = −1. We prove that the Ti’s are Nijenhuis morphisms and
we show that we may deform the pre-Courant structure Θ by Si or by Ti, without
losing the property of (S1,S2,S3) being hypersymplectic.

Definition 5.1. Let (S1,S2,S3) be an ε-hypersymplectic structure on a pre-Courant
algebroid (E,Θ), such that ε1ε2ε3 = −1.
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• If ε1 = ε2 = ε3 = −1, then (S1,S2,S3) is said to be a hypersymplectic
structure on (E,Θ).

• Otherwise, (S1,S2,S3) is said to be a para-hypersymplectic structure on
(E,Θ).

Note that all para-hypersymplectic structures satisfy, eventually after a cyclic
permutation of the indices, ε1 = ε2 = 1 and ε3 = −1. In the sequel, every para-
hypersymplectic structure will be considered of such form.

Example 5.2. Any hypercomplex structure (I, J,K) on a Courant algebroid (E,Θ),
in the sense of [14], is a hypersymplectic structure on (E,Θ). In fact, if we set
(S1,S2,S3) := (I, J,K), then Ti = Si, i = 1, 2, 3, and G = idE (see Remark 4.8).

As a direct consequence of Propositions 4.2, 3.4 and 4.4 ii), we get the following:

Theorem 5.3. Let (S1,S2,S3) be a (para-)hypersymplectic structure on a pre-
Courant algebroid (E,Θ). Then, for each i = 1, 2, 3, the transition morphism Ti is
a Nijenhuis morphism. Moreover,

i) if εi = −1, Ti is a complex structure;
ii) if εi = 1, Ti is a para-complex structure.

In the case where ε1 = ε2 = ε3 = −1 and (E,Θ) is a Courant algebroid, the
triple (T1, T2, T3) is a hypercomplex structure on (E,Θ) in the sense of [14], see
Remark 4.5.

In [2] the notion of Nijenhuis pair on a pre-Courant algebroid (E,Θ) was introdu-
ced as a pair (I,J ) of anti-commuting Nijenhuis morphisms such that CΘ(I,J ) =
0.

Proposition 3.3 ii) shows that when two Nijenhuis morphisms I and J are (para-
)complex structures, i.e., λI = ±1 and λJ = ±1, it is enough that they anti-
commute to form a Nijenhuis pair. This is the case when we have a pre-Courant
algebroid equipped with a (para-)hypersymplectic structure, as stated in the next
proposition.

Proposition 5.4. Let (S1,S2,S3) be a (para-)hypersymplectic structure on a pre-
Courant algebroid (E,Θ). Then, (Si,Sj), (Ti, Tj) and (Si, Tj) are Nijenhuis pairs,
for all i, j ∈ {1, 2, 3}, i 6= j.

Next we show that when a triple (S1,S2,S3) is a (para-)hypersymplectic structure
on a pre-Courant algebroid (E,Θ), it is also a (para-)hypersymplectic structure on
the pre-Courant algebroid deformed by Ti or by Si.

Theorem 5.5. Let (E,Θ) be a pre-Courant algebroid. The following assertions are
equivalent:

i) (S1,S2,S3) is a (para-)hypersymplectic structure on (E,Θ);
ii) (S1,S2,S3) is a (para-)hypersymplectic structure on (E,ΘSi

);
iii) (S1,S2,S3) is a (para-)hypersymplectic structure on (E,ΘTj

),

i, j ∈ {1, 2, 3}, where Tj is defined by (22).

Proof. Let us prove (i) ⇔ (ii). By Remark 4.3, it is enough to show that TΘSj = 0 ⇔ TΘSi
Sj = 0,

i, j ∈ {1, 2, 3}. We consider two cases:

a) The case i = j is a direct consequence of Proposition 3.1;
b) For the case i 6= j, we use Propositions 5.4 and 3.2.
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To prove the equivalence (i) ⇔ (iii) it is enough to notice that Tj = εj−1Sj−1Sj+1

and to use twice the equivalence (i) ⇔ (ii). �

It is known that the deformation ΘI of a Courant structure Θ by a Nijenhuis
morphism I is a Courant structure [8]. So, if the pre-Courant algebroid (E,Θ)
in Theorem 5.5 is in particular a Courant algebroid, then (E,ΘSi

) and (E,ΘTj
),

i, j ∈ {1, 2, 3}, are also Courant algebroids.

6. One-to-one correspondence

In this section we keep considering an ε-hypersymplectic structure (S1,S2,S3) on
a pre-Courant algebroid such that ε1ε2ε3 = −1. We define hyperkähler structures
on pre-Courant algebroids and prove a one-to-one correspondence between hyper-
symplectic and hyperkähler structures. We show how we may exchange the roles of
the morphisms Si and Ti to get a set of equivalent structures; these structures are
summarized in a diagram at the end of the section.

Given a pre-Courant algebroid, we may define, in a natural way, a notion of
(pseudo-)metric.

Definition 6.1. A pseudo-metric on a pre-Courant algebroid (E, 〈., .〉,Θ) is a sym-
metric and orthogonal bundle automorphism G : E → E. If moreover G is positive
definite, that is, 〈G(e), e〉 > 0, for all non vanishing sections e ∈ Γ(E), then G is
said to be a metric on (E, 〈., .〉,Θ).

Remark 6.2. In Definition 6.1, because G is symmetric, the orthogonality condi-
tion (GG∗ = idE) can be replaced by an almost para-complex condition (G2 = idE).

