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Abstract

In this article we study optimization problems ruled by fractional dif-
fusion operators with volume constraints. By means of penalization tech-
niques we prove existence of solutions. We also show that every solution
is locally of class C0,α (optimal regularity), and that the free boundary is
a C1,γ surface, up to a Hn−1-negligible set.

1 Introduction

The goal of this paper is to establish existence and geometric properties of
nonlocal optimal design problems. This class of problems arises in the study
of best insulation devices. Motivations also come from semi-conductor theory,
plasma physics, flame propagations etc. When taking into account eventual
turbulence or long-range integrations, the model becomes more accurate when
ruled by nonlocal operators, such as (−∆)α. In particular, the model becomes
sensible to interior changes in the temperature; local versions of the problem
can only feel changes on the boundary of the body to be insulated.

Let us recall that the fractional Laplacian (−∆)α is given by

(−∆)αu(x) = Cn,αPV

∫
Rn

u(x)− u(y)

|x− y|n+2α
dy,

where PV is the Cauchy principal value and Cn,α is a normalization constant.
The free boundary optimization problem we study here takes the following for-
mulation: given a smooth domain D ⊂ Rn, a nonnegative function ϕ : D → R,
and a positive number ω > 0, minimize the α-energy

Jα(u) :=

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dx dy (1.1)

among competing functions u within the functional set

K(α, ω, ϕ) :=
{
u ∈ Hα(Rn)

∣∣ u = ϕ in D and Ln({u > 0} ∩Dc) = ω
}
, (1.2)

∗Universidade Federal do Ceará, Av. Humberto Monte s/n Campus of Pici - Bloco 914,
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where Ln is the n-dimensional Lebesgue measure, andHα(Rn) is the α-fractional
Sobolev space (see, for example, [8]), i.e. the set of functions u for which

‖u‖Hα =

√∫
Rn

(1 + |ξ|2α)|û(ξ)|α dξ <∞.

By usual methods in the calculus of variations it is hard to perform volume
preserving perturbations as to derive energy estimates. In turn, proving exis-
tence of a minimizer u as well as regularity properties of u and its free boundary
∂{u > 0} ∩D is in general difficult tasks from the mathematical view point.

Local versions of the problem have been well studied in the literature, see
[1, 2, 5, 15, 19, 20] among others. A celebrate approach for tackling problems
involving volume constrains is based on penalization techniques. The idea is
to introduce an artificial parameter in the energy functional which charges for
configurations that exceed the volume budget. For fixed values of the penaliza-
tion parameter, the penalized functional can then be analyzed by free boundary
variational methods. Nonlocal free boundary variational tools were first intro-
duced in [6]. Thus, the starting point of this current paper is to obtain regularity
results for minimizers of nonlocal free boundary problems with fixed penalized
parameter. This requires adjustments of existing free boundary methods from
[6]; some extra work is needed though. Of course all analytic and geometric
estimates obtained depend upon the penalized parameter, and they blow-up as
the penalization term goes to infinity.

The auxiliary penalization problem we consider here takes the following set-
up. Fix an ε > 0, we define the ε-energy functional

Jε(v) :=

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dx dy + fε (Ln({u > 0} ∩Dc)) , (1.3)

where

fε(s) :=

{
1
ε (s− ω) for s ≥ ω,
ε(s− ω) for s ≤ ω.

Define the functional set

K :=
{
u ∈ Hα(Rn)

∣∣ u = ϕ in D
}
, (1.4)

and then, the penalized problem becomes

find u ∈ K such that Jε(u) = inf
v∈K

Jε(v). (1.5)

As previously mentioned, the minimization problem (1.5) is similar to the
one treated in [6]. However, there’s no such thing as a free lunch – the key and
in general hard issue, though, is to prove that the aimed volume is attained for
small (but still positive) values of the penalization parameter. This is only pos-
sible by means of a refined control on the rate between volume decreasing versus
energy increasing, of competing shapes. The appropriate tool for such a control
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is the so-called Hadamard’s variational formula, whose local (smooth) version
is known for over one-hundred years, [13]. Hence, one of the main difficulties we
handle in this work is to derive a measure-theoretic, α-fractional Hadamard’s
formula for domain variations. This is accomplished in section 4.

Another difficulty in dealing with nonlocal optimal design problems is the
lack of local information on the unknowns. To bypass this inconvenience, we will
make use of the extension property discovered in [7]. We consider the upper
half-space

Rn+1
+ = {(x, y) ∈ Rn × R+},

and set β = 1− 2α. For u ∈ C2(Rn) we solve the Dirichlet problem

−div(yβ∇v) = 0 in Rn+1
+ , (1.6)

v(x, 0) = u(x).

