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HAGEMANN’S THEOREM FOR REGULAR CATEGORIES
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Dedicated to Hvedri Inassaridze on the occasion of his eightieth birthday

Abstract: In this paper, we extend the characterisation of n-permutable varieties
of universal algebras due to J. Hagemann to regular categories. In particular, we
show that a regular category has n-permutable congruences if and only if every
internal reflexive relation R in it satisfies R◦ 6 Rn−1, and if and only if every
internal reflexive relation R in it satisfies Rn 6 Rn−1. In the case when n = 2 this
result is well known.

1. Introduction
The notion of congruence n-permutability for varieties of universal algebras,

which is well known in universal algebra, was extended to regular categories
in [3]. More precisely, a regular category (in the sense of [1]) is said to have n-
permutable congruences when for any two (internal) congruences (i.e. effective
equivalence relations) C1 and C2 on an object W in the category, we have

(C1, C2)n = (C2, C1)n,

where, following the notation used in [3], for any two relations S : X → Y and
R : Y → X,

(S,R)n = SRSRS . . .︸ ︷︷ ︸
n

=

{
(SR)

n
2 , when n is even,

(SR)
n−1
2 S, when n is odd.

In this paper we prove the following result, which is well known in the case
when n = 2 (see [6, 4]):
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Theorem 1.1. For a regular category C, and a natural number n > 1, the
following conditions are equivalent:

(i) C has n-permutable congruences.
(ii) R◦ 6 Rn−1 for any internal reflexive relation R in C.
(iii) Rn 6 Rn−1 for any internal reflexive relation R in C.

This result was announced for varieties in [7], which refers to a work of
J. Hagemann in preparation. As the third author learned from L. Márki, this
work was never completed to the point of publication. However, as noted in
[10], it is not difficult to prove this result for varieties via standard arguments
involving free algebras. For n = 2 it gives a result due to H. Werner [13], which,
by the way, could have inspired the discovery of the result for general n (see
the Remark in [7]). The authors of [3] seem to have missed the above result,
obtaining instead a different generalization of the same result for n = 2:

Theorem 1.2 ((ii)⇔(v)⇔(vi) of Theorem 3.5 in [3]). For a regular category
C, and a natural number n > 2, the following conditions are equivalent:

(i) C is n-permutable.
(ii) (R,R◦)n−1 = (R◦, R)n−1 for any internal reflexive relation R in C.
(iii) (R,R◦)n−1 is transitive for any internal reflexive relation R in C.

2. Proof of Theorem 1.1
For a background on regular categories we refer the reader to the first few

pages of [3], which gives a sufficiently detailed overview of regular categories
from the point of view of their use for universal algebraic considerations relevant
to the present paper. Apart from the definition and basic properties of a
regular category, we use the calculus of relations and the language of generalised
elements for regular categories, as described in [3].
Note that the definition of (S,R)n recalled in the Introduction makes sense

for all n > 0. Indeed, for n = 0 we have

(S,R)n = (SR)
0
2 = 1Y

where 1Y denotes the identity morphism 1Y : Y → Y regarded as a relation
(the internal equality relation at Y ) and for n = 1 we have

(S,R)n = (SR)0S = S.

However, the property of n-permutability of congruences is “interesting” only
for n > 2. Recall that 2-permutable categories are also called Mal’tsev catego-
ries [4] while 3-permutable categories are known as Goursat categories [4, 3].
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Lemma 2.1. In a regular category C, consider a span

X oo
f1

W
f2 // Y

and the following relations associated to it:

· the relation S = f2f
◦
1 defined as the composite of the opposite rela-

tion of the morphism f1 regarded as a relation, and the morphism f2
regarded as a relation;
· the kernel congruences C1 = f ◦1f1 and C2 = f ◦2f2, of f1 and f2 respec-
tively.