The next proposition follows directly from Proposition 4.6 and Remark 6.2.

Proposition 6.3. Let (S1,S2,S3) be a (para-)hypersymplectic structure on a pre-
Courant algebroid (E, 〈., .〉,Θ). Then, the morphism G given by equation (23) is a
pseudo-metric on E.

Next, we define the notions of hermitian and para-hermitian pair on a pre-
Courant algebroid.

Definition 6.4. A hermitian (resp., para-hermitian) pair1 on a pre-Courant al-
gebroid (E, 〈., .〉,Θ) is a pair (J , G) where J is a complex (resp., para-complex)
structure and G is a pseudo-metric such that, for all X,Y ∈ Γ(E),

(24) 〈G(JX),J Y 〉 = 〈G(X), Y 〉, (resp., 〈G(JX),J Y 〉 = −〈G(X), Y 〉) .

Remark 6.5. In Definition 6.4, if J is a skew-symmetric complex (resp. para-
complex) structure then condition (24) is equivalent to GJ = JG.

As a direct consequence of Proposition 4.9, we have the following:

Proposition 6.6. Let (S1,S2,S3) be a (para-)hypersymplectic structure on a pre-
Courant algebroid (E, 〈., .〉,Θ).

i) If (S1,S2,S3) is a hypersymplectic structure, then (Ti,G) is a hermitian
pair, for all i = 1, 2, 3.

ii) If (S1,S2,S3) is a para-hypersymplectic structure, then (T1,G) and (T2,G)
are para-hermitian pairs while (T3,G) is a hermitian pair.

1Rigourously, we should say pseudo-hermitian and para-pseudo-hermitian but, in order to
simplify the terminology, we omit the prefix “pseudo”.
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Let us define (para-)hyperkähler structures on a pre-Courant algebroid2 and see
how they are related to (para-)hypersymplectic structures.

Definition 6.7. A quadruple (T1, T2, T3,G) of endomorphisms on a pre-Courant
algebroid (E, 〈., .〉,Θ) is a hyperkähler (resp., para-hyperkähler) if:

i) G is a pseudo-metric;
ii) T1 and T2 are anti-commuting complex (resp., para-complex) endomorphisms

and T3 = T1T2;
iii) (G, Tj)j=1,2 are hermitian (resp., para-hermitian) pairs;
iv) TΘ(GTj) = 0, j = 1, 2, 3.

Notice that, when (T1, T2, T3,G) is a (para-)hyperkähler structure, (G, T3) is a
hermitian pair and the morphisms T1, T2 and T3 pairwise anti-commute.

Theorem 6.8. The triple (S1,S2,S3) is a hypersymplectic (resp., para-hypersymplectic)
structure on a pre-Courant algebroid (E,Θ) if and only if (T1, T2, T3,G) is a hy-
perkähler (resp., para-hyperkähler) structure on (E,Θ), with Si = εiεi−1GTi, i =
1, 2, 3.

Proof. If (S1,S2,S3) is a (para-)hypersymplectic structure on (E,Θ) then we easily
conclude that (T1, T2, T3,G) is a (para-)hyperkähler structure on (E,Θ).

Let us now assume that (T1, T2, T3,G) is a (para-)hyperkähler structure on (E,Θ).
Then, we have

S2
i = GTiGTi = G2T 2

i = T 2
i = εiidE ,

where we used the fact that G and Ti commute and G2 = idE (see Remarks 6.5 and
6.2). Moreover,

SiSi+1 = εiεi−1εi+1εiGTiGTi+1 = εi−1εi+1TiTi+1 = −εi−1εi+1Ti+1Ti = −Si+1Si.

Finally, because S2
i = εiidE and TΘSi = 0 (see item iv) of Definition 6.7) we

conclude that ΘSi,Si
= εiΘ. Therefore, (S1,S2,S3) is a (para-)hypersymplectic

structure on (E,Θ). �

Next, we see that the tetrahedron model (see Figure 3), besides being an effi-
cient way to summarize all the algebraic relations between the morphisms of a (para-
)hypersymplectic structure, is an accurate representation that enables us to discover
new relations. In fact, the next theorem shows that the symmetries of the tetra-
hedron are symmetries of the (para-)hypersymplectic structures on pre-Courant
algebroids. These symmetries do not exist for (para-)hypersymplectic structures on
Lie algebroids (see definition in [3]).

Theorem 6.9. The triple (S1,S2,S3) is a hypersymplectic (resp., para-hypersymplectic)
structure on a pre-Courant algebroid (E,Θ) if and only if (S1, T2, T3) is a hyper-
symplectic (resp., para-hypersymplectic) structure on (E,Θ). Furthermore, both
(para-)hypersymplectic structures determine equal or opposite pseudo-metrics.

Proof. If (S1,S2,S3) is a (para-)hypersymplectic structure then, previous definitions
and results yield,







S2
i = T 2

i = εiidE ;
SiSj + SjSi = TiTj + TjTi = SiTj + TjSi = 0;
TΘSi = TΘTi = 0.

2In [6], hyperkähler structures on Courant algebroids are called generalized hyper-Kähler
structures.
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Thus, (S1, T2, T3) is a (para-)hypersymplectic structure.
Now, let us assume that (S1, T2, T3) is a (para-)hypersymplectic structure. In this

case, the transition morphisms are ε1ε3T1, ε1ε3S2 and ε1ε3S3 and, using the first
part of the proof, we conclude that (S1, ε1ε3S2, ε1ε3S3) is a (para-)hypersymplectic
structure. Therefore, (S1,S2,S3) is a (para-)hypersymplectic structure.