A solution to such a problem can be obtained by convolution with the Poisson
kernel Pn,α(x, y) of the operator div(yβ∇) in Rn+1

+ , see [7]. We have

Pn,α(x, y) = qn,α
y2α

(x2 + y2)(n+2α)/2
,

where qn,α is such that
∫
Pn,α(x, 1) dx = 1. From [7] we also know that

Theorem 1.1. We have (−∆)αu(x) = − lim
y→0

yβvy(x, y).

Because of the divergence form of the elliptic operator in (1.6), a Dirichlet
integral is available. We also observe that if u solves (1.6) and ∂yu = 0 on the
hyperplane {y = 0}, one can extend it evenly across {y = 0}, and the new
equation satisfied by u is

− div(|y|β∇v) = 0 in Rn+1,

v(x, 0) = u(x).

For any open subset Ω of Rn+1, we introduce the weighted Hilbert space

H1(β,Ω) :=
{
u ∈ L2(Ω+); |y|β/2∇u ∈ L2(Ω)

}
,

where Ω+ = Ω ∩ Rn+1
+ . We set

Iε(u,Ω) :=

∫
Ω

|y|β |∇u|2 dx dy+fε(Ln({u > 0}∩Rn∩Ω)), u ∈ H1(β,Ω). (1.7)

The study of penalized problem (1.5) is now replaced by the study of local
minimizers of Iε, i.e. functions u that are in H1(β,B1) and satisfy

∀B ⊂ B1, ∀v ∈ H1(β,B) with v = u on ∂B, Iε(u,B) ≤ Iε(v,B). (1.8)

The paper is organized as follows: in section 2 we list few analytic and
geometric properties we will need for the study of the (fixed) penalized functional
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(1.7). Still in section 2 we show that a minimum of Iε is α-Hölder continuous,
which corresponds to the optimal regularity for the free boundary problem.
We also show that it is non-degenerate. The constants though do depend on the
penalized parameter ε and they blow-up as ε→ 0. In section 3 we obtain measure
estimates on the free boundary. In section 4 we derive a fractional Hadamard’s
variational formula and in section 5 we prove that for ε > 0 small enough –
but still positive – the volume constraint is verified. This finally provides the
existence of a minimum for the fractional optimization problem with volume
constraint.

2 Preliminaries

We start off by listing few properties we will need along the article. Initially,
let us set, for the sake of notations, that a minimizer of (1.8) will be denoted
by u instead of uε. Here and afterwards by Br(x, y) we denote the ball in Rn+1

centered at (x, y) and of radius r. When x = 0, we simply write Br. We will
also write Bnr (x) for the ball in Rn centered at x with radius r. We now prove
existence of minimizers for the ε-penalized problem.

Lemma 2.1. Given a smooth boundary datum, ϕ(x, y) defined on ∂B1 ∩Rn+1
+ ,

problem (1.8) has an absolute minimum u.

Proof. Take u0 with Ln({u0 > 0}) ≤ ω, then Iε(u0) ≤ C (uniformly in ε), also
Iε ≥ −ω. Therefore, there exists a minimizing sequence {uk}k∈N. The sequence is
bounded in Hα(B1) and, because Hα is continuously embedded into L2n/(n−2α),
the sequence {uk}k∈N converges (up to a subsequence) to a function u strongly
in L2n/(n−2α)−ε, for any ε > 0, and almost everywhere in Rn. Thus,

Ln({u > 0}) ≤ lim inf
k→∞

Ln({uk > 0})

and ∫
B1

|y|β |∇u|2 ≤ lim inf
k→∞

∫
B1

|y|β |∇uk|2.

Hence, u ∈ H1(β,B1) and since fε is a continuous and increasing function, one
has

Iε(u) ≤ lim inf
k→∞

Iε(uk) = inf
v∈H1(β,B1)

Iε(v).

Therefore u is an absolute minimizer of Iε in H1(β,B1).

For the behavior of a minimizer in its positivity set, we state the following
proposition and refer the reader for its proof to Proposition 3.1 of [6].

Proposition 2.1. Let u be a local minimizer in (1.8), and x0 ∈ Rn be such
that u(x0, 0) > 0. Then

lim
y→0
|y|β∇u(x0, y) = 0.
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Moreover, if u is defined in Rn+1, is positive outside the hyperplane {y = 0}
and satisfies div(|y|β∇u) = 0 in its positivity set, together with the estimate
u(x, y) = O(|(x, y)|α), then (−∆)αu(·, 0) = 0 in Rn ∩ {u > 0}.

We now turn our attention to optimal Hölder estimates for minimizers. In
the proof of the following theorem we will use the characterization of Hölder
functions, [14]: given α ∈ (0, 1), if B is a ball in Rn+1, and if there are C > 0
and p ∈ (1, n+ 1) such that

∀x ∈ B, ∀r < dist(x, ∂B),

∫
Br(x)

|∇u|p ≤ Crn+1−p+pα, (2.1)

then u ∈ C0,α(B).