Then for all n > 0 we have:

(C2, C1)n+1 = f ◦2 (S, S
◦)nf 3

2+
(−1)n

2

f2(C2, C1)n+2f
◦
3
2−

(−1)n

2

= f2(C1, C2)nf
◦
3
2−

(−1)n

2

f2(C1, C2)nf
◦
3
2−

(−1)n

2

= (S, S◦)n+1

Proof : Suppose first that n is even. Then:

(C2, C1)n+1 = (C2C1)
n
2C2 = (f ◦2f2f

◦
1f1)

n
2 f ◦2f2

= f ◦2 (f2f
◦
1f1f

◦
2 )

n
2 f2 = f ◦2 (SS

◦)
n
2 f2 = f ◦2 (S, S

◦)nf2

f2(C2, C1)n+2f
◦
1 = f2(C2C1)

n+2
2 f ◦1 = f2(f

◦
2f2f

◦
1f1)

n+2
2 f ◦1

= f2f
◦
2f2(f

◦
1f1f

◦
2f2)

n
2 f ◦1f1f

◦
1 = f2(f

◦
1f1f

◦
2f2)

n
2 f ◦1

= f2(C1, C2)nf
◦
1

f2(C1, C2)nf
◦
1 = f2(f

◦
1f1f

◦
2f2)

n
2 f ◦1 = (f2f

◦
1f1f

◦
2 )

n
2 f2f

◦
1

= (f2f
◦
1 , f1f

◦
2 )n+1 = (S, S◦)n+1



4 ZURAB JANELIDZE, DIANA RODELO AND TIM VAN DER LINDEN

If n is odd, then:

(C2, C1)n+1 = (C2C1)
n+1
2 = (f ◦2f2f

◦
1f1)

n−1
2 f ◦2f2f

◦
1f1

= f ◦2 (f2f
◦
1f1f

◦
2 )

n−1
2 f2f

◦
1f1

= f ◦2 (SS
◦)

n−1
2 Sf1 = f ◦2 (S, S

◦)nf1

f2(C2, C1)n+2f
◦
2 = f2(C2C1)

n+1
2 C2f

◦
2 = f2(f

◦
2f2f

◦
1f1)

n+1
2 f ◦2f2f

◦
2

= f2(f
◦
2f2f

◦
1f1)

n+1
2 f ◦2 = f2(f

◦
2f2f

◦
1f1)

n−1
2 f ◦2f2f

◦
1f1f

◦
2

= f2f
◦
2f2(f

◦
1f1f

◦
2f2)

n−1
2 f ◦1f1f

◦
2

= f2(f
◦
1f1f

◦
2f2)

n−1
2 f ◦1f1f

◦
2 = f2(C1, C2)nf

◦
2

f2(C1, C2)nf
◦
2 = f2(f

◦
1f1f

◦
2f2)

n−1
2 f ◦1f1f

◦
2 = (f2f

◦
1f1f

◦
2 )

n−1
2 f2f

◦
1f1f

◦
2

= (f2f
◦
1 , f1f

◦
2 )n+1 = (S, S◦)n+1

Proposition 2.2. In the setting of Lemma 2.1, for any natural number n > 2
we always have (S, S◦)n−1 6 (S, S◦)n+1, whereas for each n > 1, the inclusion
(S, S◦)n+1 6 (S, S◦)n−1 holds if and only if (C1, C2)n 6 (C2, C1)n.

Proof : The fact that the inclusion (S, S◦)n−1 6 (S, S◦)n+1 holds for all n > 2
can be deduced from the fact that it holds for n = 2, in which case it becomes

S 6 SS◦S.

Next we show

(S, S◦)n+1 6 (S, S◦)n−1 ⇔ (C1, C2)n 6 (C2, C1)n

Suppose first (S, S◦)n+1 6 (S, S◦)n−1. Notice that (C1, C2)n 6 (C2, C1)n+2.
Then, applying Lemma 2.1 twice we get:

(C1, C2)n 6 (C2, C1)n+2 = f ◦2 (S, S
◦)n+1f 3

2+
(−1)n+1

2

6 f ◦2 (S, S
◦)n−1f 3

2+
(−1)n−1

2

= (C2, C1)n

Conversely, assuming (C1, C2)n 6 (C2, C1)n we get from Lemma 2.1 that for
each n > 2,

(S, S◦)n+1 = f2(C1, C2)nf
◦
3
2−

(−1)n

2

6 f2(C2, C1)nf
◦
3
2−

(−1)n

2

= f2(C1, C2)n−2f
◦
3
2−

(−1)n

2

= (S, S◦)n−1

For n = 1 it is easy to see directly that we still get (S, S◦)n+1 6 (S, S◦)n−1.
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The proposition above immediately gives the following (which in the case
when n > 2 becomes (ii)⇔(iii) of Theorem 3.5 in [3]):

Corollary 2.3. For any natural number n > 1, a regular category has n-
permutable congruences if and only if (S, S◦)n+1 6 (S, S◦)n−1 for any internal
relation S in it.