Finally, because S3S2S1 = ε1ε3T3T2S1, the pseudo-metrics induced by both
(para-)hypersymplectic structures are equal or opposite. �

Applying successively Theorems 6.8 and 6.9, we conclude that one (para-)hypersymplectic
structure (S1,S2,S3) on (E,Θ) induces several (para-)hypersymplectic and (para-
)hyperkähler structures on (E,Θ), as the next diagram shows.

(S1,S2,S3) (para-)hypersymplectic oo
Thm 6.8 //

OO

Thm 6.9

��

(T1, T2, T3,G) (para-)hyperkählerOO

��
(S1, T2, T3) (para-)hypersymplectic oo

Thm 6.8 //
OO

Thm 6.9

��

(T1,S2,S3,G) (para-)hyperkählerOO

��
(T1,S2, T3) (para-)hypersymplectic oo

Thm 6.8 //
OO

Thm 6.9

��

(S1, T2,S3,G) (para-)hyperkählerOO

��
(T1, T2,S3) (para-)hypersymplectic oo

Thm 6.8 // (S1,S2, T3,G) (para-)hyperkähler

Remark 6.10. In Section 5 we pointed out that a hypersymplectic structure on a
Courant algebroid determines a hypercomplex structure, in the sense of [14], which is
formed by the associated transition morphisms. As it is shown in the diagram above,
when (S1,S2,S3) is a hypersymplectic structure on a Courant algebroid (E,Θ), the
triples (S1, T2, T3), (T1,S2, T3) and (T1, T2,S3) are also hypersymplectic structures.
Therefore, (T1, T2, T3), (T1,S2,S3), (S1, T2,S3) and (S1,S2, T3) are hypercomplex
structures on (E,Θ).

Example 6.11. Given a hypersymplectic structure (S1,S2,S3) on a Courant al-
gebroid (E,Θ), the triples (T1, T2, T3), (T1,S2,S3), (S1, T2,S3) and (S1,S2, T3) are
hypersymplectic structures on (E,Θ) (see Remark 6.10 and Example 5.2).

7. Hypersymplectic structures on Lie algebroids

The purpose of this section is to present a first example of an ε-hypersymplectic
structure on a Courant algebroid, which is constructed out of an ε-hypersymplectic
structure on a Lie algebroid. First, we recall the definition and some properties of
the latter [1, 3].

An ε-hypersymplectic structure on a Lie algebroid (A, µ) is a triple (ω1, ω2, ω3) of
symplectic forms with inverse Poisson bivectors (π1, π2, π3) such that the transition
endomorphisms N1, N2 and N3 on A, defined by

(25) Ni := π#
i−1 ◦ ω

♭
i+1, i ∈ Z3,

satisfy

(26) N2
i = εiidA, i = 1, 2, 3.
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An important property of the transition morphisms Ni, i = 1, 2, 3, is that they are
Nijenhuis morphisms.

Having an ε-hypersymplectic structure on a Lie algebroid (A, µ), we define g ∈

Γ(
⊗2

A∗) by setting, for all X,Y ∈ Γ(A),

g(X,Y ) := 〈g♭X,Y 〉,

where g♭ : A −→ A∗ is given by

(27) g♭ := ε3ε2 ω3
♭ ◦ π1

♯ ◦ ω2
♭.

The definition of g♭ is not affected by a circular permutation of the indices in
equation (27), that is,

(28) g♭ = εi−1εi+1 ωi−1
♭ ◦ πi

♯ ◦ ωi+1
♭,

for all i ∈ Z3. Moreover, we have

(g♭)∗ = −ε1ε2ε3 g
♭,

which means that g is symmetric or skew-symmetric, depending on the sign of the
product ε1ε2ε3. When ε1ε2ε3 = −1, the morphism g♭ defined by (27) determines a
pseudo-metric on A.

Let (A, µ) be a Lie algebroid and consider the Courant algebroid (A⊕A∗, µ). If
we take a triple (ω1, ω2, ω3) of 2-forms and a triple (π1, π2, π3) of bivectors on A,
we may define the skew-symmetric bundle endomorphisms Si : A⊕A∗ → A⊕A∗,
i = 1, 2, 3,

(29) Si :=

[

0 εi π
♯
i

ω♭
i 0

]

.

In order to simplify the notation and if there is no risk of confusion, we shall omit

the symbols ♯ and ♭ and denote the morphisms ω♭
i and π

♯
i by ωi and πi, respectively.

Moreover, in the supergeometric setting, we have

Si(X + α) = {X + α, ωi + εiπi},

for all X + α ∈ A⊕A∗.

Lemma 7.1. Let ω1, ω2 and ω3 be 2-forms on a vector bundle A over M and π1,
π2 and π3 bivectors on A. Consider the vector bundle morphisms N1, N2 and N3

on A, given by (25), and the bundle endomorphisms S1, S2 and S3 on A⊕A∗, given
by (29). Then, for all i = 1, 2, 3,

i) S2
i = εiidA⊕A∗ ⇔ πi ◦ ωi = idA,

ii) Si−1Si+1 = ε1ε2ε3 Si+1Si−1 ⇔ N2
i = εiidA.