Theorem 2.1 (Optimal regularity). If u is a local minimizer of Iε posed in B1,
then u ∈ C0,α

loc (B1).

Proof. For every r ∈ (0, 1) and (x0, y0) ∈ B1, let us consider the harmonic
replacement of u in Br(x0, y0) (we have chosen r < 1− |x0|), i.e. the solution of

− div(|y|β∇hx0,y0
r ) = 0 in Br(x0, y0), hx0,y0

r = u on ∂Br(x0, y0). (2.2)

From the translation invariance in x, we may assume x0 = 0. We will use the
notation hr for the solution of (2.2). Note that u is an admissible Dirichlet
datum (see Theorems 2.2 and 2.3 of [6]). Note also, that for all r > 0 one has
Iε(u,Br) ≤ Iε(hr, Br). The latter implies∫

Br

|y|β |∇u|2 ≤
∫
Br

|y|β |∇hr|2 + Crn. (2.3)

Note that although the constant C depends on ε, but this does not bother us,
because ε will always be fixed (maybe very small but fixed).

The rest of the proof is the same as of Theorem 1.1 in [6]. We bring it here
for reader’s convenience.

Due to the identity

∫
Br

|y|β∇hr · ∇(u− hr) = 0, we get from (2.3)

∫
Br

|y|β |∇(u− hr)|2 ≤ Crn.
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Therefore, if r < ρ < 1,∫
Br

|y|β |∇u|2 =

∫
Br

|y|β |∇(u− hρ + hρ)|2

≤ 2

(∫
Bρ

|y|β |∇(u− hρ)|2 +

∫
Br

|y|β |∇hρ|2
)

≤ Cρn + 2

∫
Br

|y|β |∇hρ|2

≤ Cρn + C

(
r

ρ

)n+1+β ∫
Bρ

|y|β |∇hρ|2 by Theorem 2.6 of [6]

≤ Cρn + C

(
r

ρ

)n+1+β ∫
Bρ

|y|β |∇u|2. (2.4)

Let now δ < 1/2. If ρ = δk, r = δk+1, µ = δn, then (2.4) gives∫
B
δk+1

|y|β |∇u|2 ≤ Cµk + Cµδ2(1−α)

∫
B
δk

|y|β |∇u|2,

which in turn, by choosing δ such that q = Cδ2(1−α) < 1 and using induction,
gives ∫

B
δk

|y|β |∇u|2 ≤ C2

1− q
µk−1.

Therefore, for all r < 1/2 ∫
Br

|y|β |∇u|2 ≤ Crn. (2.5)

Now, if α ≤ 1/2, then β ≥ 0, and∫
Br

|∇u| ≤
(∫

Br

|y|−β
)1/2(∫

Br

|y|β |∇u|2
)1/2

≤ Crn+α,

which is (2.1) with p = 1, and so u ∈ C0,α(B1/2).
In case of α > 1/2, we get from (2.5)∫

Br

|∇u|2 ≤ r−β
∫
Br

|y|β |∇u|2 ≤ Crn−β = Crn−1+2β ,

which is (2.1) with p = 2.

Next we prove the non-degeneracy of a minimizer.

Theorem 2.2 (Non-degeneracy). If u is a local minimizer of (1.8), then there
exists a constant C0 > 0 such that for all x ∈ Bn1/2(0) ∩ {u > 0},

u(x, 0) ≥ C0dist(x, ∂{u > 0})α.
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Proof. Assume that the conclusion of the theorem is not true. It means that
for every C0 > 0 there is a point z ∈ Bn1/2(0) ∩ {u > 0} such that u(z, 0) <

C0dist(z, ∂{u > 0})α. We denote by d the distance of the point (z, 0) from
the free boundary. We also define δ := u(z, 0). The contradictory assumption
implies that δ can be made as small as we wish.

From the Harnack inequality, [11], there exists c > 0 such that u ≤ cδ in
Bd(z, 0). Now if γ is a smooth nonnegative function such that

γ(x, y) = 0 in Bd/2(z, 0), γ(x, y) = 2c in B7d/8(z, 0) \B3d/4(z, 0),

we define
v(x, y) := min(u(x, y), δγ(x, y)).

Note that v ∈ H1(β,Bd(z, 0)), and v = u at the boundary of the ball, so it is
an admissible test function for (1.8). Therefore

Iε(u,Bd(z, 0)) ≤ Iε(v,Bd(z, 0)). (2.6)

On the other hand, from the definition of v one has∫
Bd(z,0)

|y|β |∇v|2 ≤
∫
Bd(z,0)

|y|β |∇u|2 +O(δ),

and since v = 0 in Bd/2(z, 0), then

Ln({v > 0}) ≤ Ln({u > 0})− Ln(Bd/2(z, 0) ∩ Rn),

which implies that

fε
(
Ln({v > 0})

)
< fε

(
Ln({u > 0})

)
.