This and the following proposition together imply Theorem 1.1.

Proposition 2.4. In a regular category, the following conditions are equivalent
for any natural number n > 1:

(i) (S, S◦)n+1 6 (S, S◦)n−1 for any internal relation S.
(ii) (S, S◦)n+1 6 (S, S◦)n−1 for any internal endorelation S.
(iii) R◦ 6 Rn−1 for any internal reflexive relation R.
(iv) Rn 6 Rn−1 for any internal reflexive relation R.

Proof : Let us immediately note that the implication (i)⇒(ii) is trivial. We will
show (ii)⇒(iii), (iii)⇒(iv), and (iv)⇒(i).
The case when n = 1 is quite straightforward. Indeed, in this case (i) states

that for any relation S from an object X to an object Y the composite SS◦ is
a subrelation of the equality relation on Y , (ii) states the same for X = Y , (iii)
states that the dual of any reflexive relation on an object A coincides with the
equality relation on A, while (iv) states that any reflexive relation on an object
A coincides with the equality relation on A. Thus, (iii) and (iv) are trivially
equivalent. To get (ii)⇒(iv), let R be a reflexive relation on A and use (ii) for
S = R after noting that since R is reflexive, we have R 6 RR◦. Finally, for
(iv)⇒(i) consider an internal relation (s1, s2) : S → X × Y and note that (iv)
will imply that the kernel congruence of s1 is the equality relation on S. Hence
we get the following, where the first equality comes from Lemma 2.1:

(S, S◦)2 = s21Ss
◦
2 6 s2s

◦
2 6 1S = (S, S◦)0.

In the case when n = 2, (i) states that any internal relation is difunctional, (ii)
states that any internal endorelation is difunctional, (iii) states that any internal
reflexive relation is symmetric, while (iv) states that any internal reflexive rela-
tion is transitive. The equivalence of these conditions for any finitely complete
category was first obtained by A. Carboni, M. C. Pedicchio and N. Pirovano in
[5]. Our argument for n > 2 can be seen as a generalisation of their argument,
despite of the fact that the context of finitely complete categories is more gen-
eral than the context of regular categories (see Remark 3.2). To see how to get
the generalisation, it will be useful to treat the case n = 3 separately.
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(ii)⇒(iii) for n = 3: Given an internal reflexive relation R → A × A, we
construct a relation S → R × R by taking S to be the subobject of R × R
whose generalised elements are given by the displays

c

R
===

��===

R // d

R
===

��===

∈ R

S
��

a

R���

@@���

R // b ∈ R

To have R◦ 6 R2 we must show that for any two generalised elements a : V →
A and b : V → A of A such that bRa, there exists a regular epimorphism
γ : U → V and a generalised element d : U → A such that aγRdRbγ. Now,
using the reflexivity of R we have

a

R
===

��===

R // a@@
R

���

���

∈ ROO
S

b

R���

@@���

R
===

��===

R // a

R
===

��===

@@

R
���

���

∈ R

S
��

b

R
===

��===

R // a@@
R

���

���

∈ ROO
S

b

R���

@@���

R
===

��===

R // b

R
===

��===

@@

R
���

���

∈ R

S
��

b R // b ∈ R

(1)

The inequality SS◦SS◦ 6 SS◦ applied to the above situation gives that there
exists a regular epimorphism γ : U → V and there exist generalised elements
c, d : U → A with

aγ

R
@@@

  @@@

R // aγ
>>

R
~~~

~~~

∈ ROO
S

c

R~~~

??~~~

R
???

��???

R // d

R
???

��???

??