Proof. A simple computation gives i). To prove ii), we notice that N2
i = εi idA is

equivalent to

ωi+1 ◦ πi−1 = εi ωi−1 ◦ πi+1,

for all i ∈ Z3 (see [3]). On the other hand, we have

Si−1Si+1 =

[

εi−1 πi−1 ◦ ωi+1 0
0 εi+1 ωi−1 ◦ πi+1

]
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and

ε1ε2ε3Si+1Si−1 = ε1ε2ε3

[

εi+1 πi+1 ◦ ωi−1 0
0 εi−1 ωi+1 ◦ πi−1

]

=

[

εi−1εi πi+1 ◦ ωi−1 0
0 εi+1εi ωi+1 ◦ πi−1

]

.

So, Si−1Si+1 = ε1ε2ε3Si+1Si−1 if and only if ωi+1 ◦ πi−1 = εi ωi−1 ◦ πi+1 and this
completes the proof. �

Theorem 7.2. A triple (ω1, ω2, ω3), with inverse (π1, π2, π3), is an ε-hypersymplectic
structure on a Lie algebroid (A, µ) if and only if the triple (S1,S2,S3) is an ε-
hypersymplectic structure on the Courant algebroid (A⊕A∗, µ), with Si, i = 1, 2, 3,
given by (29).

Proof. Suppose that (ω1, ω2, ω3) is an ε-hypersymplectic structure on a Lie alge-
broid (A, µ) and πi is the inverse of ωi, i = 1, 2, 3. According to Definition 4.1 and
Lemma 7.1, we only have to check that µSi,Si

= εiµ, for i = 1, 2, 3. Recalling that
π is a Poisson bivector if and only if {π, {π, µ}} = 0 and ω is a closed 2-form if and
only if {µ, ω} = 0, a simple computation gives:

{Si, {Si, µ}} = {ωi + εiπi, {ωi + εiπi, µ}} = εi{ωi, {πi, µ}}

= εi µ,

where we used, in the last equality, the formula

(30) {idA, χ} = (q − p)χ, χ ∈ F
(p,q)
A⊕A∗ .

Conversely, assume that the endomorphisms Si =

[

0 εi πi
ωi 0

]

, i = 1, 2, 3,

form an ε-hypersymplectic structure on the Courant algebroid (A ⊕ A∗, µ). Using
again Lemma 7.1, we only have to prove that the non-degenerate 2-forms ωi are
symplectic. From

{ωi + εiπi, {ωi + εiπi, µ}} = εiµ,

we get {πi, {πi, µ}} = 0, which means that πi is a Poisson bivector on (A, µ). But
πi being a Poisson bivector on (A, µ) is equivalent to ωi being a symplectic form on
(A, µ). �

Under the conditions of Theorem 7.2, the transition morphisms of the ε-hypersymplectic
structure (S1,S2,S3) on (A⊕A∗, µ), defined by (22), are given by

Ti =

[

Ni 0
0 ε1ε2ε3Ni

∗

]

, i = 1, 2, 3,

where Ni is the transition morphism of the ε-hypersymplectic structure (ω1, ω2, ω3)
on the Lie algebroid (A, µ), see (25). The endomorphism G : A ⊕ A∗ → A ⊕ A∗

defined by (23) is given by

G =

[

0 (g♭)−1

g♭ 0

]

,

where g♭ : A→ A∗ is defined by (27).

Example 7.3 (Heisenberg Lie group). Consider the Heisenberg Lie group H3 and
{e1, e2, e3} a basis of 1-forms on H3 defined by

e1 := dx, e2 := dy and e3 := dz −
1

2
xdy +

1

2
y dx,
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where x, y, z are global coordinate functions on H3.
We define a hypersymplectic structure (ω1, ω2, ω3) on the Lie algebroid T (H3×I),

where I ⊆ R, by setting (see [4])

ω1
♭ :=









0 0 −1 0
0 0 0 et

1 0 0 0
0 −et 0 0









, ω2
♭ :=









0 0 0 −et

0 0 −1 0
0 1 0 0
et 0 0 0









and ω3
♭ :=









0 −et 0 0
et 0 0 0
0 0 0 −1
0 0 1 0









,

on the basis {e1, e2, e3, ∂t}, t being the coordinate on I ⊂ R.
Then, using Theorem 7.2, we define a hypersymplectic structure (S1,S2,S3) on

the Courant algebroid T (H3 × I)⊕ T ∗(H3 × I), by setting

S1 :=

























0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 e−t

0 0 0 0 1 0 0 0
0 0 0 0 0 −e−t 0 0
0 0 −1 0 0 0 0 0
0 0 0 et 0 0 0 0
1 0 0 0 0 0 0 0
0 −et 0 0 0 0 0 0

























, S2 :=

























0 0 0 0 0 0 0 −e−t

0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 e−t 0 0 0
0 0 0 −et 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
et 0 0 0 0 0 0 0

























and S3 :=

























0 0 0 0 0 −e−t 0 0
0 0 0 0 e−t 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 −et 0 0 0 0 0 0
et 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0

























.

The transition morphisms are

T1 :=

























0 0 −e−t 0 0 0 0 0
0 0 0 1 0 0 0 0
et 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −et 0
0 0 0 0 0 0 0 1
0 0 0 0 e−t 0 0 0
0 0 0 0 0 −1 0 0

























, T2 :=

























0 0 0 −1 0 0 0 0
0 0 −e−t 0 0 0 0 0
0 et 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −et 0
0 0 0 0 0 e−t 0 0
0 0 0 0 1 0 0 0

























and T3 :=

























0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −et 0 0 0 0
0 0 e−t 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −e−t

0 0 0 0 0 0 et 0

























.