Therefore,
Iε(u,Bd(z, 0)) > Iε(v,Bd(z, 0)),

which contradicts (2.6). We remark that the constant C0 may depend on ε.

Now, arguing as in [6, Proposition 3.3], it is possible to show that u is in
fact strongly non degenerate.

Lemma 2.2. If u is a local minimizer of (1.8) in B1, and (0, 0) is a free
boundary point, then there is C > 0 such that for r ∈ (0, 1/2),

sup
Bnr

u ≥ Crα.

As a consequence of the Hölder regularity result and the non-degeneracy, we
get the positive density result below.

Theorem 2.3 (Positive density). Let (0, 0) be a free boundary point. If u is a
local minimizer of (1.8) in B1, then there is a constant C1 > 0 such that for
every r > 0

Ln({u = 0} ∩Bnr ) ≥ C1r
n, Ln({u > 0} ∩Bnr ) ≥ C1r

n. (2.7)

7



Proof. In fact, from the non-degeneracy we know that there is y ∈ Bnr such that
u(y) ≥ Crα > 0. By Hölder continuity, u > 0 in Bnδr(y) for a small δ > 0, which
gives us the second estimate of (2.7).

To prove the first estimate of (2.7), it is enough to consider the case r = 1.
Assume the contrary. There is a sequence of minimizers uk defined in B1, such
that 0 ∈ ∂{uk > 0} and

lim
k→+∞

Ln({uk = 0}) = 0. (2.8)

Recall that uk is uniformly Hölder continuous. We may assume that the sequence
converges to u0 uniformly. Moreover, one has∫

B1

|y|β |∇u0|2 dx dy ≤ lim inf
k→+∞

∫
B1

|y|β |∇uk|2 dx dy.

For every v agreeing with uk on ∂B1 one has Iε(uk, B1) ≤ Iε(v,B1). Together
with (2.8) this implies for every v ∈ H1(β,B1) which agrees with u0 on ∂B1,

fε
(
Ln(Bn1 )

)
+

∫
B1

|y|β |∇u0|2 dx dy ≤ Iε(v,B1)

≤ fε
(
Ln(Bn1 )

)
+

∫
B1

|y|β |∇v|2 dx dy.

Therefore, u0 minimizes the Dirichlet integral over the unit ball of Rn, and as
such, satisfies div(|y|β∇u0) = 0 in B1. Since u0(0) = 0 and u0 ≥ 0, then the
strong maximum principle, see [4], implies that u0 ≡ 0, which is a contradiction
on the non-degeneracy property. Once again we remark, that the constant C1

may depend on ε.

3 Further properties of solutions

The ultimate goal of this section is to prove that the free boundaries of local
minimizers of (1.8) have local finite parameter. The results in this section are
the analogue of the ones from [3].

Proposition 3.1. For a local minimizer u in Ω, µ(u) := −(−∆)αu is a non-
negative Radon measure with support in Ω ∩ ∂{u > 0}.

Proof. Once again we recall the extension result from [7] (see also Theorem 1.1
above). The proof is now the same as the one of Remark 4.2 of [3].

In the spirit of [3] a representation theorem can be proven. It plays an im-
portant role in the study of the free boundary.

Theorem 3.1 (Representation theorem). If u is a local minimizer in Ω, then

1. Hn−1(K ∩ ∂{u > 0} ∩ Rn) <∞, for every compact set K ⊂ Ω.
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2. There exists a Borel fucntion qε such that

µ(u) = qεHn−1b∂{u > 0},

that is for any ψ ∈ C∞0 (Ω) there holds

−
∫

Ω

|y|β∇u · ∇ψ =

∫
{u>0}

ψqε dHn−1.

3. For any compact set K ⊂ Ω, there exist constants 0 < c < C < ∞
depending on n, Ω and ε such that for Br(x) ⊂ Ω and x ∈ ∂{u > 0} one
has c ≤ qε(x) ≤ C and

crn−1 ≤ Hn−1
(
Br(x) ∩ ∂{u > 0} ∩ Rn

)
≤ Cn−1.

4. For Hn−1 almost everywhere in ∂{u > 0} an outward normal ν = ν(x0)
is defined and furthermore

u(x0 + x) = qε(x0)(x · ν(x0))α+ + o(|x|), as x→ 0.

5. Hn−1
(
(∂{u > 0} ∩ Rn) \ (∂∗{u > 0} ∩ Rn)

)
= 0, where ∂∗ is the reduced

boundary.

6. The reduced free boundary ∂∗{u > 0} ∩ Rn is locally a C1,γ surface.

Proof. The first three assertions of the theorem follow as those of Theorem 4.5
of [3]. For the first assertion we also refer the reader to Theorem 1.1 of [17].
Note that Ω∩ {u > 0} ∩Rn has finite perimeter, thus, the reduced boundary is
defined as well as the measure theoretic normal ν(x), for x ∈ ∂∗{u > 0} (see,
for example [10]). The 5th assertion of the theorem is a consequence of the 3rd
one and properties of minimizers proved above (see [10]). C1,γ regularity of the
reduced free boundary follows by [18], see also [16].