R
���

���

∈ R

S
��

bγ R // bγ ∈ R

(2)

from which we get aγRdRbγ.
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This argument can be exhibited by the following matrix display:

0 1 2

•
''NNNNNN

0
++++

��+
+++

b b b b c c

•

2
****

��*
***

EE
1

��

��

a a b b d d

•
&&LLLLLL a b b b aγ bγ

• a a a b aγ bγ

Here:
· the diagram of arrows indicates how S is constructed;
· columns represent generalised elements of S used in the argument. The
columns on the left side translate the display (1). In particular, the first
column indicates that (b, a)S(a, a), i.e. that (a, a)S◦(b, a), which comes
from the top part of the relations displayed in (1). The label 0 of the
first column of variables indicates which pair of variables from that
column was assumed to belong to R in the beginning of the argument
— it is the pair that corresponds to the arrow with the same label 0;
· in a similar way, the columns on the right side sketch the display (2),
with the numerical labels giving the required conclusion of the argu-
ment.

(iii)⇒(iv) for n = 3: In this case, the required argument can be summarised
using a similar matrix display:

0 1 2

•
0

<<

��<<

1

��

a1 a0γ b1

•
0

<<

��<<

2

��

a2 a1γ b2

• a3 a2γ b3

•
0

<<

��<<

a0 b1 a1γ

•
��<<<<

a1 b2 a2γ

• a2 b3 a3γ
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In detail, given an internal reflexive relation R → A × A, construct another
one S → X × X as follows: generalised elements of X are triples (a, b, c) of
generalised elements of A such that aRbRc, and S is defined by

(a, b, c)S(a′, b′, c′) ⇔ aRb′ and bRc′.

It is easy to see that S is a reflexive relation. Now, using S◦ 6 SS we want to
show that RRR 6 RR. Assume a0Ra1Ra2Ra3 where a0, a1, a2, a3 are gener-
alised elements of A. Then, (a1, a2, a3)S(a0, a1, a2) which gives

(a0γ, a1γ, a2γ)S(b1, b2, b3)S(a1γ, a2γ, a3γ)

for some regular epimorphism γ and generalised elements b1, b2, b3 of A (having
the same domain as γ). By the definition of S we get a0γRb2Ra3γ.
(iv)⇒(i) for n = 3: This proof is sketched by the following matrix display:

0 0 0 1 2

•OO

1

\\
0

::
::

x0 x1 x1 x0γ x′

•

2

��

y0 y0 y1 y0γ y′

•BB
0

��
��

x1 x1 x2 x′ x2γ

• y0 y1 y1 y′ y1γ

This proves Proposition 2.4 for n = 3. The proof for a general n > 2 is
sketched by the matrices displayed in Figures 2.1–2.5.

3. Final remarks
While working on [10] with N. Martins-Ferreira, the third author noticed

that Theorem 1.1 above, announced for varieties in [7], did not appear in [3].
In [10] the varietal proof was sketched, essentially based on the syntactical
characterisation of n-permutability obtained in [7]. In [11] the second and
the third authors looked at extending this proof to regular categories with
sums, based on the technique of approximate operations introduced by the
first author and D. Bourn in [2]. The problem of obtaining Theorem 1.1 for
regular categories free of sums remained open. We then looked at transforming
the varietal proof into a categorical one, based on an insight suggested by the
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algorithm for translating linear Mal’tsev conditions into categorical conditions
described by the first author in [8].
In the literature, when one speaks of n-permutability one usually assumes

n > 2. It is easy to see that in the case when n = 1, this property becomes
equivalent to the regular category being a preorder, while for n = 0 it holds
trivially. The cases when n = 2 and n = 3 are the best known ones. Regular
categories with 2-permutable congruences were called Mal’tsev categories in [4],
following J. D. H. Smith who called varieties with 2-permutable congruences
Mal’tsev varieties in [12], after A. I. Mal’tsev who studied them in [9]. Since
[5], the term “Mal’tsev category” refers to a finitely complete category where
every internal reflexive relation is an equivalence relation (or equivalently, where
every internal relation is difunctional). Thus, in modern terminology, regular
categories with 2-permutable congruences are the same as regular Mal’tsev
categories. Regular categories with 3-permutable congruences are known as
Goursat categories since [4] and [3].
We would like to point out that there are several obvious ways in which one

could extend the results we obtain in this paper, to more general axiomatic con-
texts than that of regular categories. For example, the proof of Proposition 2.4
can be easily adapted to prove the following:

Proposition 3.1. For any full subcategory C of a regular category X, closed
under finite limits in X, the following conditions are equivalent for any natural
number n > 1:

(i) (S, S◦)n+1 6 (S, S◦)n−1 for any internal relation S → X × Y in X
where S,X, Y ∈ C.