The metric is given by
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G :=

























0 0 0 0 e−t 0 0 0
0 0 0 0 0 e−t 0 0
0 0 0 0 0 0 et 0
0 0 0 0 0 0 0 e−t

et 0 0 0 0 0 0 0
0 et 0 0 0 0 0 0
0 0 e−t 0 0 0 0 0
0 0 0 et 0 0 0 0

























.

Changing a couple of signs, we may also define a para-hypersymplectic structure
on the Lie algebroid T (H3 × I) by setting

ω′
1
♭
:=









0 0 1 0
0 0 0 et

−1 0 0 0
0 −et 0 0









, ω′
2
♭
:=









0 0 0 −et

0 0 1 0
0 −1 0 0
et 0 0 0









and ω′
3
♭
:= −ω3

♭.

The corresponding para-hypersymplectic structure on the Courant algebroid T (H3×
I)⊕ T ∗(H3 × I) is the triple (S ′

1,S
′
2,S

′
3) given by

S ′
1 :=

























0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −e−t

0 0 0 0 1 0 0 0
0 0 0 0 0 e−t 0 0
0 0 1 0 0 0 0 0
0 0 0 et 0 0 0 0
−1 0 0 0 0 0 0 0
0 −et 0 0 0 0 0 0

























, S ′
2 :=

























0 0 0 0 0 0 0 e−t

0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −e−t 0 0 0
0 0 0 −et 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
et 0 0 0 0 0 0 0

























and S ′
3 := −S3.

The transition morphisms and the metric associated to (S ′
1,S

′
2,S

′
3) (defined, re-

spectively, by (22) and (23)) can be easily computed.

8. Hypersymplectic structures on Lie bialgebroids

In this section we present a class of examples of ε-hypersymplectic structures
on a Courant algebroid (A ⊕ A∗, µ + γ), which is the double of a Lie bialgebroid
((A,A∗), µ, γ).

Having in mind that a bivector π on A can be seen as a 2-form on A∗, through
the identification A = (A∗)∗, we have the following result.

Theorem 8.1. Let ((A,A∗), µ, γ) be a Lie bialgebroid and (S1,S2,S3) be a triple of
bundle endomorphisms of A⊕ A∗, with Si given by (29). The following assertions
are equivalent:

i) (S1,S2,S3) is an ε-hypersymplectic structure on the Courant algebroid (A⊕
A∗, µ+ γ)

ii) (ω1, ω2, ω3) is an ε-hypersymplectic structure on the Lie algebroid (A, µ),
(π1, π2, π3) is an ε-hypersymplectic structure on the Lie algebroid (A∗, γ)
and πi is the inverse of ωi, i = 1, 2, 3.

Proof. We use Lemma 7.1 noticing that πi ◦ ωi = idA ⇔ ωi ◦ πi = idA∗ and N2
i =

εiidA ⇔ (N∗
i )

2 = εiidA∗ , i = 1, 2, 3, so that conditions i) and ii) of Definition 4.1 are
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satisfied if and only if πi and ωi are inverses of each other and (26) holds. Moreover,
using the bidegrees of F3

A⊕A∗ , we have

(31) {Si, {Si, µ+ γ}} = εi(µ+ γ) ⇔



















{πi, {πi, µ}} = 0

{ωi, {ωi, γ}} = 0

{ωi, {πi, µ}}+ {πi, {ωi, µ}} = µ

{ωi, {πi, γ}}+ {πi, {ωi, γ}} = γ.

The first equation on the right-hand side of (31) means that πi is a Poisson bivector
on (A, µ), which is equivalent to ωi being a symplectic form on (A, µ). The second
equation on the right-hand side of (31) means that ωi, seen as a bivector on A∗,
is Poisson on the Lie algebroid (A∗, γ), which is equivalent to saying that πi is
symplectic on (A∗, γ). Concerning the third and fourth equations on the right-
hand side of (31), an easy computation using (30) shows that they are equivalent,
respectively, to the first and second equations. �

It is well known that a Poisson bivector π on (A, µ) determines a Lie algebroid
structure on A∗; we denote by µπ this induced structure. In [4] we proved that if
(ω1, ω2, ω3) is an ε-hypersymplectic structure on a Lie algebroid (A, µ) and πi is the
inverse of ωi, i = 1, 2, 3, then the triple (π1, π2, π3) is an ε-hypersymplectic structure
on the Lie algebroid (A∗, µπi

). So, given an ε-hypersymplectic structure (ω1, ω2, ω3)
on a Lie algebroid (A, µ), Theorem 8.1 yields that the triple (S1,S2,S3) is an ε-
hypersymplectic structure on the Courant algebroid (A⊕A∗, µ+µπi

). Conversely, if
(S1,S2,S3) is an ε-hypersymplectic structure on the Courant algebroid (A⊕A∗, µ+
µπi

) then, by Theorem 8.1, (ω1, ω2, ω3) is an ε-hypersymplectic structure on the Lie
algebroid (A, µ).

Thus, we have proved:

Corollary 8.2. The triple (ω1, ω2, ω3), with inverse (π1, π2, π3), is an ε-hypersymplectic
structure on the Lie algebroid (A, µ) if and only if (S1,S2,S3) is an ε-hypersymplectic
structure on the Courant algebroid (A⊕A∗, µ+µπi

), with Si given by (29), i = 1, 2, 3.