The proof of 4 is similar to the corresponding one in [9] (Theorem 5.5), but
since in our case we are dealing with the fractional Laplacian, some modifications
need to be done (similar to [6]).

For a minimizer u we will denote by Ω−(u) ⊂ Rn the set where it is 0, and
by Ω+(u) ⊂ Rn its positivity set. We will also use Γ(u) ⊂ Rn to denote the free
boundary of u, and Γ∗(u) - the reduced free boundary.

The reduced free boundary is the set of points x0 at which the following
holds (see [12]): given the half ball (Bnr )+(x0) := {(x − x0) · ν ≥ 0} ∩ Bnr (x0),
one has

lim
r→0

Ln
(
(Bnr )+(x0)4Ω+(u)

)
Ln
(
Bnr (x0)

) = 0.

Note that from the uniform density of Ω± one has, as r → 0 at the free boundary
point x0

Bnr (x0) ∩ Γ∗(u) ⊂ {|(x− x0) · ν(x0)| ≤ o(r)}. (3.1)
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Indeed, if u(x) = 0 for (x − x0) · ν(x0) ≥ δr, there is γ > 0 such that
Ln
(
Bnδr(x) ∩ {u = 0}

)
≥ γδrn, which implies

lim inf
r→0

Ln
(
(Bnr )+(x0)4Ω+(u)

)
Ln
(
Bnr (x0)

) ≥ γδ;

a contradiction.
The same argument is valid, if x ∈ Ω−(u) is such that (x− x0) · ν ≤ −δr.

In order to prove 4, we remark, that in fact it follows from the fact that
blow-up limits at regular points are one-dimensional. To prove it, without loss
of generality we assume that ν(x0) = en. Let

ur(x, y) :=
1

rα
u(x0 + rx, ry)

be a blow-up of u, and let u0 be a blow-up limit. We need to prove that u0(x, 0) =
q(xn)α+, where q is a constant. There exists a coordinate system (x′, xn) centered
at 0 such that

• Ω+(u0) = Rn+ (this is because of (3.1)),

• (−∆)αu0 = 0 in Ω+(u).

Define v(x) = (xn)α+. By optimal regularity and non-degeneracy, there are posi-
tive constants C1, C2 such that 0 < C1v ≤ u0 ≤ C2v. By applying the oscillation
lemma (see [11] or Theorem 2.5 of [6]), one has that there exists λ ∈ (0, 1) such
that for all small enough r > 0,

oscBr
u0

v
≤ λ oscB2r

u0

v
.

Since Harnack constants are invariant under the blow-up scaling, the oscillation
lemma holds at every scale, the solutions being global. Thus, one may apply it
all the way down from a ball of radius 2Nr (N being arbitrary large) to a ball of
radius r. Therefore, u0

v is a constant. Of course, that constant depends on ε and
also on the blow-up point. Although for our further work this fact is not very
important, but by following the argument of [3], which proves 2nd assertion of
the theorem, one can see that the constant is actually qε appearing in 2.

Next, we see that points, at which the free boundary has a tangent ball, are
regular points.

Definition 3.1. We say that a free boundary point x0 ∈ Γ(u) has a tangent
ball from outside, if there is a ball B ⊂ Ω−(u) such that x0 ∈ B ∩Γ(u). A point
x0 ∈ Γ(u) is said to be regular, if Γ(u) has a tangent hyperplane at x0.

The following result is from [6]. The proof can also be concluded from the
4th assertion of the Theorem 3.1 together with Theorem 4.1 below.
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Theorem 3.2. (The free boundary condition). Let x0 ∈ Γ(u) be a regular point.
There exists a constant λε(α) such that

lim
x→x0

u(x)(
(x− x0) · ν(x0)

)α
+

= λε(α).

4 A fractional Hadamard formula

In this section we proof a fractional Hadamard’s variational formula, which will
provide a rate control upon volume decreasing versus energy increasing, for
competing shapes.

Let u be a local minimizer. We recall the notation Γ∗(u) for its reduced free
boundary. For given two points x1, x2 ∈ Γ∗(u), the idea is to make an inward
perturbation around x1, and outward perturbation around x2 in such a way,
that we do not change very much the original volume, and then compare the
optimal configuration to the perturbated one in terms of the functional Iε. We
proceed as follows.