(ii) (S, S◦)n+1 6 (S, S◦)n−1 for any internal relation S as above with X =
Y .

(iii) R◦ 6 Rn−1 for any internal reflexive relation R → A× A in X where
R,A ∈ C.

(iv) Rn 6 Rn−1 for any internal reflexive relation R as above.

Remark 3.2. In the above proposition, setting n = 2 and X = SetC
op

, and
regarding C as a full subcategory of X via the Yoneda embedding, we get
Proposition 1.2 in [5], which establishes the equivalence between difunctionality
of internal relations, and symmetry/transitivity of internal reflexive relations
in any finitely complete category.

A natural question to ask is whether such generalisations would allow to
obtain a characterisation of n-permutability in interesting classes of universal
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algebras other than (quasi)varieties. In fact, already noting that in Propo-
sition 3.1 it is sufficient to require that C is closed in X under powers and
equalisers, gives some new examples. Indeed, in any variety V take any family
(Vi)i∈I of subvarieties; then, their join U =

∨
i∈I Vi gives a class of algebras

in V which is closed under all powers and subalgebras, and this would give that
the conditions of Proposition 3.1 for C = U and X = V are equivalent. In fact,
they hold if and only if each Vi has n-permutable congruences. There are also
examples which are not of this type; for instance, consider groups among all
monoids. . . in each case, we could also restrict to, say, finite universal algebras.
Finally, we would like to note that the arguments we used to prove Prop-

osition 2.4 have many variations which could allow to obtain other similar
characterisations of n-permutability. For instance, the matrix display in Fig-
ure 2.3, which can be used to prove 2.4(iii)⇒2.4(iv) for n > 2, can be used
similarly to prove that 2.4(iii) implies the following condition:

(∗) For any internal relation R on an object X in C,

R 6 (1X ∧R)R ⇒ Rn 6 Rn−1.

Notice that 2.4(iii)⇒(∗) still holds for n = 1, since 1-permutability, as men-
tioned earlier, gives that C is a preorder, while in any preorder any relation R
on X is contained in the equality relation 1X . Next, (∗) implies 2.4(iv) since
when R is reflexive, R = (1X ∧R)R. So (∗) also characterises n-permutability.
One can also get this way conditions involving more than one relation. Here is
one example:

(∗∗) For any two internal relations S, T in C,

S 6 T ⇒ (S◦T )n 6 (S◦T )n−1.

This obviously implies 2.4(iv) since, if we take T above to be a relation T = R
on X and S = 1X , then we get exactly the statement in 2.4(iv). At the same
time, (∗∗) can be deduced from (∗) by setting R = S◦T , since then S 6 T
implies R 6 (1X ∧R)R. So (∗∗) also characterises n-permutability.
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0 1 2 3 4 · · · n− 2 n− 1

•

0
$$$$$$$$$$

��$
$$$$$$$$$

%%LLLLLL b b b b ... b b b b c1,1 c1,1 c3,1

...

c3,1

...

··· cn−2,1

...

cn−2,1

...

•

2
$$$$$$$$$$$

��$
$$$$$$$$$$

LL

1
��������

��������

a
...

a
...

b b ... b
...

b
...

b
...

b
...
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Figure 2.1. Matrix sketch of the proof of 2.4(ii)⇒2.4(iii) for an
odd n > 3.
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Figure 2.2. Matrix sketch of the proof of 2.4(ii)⇒2.4(iii) for an
even n > 2.
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Figure 2.3. Matrix sketch of the proof of 2.4(iii)⇒2.4(iv) for n > 2.
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Figure 2.4. Matrix sketch of the proof of 2.4(iv)⇒2.4(i) for an
odd n > 3.
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Figure 2.5. Matrix sketch of the proof of 2.4(iv)⇒2.4(i) for an
even n > 2.
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