9. Hypersymplectic structures with torsion on Lie algebroids

In this section we study a class of examples of hypersymplectic structures on
pre-Courant algebroids determined by some structures on Lie algebroids which are
called hypersymplectic with torsion. These are introduced and discussed in [5] and
may be considered as being equivalent to hyperkähler structures with torsion, also
known as HKT structures [7]. The hypersymplectic structures with torsion on
Lie algebroids provide examples of hypersymplectic structures (without torsion) on
Courant algebroids which are doubles of quasi-Lie bialgebroids and even in the more
general case where the Courant structure is the double of a proto-Lie bialgebroid.

We give the definition of a hypersymplectic structure with torsion on a Lie al-
gebroid (A, µ), which is a particular case of an ε-hypersymplectic structure with
torsion considered in [5].

Let ω1, ω2 and ω3 be nondegenerate 2-forms on a Lie algebroid (A, µ), with in-
verses π1, π2 and π3 ∈ Γ(∧2A), respectively, and consider the transition morphisms
N1, N2, N3 : A→ A given by (25).
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Definition 9.1. The triple (ω1, ω2, ω3) is a hypersymplectic structure with torsion
on the Lie algebroid (A, µ) if

(32) Ni
2 = −idA, i = 1, 2, 3, and N1dω1 = N2dω2 = N3dω3,

where Nidωi(X,Y, Z) = dωi(NiX,NiY,NiZ), for all X,Y, Z ∈ Γ(A) and d stands
for the differential of the Lie algebroid (A, µ).

When the non-degenerate 2-forms ω1, ω2 and ω3 are closed, then they are sym-
plectic forms and the right hand side of (32) is trivially satisfied. In this case, the
triple (ω1, ω2, ω3) is a hypersymplectic structure (without torsion) on (A, µ), that is,
an ε-hypersymplectic structure with ε1 = ε2 = ε3 = −1 (see Section 7).

The next lemma will be useful in what follows (see also [11]).

Lemma 9.2. Let ((A,A∗), µ, γ) be a Lie bialgebroid, ψ ∈ Γ(∧3A), φ ∈ Γ(∧3A∗),
π ∈ Γ(∧2A) and ω ∈ Γ(∧2A∗), with π and ω inverse of each other. Then,

i) {π, {π, µ}} = 2ψ ⇔ 2 {π, {ω, µ}} = {ω, {ω, ψ}};
ii) {ω, {ω, γ}} = 2φ ⇔ 2 {ω, {π, γ}} = {π, {π, φ}}.

Proof. i) Let us assume that {π, {π, µ}} = 2ψ. Then,

{ω, {π, {π, µ}}} = 2 {ω, ψ}

and the Jacobi identity together with (30) gives

{π, {π, {ω, µ}}} = 2 {ω, ψ}.

Thus,

{ω, {π, {π, {ω, µ}}}}= 2 {ω, {ω, ψ}}

or, equivalently,

(33) {π, {ω, µ}}+ {π, {ω, {π, {ω, µ}}}} = 2 {ω, {ω, ψ}}.

Finally, (33) gives

2{π, {ω, µ}} = {ω, {ω, ψ}}.

Now, we assume that {ω, {ω, ψ}} = 2 {π, {ω, µ}}. Then,

{π, {ω, {ω, ψ}}} = 2 {π, {π, {ω, µ}}}

which is equivalent to

{ω, ψ}+ {ω, {π, {ω, ψ}}} = 2 {π, {π, {ω, µ}}}.

Thus,

(34) {π, {ω, ψ}}+ {π, {ω, {π, {ω, ψ}}}}= 2 {π, {π, {π, {ω, µ}}}}.

From (34) we get, applying the Jacobi identity and (30) several times,

3ψ + 3{π, {ω, ψ}} = −2 {π, {π, µ}}+ 2 {π, {π, {ω, {π, µ}}}}

⇔ 6ψ = {π, {ω, {π, {π, µ}}}} ⇔ 2ψ = {π, {π, µ}}.

ii) The proof is similar to case i).
�

Now, we have to mention that the definition of hypersymplectic structure with
torsion on a Lie algebroid can be given using the inverses of the non-degenerate
2-forms ωi. More precisely,
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(ω1, ω2, ω3) is a hypersymplectic structure with torsion on (A, µ) if and only if

(35) N2
i = −idA and [π1, π1] = [π2, π2] = [π3, π3],

where [., .] is the Schouten-Nijenhuis bracket of multivectors on A. The equivalence
of the two definitions is proved in [5].

The next proposition gives a first example of a hypersymplectic structure on a
pre-Courant algebroid, which is constructed out of a hypersymplectic structure with
torsion on a Lie algebroid.

Proposition 9.3. Let (ω1, ω2, ω3) be a triple of 2-forms and (π1, π2, π3) be a triple
of bivectors on a Lie algebroid (A, µ). Consider the triple (S1,S2,S3) of endomor-
phisms of A⊕A∗, with Si given by (29). The following assertions are equivalent:

i) (ω1, ω2, ω3) is a hypersymplectic structure with torsion on the Lie algebroid
(A, µ) and πi is the inverse of ωi, i = 1, 2, 3;

ii) (S1,S2,S3) is a hypersymplectic structure on the pre-Courant algebroid (A⊕
A∗, µ+ ψ), for some ψ ∈ Γ(∧3A).