Let ρ : R → R be a nonnegative function from C∞0 [0, 1] with
∫
ρ = 1. For

any r ∈ (0, dist(x1,x2)
100 ) and γ > 0, we define

Pr(x, y) :=

 (x, y) + γrρ
( |(x−x1,y)|

r

)
ν(x1, 0), when (x, y) ∈ Br(x1, 0)

(x, y)− γrρ
( |(x−x2,y)|

r

)
ν(x2, 0), when (x, y) ∈ Br(x2, 0)

(x, y) elsewhere.

If v is any vector in Rn+1, direct computations show that in Br(xi, 0)

DPr(x, y) · v = v + (−1)i+1

{
γρ′
(
|(x− xi, y)|

r

)
〈(x− xi, y), v〉
|(x− xi, y)|

}
ν(xi, 0), (4.1)

where 〈·, ·〉 the the inner product in Rn+1 and i takes the values 1 and 2. Note,
that if γ is small enough, then Pr is a diffeomorphism that maps Br(xi, 0) onto
itself. Indeed, if γ sup

t∈[0,1]

ρ′(t) < 1, then Pr is a local injective diffeomorphism.

Now, if γρ(t) ≤ 1− t, for t ∈ [0, 1],

|Pr(x, y)− (xi, 0)| ≤ |(x− xi, y)|+ γrρ

(
|(x− xi, y)|

r

)
≤ r,

for any (x, y) ∈ Br(xi, 0). Finally, note that Pr = Id on ∂Br(xi, 0), therefore Pr
has to be onto.

For each r > 0 small enough, we consider the r-perturbed configuration by

vr(Pr(x, y)) = u(x, y).

The idea is to compare our optimal configuration {u > 0} to its perturbation
{vr > 0} in terms of the penalized problem (1.8). For any r > 0 small enough
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and i = 1, 2, we consider the blow-up sequence uir : B1(0)→ R given by

uir(x, y) :=
1

rα
u(xi + rx, ry).

From the blow-up analysis (see [9]) we know that the set B1 ∩ {uir > 0} ∩ Rn
approaches to {(x, 0) ∈ B1, 〈(x, 0)·ν(xi, 0)〉 < 0}, as r → 0. In order to compute
the change on the volume of the perturbation, we use the Change of Variables
Theorem to obtain

Ln
(
Br(xi, 0) ∩ {vr > 0} ∩ Rn

)
rn

=
1

rn

∫
Br(xi,0)∩{vr>0}∩Rn

dz

=

∫
B1∩{vr(xi+rx,ry)>0}∩Rn

dx dy

=

∫
B1∩{uir(xi+rx,ry)>0}∩Rn

det(DPr(xi + rx, ry)) dx dy (4.2)

→
∫
B1∩{〈(x,0),ν(xi,0)〉<0}∩Rn

1 + (−1)i+1γρ′(|(x, y)|)
〈

(x, y)

|(x, y)|
, ν(xi, 0)

〉
dx dy,

as r → 0. Note that there is a constant C(ρ) such that for any unit vector ν ∈ Sn

C(ρ) =

∫
B1∩{〈(x,0),ν〉<0}∩Rn

ρ′(|(x, y)|)
〈

(x, y)

|(x, y)|
, ν

〉
dx dy. (4.3)

A similar computation shows that

Ln
(
Br(xi, 0) ∩ {u > 0} ∩ Rn

)
rn

→
∫
B1∩{〈(x,0)·ν(xi,0)<0〉}∩Rn

dx, (4.4)

as r → 0. From (4.2), (4.3) and (4.4) we get

1

rn

[
Ln
(
Br(xi, 0) ∩ {vr > 0} ∩ Rn

)
− Ln

(
Br(xi, 0) ∩ {u > 0} ∩ Rn

)]
→ 0,

as r → 0. From the Lipschitz continuity of the penalization fε, we obtain

fε
(
Ln
(
Br(xi, 0) ∩ {vr > 0} ∩ Rn

))
− fε

(
Ln
(
Br(xi, 0) ∩ {u > 0} ∩ Rn

))
≤ 1

ε
o(rn). (4.5)

Now we should check what happens with the integral part of the functional.
Initially we observe that

1

rn

∫
Br(xi,0)

|y|β |∇u(x, y)|2 dx dy =

∫
B1

|y|β |∇uir(x, y)|2 dx dy

=

∫
B1∩{uir>0}

|y|β |∇uir(x, y)|2 dx dy, (4.6)
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once Γ∗(uir) is smooth. Next we apply twice the Change of Variables Theorem
and take into account that Pr maps Br(xi, 0) diffeomorphically onto itself to
write

1

rn

∫
Br(xi,0)

|y|β |∇vr(x, y)|2 dx dy

=
1

rn

∫
Br(xi,0)

|y|β |DPr(P−1
r (x, y))−1 · ∇u(P−1

r (x, y)|2 dx dy

=
1

rn

∫
Br(xi,0)

|y|β |DPr(z, y)−1 · ∇u(z, y)|2|det
(
DPr(z, y)

)
| dz dy (4.7)

=

∫
B1∩{uir>0}

|y|β |DPr(xi + rh, ry)−1 · ∇uir(h, y)|2|det
(
DPr(xi + rh, ry)

)
| dh dy.

From (4.1), using the fact that for any matrix A with |A| < 1,

(Id+A)−1 = Id+

∞∑
i=1

(−1)iAi,

we have

DPr(xi + rh, ry)−1 · ∇uir(h, y) (4.8)

= ∇uir(h, y)− (−1)i+1γ
ρ′(|(h, y)|)
|(h, y)|

〈(h, y),∇uir(h, y)〉ν(xi, 0) + o(γ).

On the other hand,

|det
(
DPr(xi + rh, ry)

)
| = 1 + (−1)i+1γ

ρ′(|(h, y)|)
|(h, y)|

〈(h, y), ν(xi, 0)〉. (4.9)

Combining (4.6), (4.7), (4.8) and (4.9), we obtain

1

rn

∫
Br(xi,0)

|y|β
[
|∇vr(x, y)|2 − |∇u(x, y)|2

]
dx dy

= (−1)i+1γ

∫
B1∩{uir>0}

|y|β |∇uir(h, y)|2 ρ
′(|(h, y)|)
|(h, y)|

〈(h, y), ν(xi, 0)〉 dh dy (4.10)

+ (−1)i2γ

∫
B1∩{uir>0}

|y|β ρ
′(|(h, y)|)
|(h, y)|

〈(h, y),∇uir(h, y)〉〈∇uir(h, y), ν(xi, 0)〉 dh dy

+ o(γ).

Now we recall that in the proof of 4 of Theorem 3.1, we verified that uir(h, y) =
qε(xi)(hn)α+ +o(r), as r → 0, i.e. blow-up limits are one dimensional. Therefore,
from the blow-up analysis, we have, as r → 0∫

B1∩{uir>0}
|y|β |∇uir|2 → α2q2

ε(xi)

∫
B1∩{〈z,νi〉<0}

|y|β |hn|2(α−1) dh dy.
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Hence, letting r → 0 in (4.10) leads to

1

rn

∫
Br(xi,0)

|y|β
[
|∇vr|2 − |∇u|2

]
→ (−1)i+1γα2q2

ε(xi)c(ρ) + o(γ), (4.11)

where

c(ρ) := lim
r→0

∫
B1∩{uir>0}

|y|β

|hn|1+β

ρ′(|(h, y)|)
|(h, y)|

〈(h, y), ν(xi, 0)〉 dh dy

is a positive constant. To check that indeed, 0 < c(ρ) <∞ is a positive constant,
we argue as follows: since

div
(
ρ(|z|)

)
=
ρ′(|z|)
|z|
〈z, ν(xi, 0)〉,

so the divergence theorem together with the blow-up analysis provides∫
B1∩{uir>0}

ρ′(|z|)
|z|
〈z, ν(xi, 0)〉 dz →

∫
B1∩{〈z,ν(xi,0)〉=0}

ρ(|z|) dHn−1(z) = const.

Recalling that the function ρ is compactly supported in [0, 1], we conclude, that
0 < c(ρ) <∞. Returning to (4.11), we can write∫

Ω

|y|β [|∇vr|2 − |∇u|2] dx dy = rnγα2c(ρ)
(
q2
ε(x1)− q2

ε(x2)
)

+ rno(γ). (4.12)

Combining (4.12) with the minimality property of u, we get

0 ≤ Iε(vr)− Iε(u) ≤ rnγα2c(ρ)
(
q2
ε(x1)− q2

ε(x2)
)

+ rno(γ) +
1

ε
o(rn), (4.13)

which gives after dividing by rn and letting r → 0

0 ≤ γα2c(ρ)
(
q2
ε(x1)− q2

ε(x2)
)

+ o(γ).

Now dividing by γ and letting γ → 0, and afterwards reversing the places of x1

and x2, we obtain
qε(x1) = qε(x2).

Since x1 and x2 were arbitrary in Γ∗(u), we actually proved

Theorem 4.1. On the reduced free boundary, we have qε ≡ λε(α).

Note also that (4.10) provides the Hadamard’s variational formula:∫
Ω

|y|β
[
|∇vr|2 − |∇u|2

]
= λ2

ε(α)V + o(V ), (4.14)

where V is the volume change.
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5 Recovering the original problem

Here we shall relate a solution to the penalized problem to a (possible) solution
of our original problem. The idea is that the function fε will charge a lot for those
configurations that have a volume bigger than ω. We hope that if the charge
is too big optimal configuration of problem (1.8) will prefer to have volume ω
than pay for the penalization.

Proposition 5.1. There exist C, c > 0 constants such that

0 < c ≤ Ln({uε > 0} ∩ Rn ∩ Ω) ≤ ω + Cε,

where uε is a solution to (1.8).