Proof. From Lemma 7.1, conditions i) and ii) of Definition 4.1 are satisfied while
for condition iii), we have

{Si, {Si, µ+ ψ}} = −µ− ψ ⇔

{

{ωi, {πi, µ}}+ {πi, {ωi, µ}} − {ωi, {ωi, ψ}} = µ

−{πi, {πi, µ}}+ {πi, {ωi, ψ}} = ψ

⇔

{

2{πi, {ωi, µ}} = {ωi, {ωi, ψ}}

{πi, {πi, µ}} = 2ψ

⇔ {πi, {πi, µ}} = 2ψ,(36)

where the latter equivalence is given by Lemma 9.2. Equation (36) exhibits the
appropriate definition of ψ in order to satisfy condition iii) of Definition 4.1.

Let us now assume that (S1,S2,S3) is a hypersymplectic structure on a pre-
Courant algebroid (A⊕A∗, µ+ ψ), with ψ ∈ Γ(∧3A). From (36), the 3-vector ψ is
given by ψ = − 1

2 [πi, πi], i ∈ {1, 2, 3}. Thus, [π1, π1] = [π2, π2] = [π3, π3] and, from
Lemma 7.1 and (35), we get that (ω1, ω2, ω3) is a hypersymplectic structure with
torsion on (A, µ). �

Notice that in the assertion ii) of Proposition 9.3, since (S1,S2,S3) is a hypersym-
plectic structure for the pre-Courant structure µ+ψ, condition (µ+ψ)Sk,Sk

= −µ−ψ
holds and implies that ψ has to be of the form − 1

2 [πk, πk], for any k ∈ {1, 2, 3}.
If we aim to have a Courant structure on A ⊕ A∗, in the statement ii) of Pro-

position 9.3, we have to require the bivectors to be weak-Poisson3 as shown in the
next theorem.

Theorem 9.4. Let (ω1, ω2, ω3) be a triple of 2-forms and (π1, π2, π3) be a triple
of bivectors on a Lie algebroid (A, µ). Consider the triple (S1,S2,S3) of endomor-
phisms of A⊕A∗, with Si given by (29). The following assertions are equivalent:

i) (ω1, ω2, ω3) is a hypersymplectic structure with torsion on the Lie algebroid
(A, µ), πi is the inverse of ωi and πi is weak-Poisson, i = 1, 2, 3;

ii) (S1,S2,S3) is a hypersymplectic structure on the Courant algebroid (A ⊕
A∗, µ+ ψ), for some ψ ∈ Γ(∧3A).

3A bivector π on a Lie algebroid (A, µ) is weak-Poisson if {µ, {{π, µ}, π}} = 0 or, equivalently,
{µ, [π, π]} = 0.
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Proof. In addition to the proof of Proposition 9.3, it is enough to notice that, since
(A, µ) is a Lie algebroid,

µ+ ψ is Courant ⇔ {µ+ ψ, µ+ ψ} = 0

⇔ {µ, ψ} = 0 ⇔ πi is weak-Poisson, i = 1, 2, 3.

�

In the next proposition we show that having a Lie bialgebroid (A,A∗) equipped
with a hypersymplectic structure with torsion on A and a hypersymplectic structure
with torsion on A∗ is equivalent to having a hypersymplectic structure (without
torsion) on A⊕A∗ equipped with a pre-Courant structure.

Proposition 9.5. Let ((A,A∗), µ, γ) be a Lie bialgebroid, (ω1, ω2, ω3) be a triple of
2-forms and (π1, π2, π3) be a triple of bivectors on A. Consider the triple (S1,S2,S3)
of endomorphisms of A ⊕ A∗, with Si given by (29). The following assertions are
equivalent:

i) (ω1, ω2, ω3) is a hypersymplectic structure with torsion on the Lie algebroid
(A, µ) and (π1, π2, π3) is a hypersymplectic structure with torsion on the Lie
algebroid (A∗, γ), with πi the inverse of ωi, i = 1, 2, 3;

ii) (S1,S2,S3) is a hypersymplectic structure on the pre-Courant algebroid (A⊕
A∗, µ+ γ + ψ + φ), for some ψ ∈ Γ(∧3A) and φ ∈ Γ(∧3A∗).

Proof. Let us assume that (ω1, ω2, ω3) is a hypersymplectic structure with torsion
on (A, µ), (π1, π2, π3) is a hypersymplectic structure with torsion on (A∗, γ) and πi is
the inverse of ωi, i = 1, 2, 3. From Lemma 7.1, conditions i) and ii) of Definition 4.1
are satisfied while, for condition iii), we have:

{Si, {Si, µ+ γ + ψ + φ}} = −µ− γ − ψ − φ

⇔



















{ωi, {ωi, ψ}} − {ωi, {πi, µ}} − {πi, {ωi, µ}} = −µ

−{ωi, {{πi, γ}} − {πi, {ωi, γ}}+ {πi, {πi, φ}} = −γ

{ωi, {ωi, γ}} − {ωi, {πi, φ}} = −φ

{πi, {πi, µ}} − {πi, {ωi, ψ}} = −ψ

⇔



















{ωi, {ωi, ψ}} = 2{πi, {ωi, µ}}

{πi, {πi, φ}} = 2{ωi, {πi, γ}}

{ωi, {ωi, γ}} = 2φ

{πi, {πi, µ}} = 2ψ

⇔

{

{ωi, {ωi, γ}} = 2φ

{πi, {πi, µ}} = 2ψ,
(37)

where the latter equivalence is given by Lemma 9.2. Equation (37) gives the appro-
priate definition of ψ and φ in order to satisfy condition iii) of Definition 4.1.

Now, we assume that (S1,S2,S3) is a hypersymplectic structure on the pre-
Courant algebroid (A ⊕ A∗, µ + γ + ψ + φ). Using Lemma 7.1, we conclude that
πi is the inverse of ωi and N2

i = −idA, i = 1, 2, 3. Moreover, from (37), we get
ψ = − 1

2{πi, {µ, πi}} and φ = − 1
2{ωi, {γ, ωi}}, for i = 1, 2, 3. Thus, (ω1, ω2, ω3) is a

hypersymplectic structure with torsion on the Lie algebroid (A, µ) and (π1, π2, π3) is
a hypersymplectic structure with torsion on the Lie algebroid (A∗, γ) (see (35)). �
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The assumption of ((A,A∗), µ, γ) being a Lie bialgebroid, in Proposition 9.5,
can be weakened. In fact, it is enough to require that (A, µ) and (A∗, γ) are Lie
algebroids, without assuming that {µ, γ} = 0.

In the statement of Proposition 9.5, if we intend to replace the pre-Courant
algebroid structure on A⊕A∗ by a Courant algebroid structure, we need to impose
some additional conditions on φ and ψ, as shown in the next theorem.

Theorem 9.6. Let ((A,A∗), µ, γ) be a Lie bialgebroid, (ω1, ω2, ω3) be a triple of
2-forms and (π1, π2, π3) be a triple of bivectors. Consider the triple (S1,S2,S3) of
endomorphisms of A ⊕ A∗, with Si given by (29). The following assertions are
equivalent:

i) (ω1, ω2, ω3) is a hypersymplectic structure with torsion on the Lie algebroid
(A, µ), (π1, π2, π3) is a hypersymplectic structure with torsion on the Lie al-
gebroid (A∗, γ), with πk the inverse of ωk, k = 1, 2, 3, and {γ, φ} = {µ, ψ} =
{ψ, φ} = 0, where ψ = − 1

2{πi, {µ, πi}} and φ = − 1
2{ωj, {γ, ωj}}, for any

i, j ∈ {1, 2, 3};
ii) (S1,S2,S3) is a hypersymplectic structure on the Courant algebroid (A ⊕

A∗, µ+ γ + ψ + φ), for some ψ ∈ Γ(∧3A) and φ ∈ Γ(∧3A∗).

Proof. First notice that, using the fact that ((A,A∗), µ, γ) is a Lie bialgebroid, we
have the following equivalences:

µ+ γ + ψ + φ is Courant ⇔ {µ+ γ + ψ + φ, µ+ γ + ψ + φ} = 0

⇔































{µ, µ} = −2{γ, φ}

{γ, γ} = −2{µ, ψ}

{µ, γ} = −{ψ, φ}

{γ, ψ} = 0

{µ, φ} = 0

⇔ {γ, φ} = {µ, ψ} = {ψ, φ} = {γ, ψ} = {µ, φ} = 0.(38)

Let us assume assertion ii), then µ+γ+ψ+φ is a Courant structure and condition
(38) is satisfied. In particular, {γ, φ} = {µ, ψ} = {ψ, φ} = 0. Furthermore, the
same computations we have done in the proof of Proposition 9.5 (see (37)), yield
ψ = − 1

2{πi, {µ, πi}} and φ = − 1
2{ωi, {γ, ωi}}. The remaining part of assertion i) is

a consequence of Proposition 9.5.
Assuming now assertion i), let us prove ii). Taking into account Proposition

9.5, we only need to prove that µ + γ + ψ + φ is a Courant structure, i.e., that
(38) is satisfied. Because part of (38) holds by assumption, we only need to prove
{γ, ψ} = {µ, φ} = 0. We shall prove one equality, the other is similar. We have

{γ, ψ} = −
1

2
{γ, {πi, {µ, πi}}}

= −
1

2
{{γ, πi}, {µ, πi}} −

1

2
{πi, {γ, {µ, πi}}}

= −
1

2
{{γ, πi}, {µ, πi}} −

1

2
{πi, {µ, {γ, πi}}} = 0,

where we used the Jacobi identity of {., .} and the fact that ((A,A∗), µ, γ) is a Lie
bialgebroid (in particular that {µ, γ} = 0). �

If we take φ = 0 in Theorem 9.6, then the Lie algebroid (A∗, γ) is equipped
with a hypersymplectic structure (without torsion) determined by (π1, π2, π3). So,
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Theorem 9.6 shows that having a Lie bialgebroid (A,A∗) equipped with a hy-
persymplectic structure with torsion on A and a hypersymplectic structure on
A∗ is equivalent to having a hypersymplectic structure on the Courant algebroid
(A⊕A∗, µ+γ+ψ), which is the double of the quasi-Lie bialgebroid ((A,A∗), µ, γ, ψ).
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Math. 287, Birkhäuser, Boston, 2011, pp. 243–268.

[12] D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids,
in Quantization, Poisson brackets and beyond, T. Voronov, ed., Contemp. Math., 315, Amer.
Math. Soc., Providence, RI, 2002, pp. 169–185.

[13] D. Roytenberg, Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys. 61

(2002), no. 2, 123–137.
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