Proof. Let Ω∗ be any smooth domain such that its complement contains Ωc

with Ln((Ωc∗ ∩ Rn) \ (Ωc ∩ Rn)) = ω. From the minimality of uε we have

Iε(uε,Ω) =

∫
Ω

|y|β |∇uε|2 +fε(Ln({uε > 0}∩Rn∩Ω)) ≤ Iε(u∗,Ω∗) = C, (5.1)

where u∗ is the α-harmonic function in Ωc∗ \ Ωc taking ”boundary data” equal
to ϕ in Ωc and 0 on ∂Ωc∗. Thus

1

ε
(Ln({uε > 0} ∩ Rn ∩ Ω)− ω) ≤ fε(Ln({uε > 0} ∩ Rn ∩ Ω) ≤ C.

This proves the estimate from above. In order to prove the estimate from below,
we first note that since the weight |y|β is in the second Muckenhoupt class A2

for β ∈ (−1, 1), we have a Poincaré inequality (see, for example, [6]), which
together with (5.1) provides∫

Ω

|y|β [|∇uε|2 + |uε|2] ≤ C, (5.2)

for some C independent of ε. Recalling the fact that uε takes values ϕ outside
of the domain, where it is α-harmonic, recalling also the mean value inequality
and (5.2), we obtain (by integrating along layers with E := Ω ∩Bδ(∂Ω))(∫

∂Ω

ϕ

)2

≤ C(δ)Ln({uε > 0} ∩ Rn ∩ E)

∫
E

|y|β [|∇uε|2 + |uε|2]

the last integral being bounded uniformly in ε. Hence, the estimate from below
is proved.

Lemma 5.1. There exists C > 0 depending on the domain and ϕ, but indepen-
dent of ε, such that λε(α) ≤ C.

The proof of this lemma is a consequence of Proposition 5.1, isoperimetric
inequality and 2nd assertion of the Theorem 3.1 (see the proof of the corre-
sponding result in [1], [5], [9], or [20]).
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Lemma 5.2. There exists c > 0 depending on the domain and ϕ but indepen-
dent of ε such that c ≤ λε(α).

Proof. As in the above mentioned references, the proof is based on the Hopf’s
Lemma, which is true also for the fractional Laplacian case (see [4] or Proposition
2.7 in [6]).

In fact, let z1 ∈ Ω be such that uε(z1) > 0 for all ε > 0. Let δ := dist(z1, ∂Ω).
We then consider the smooth family of domains Γt := B δ

2 +t(z1) ∩ Ω. Let tε be

the first t such that Γt touches ∂{uε > 0}. Let x0 be that touching point. Define
ψε to be α-harmonic in Γtε \ Γ0, with the following ”boundary data”:

ψε|∂Γ0
= minϕ and ψε|Γctε = 0.

By the maximum principle we have uε ≥ ψε in Γtε \ Γ0. From the (generalized)
Hopf’s Lemma we also know that there exists a constant c > 0 depending only
on the domain and ϕ, but independent of ε, such that

ψε(x) ≥ c((x− x0) · ν(x0))α. (5.3)

On the other hand we have the following asymptotic development around x0

ψε(x) ≤ uε(x) = λε(α)((x− x0) · ν(x0))α + o(|x− x0|). (5.4)

Letting x→ x0 in (5.4) and taking into account (5.3), we obtain

c ≤ λε(α)

as desired.

Now we are ready to prove the main theorem of this section.

Theorem 5.1. If ε is small enough, then any solution of (1.8) is a solution of
(1.1).

Proof. Basically, we just need to show that S := Ln({uε > 0} ∩ Rn ∩ Ω) = ω,
for ε small enough.

Suppose S > ω. In the spirit of the previous section, we consider an inward
perturbation of the positivity set of uε with the volume change V , such that for
the new function ũε we still have Ln({ũε > 0} ∩ Rn ∩ Ω) > ω. Thus

fε
(
Ln({ũε > 0} ∩ Rn ∩ Ω)

)
− fε

(
Ln({uε > 0} ∩ Rn ∩ Ω)

)
= −1

ε
V. (5.5)

From Theorem 4.1 and Lemma 5.1 we have∫
Ω

|y|β [|∇ũε|2 − |∇uε|2] = λ2
ε(α)V + o(V )

≤ C2V + o(V ). (5.6)
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Using the fact that Iε(uε,Ω) ≤ Iε(ũε,Ω), from (5.5) and (5.6) we get

0 ≤ C2V + o(V )− 1

ε
V,

therefore (by dividing on V and letting V → 0) it provides us with

ε ≥ 1

C2
,

which is a contradiction, when ε is small enough. Hence S ≤ ω, for small ε. If
S < ω, arguing the same way and using Lemma 5.2, we obtain another lower
bound for ε. Thus, when ε is small enough, S = ω.
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