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Purpose: The planning of an intensity modulated radiatiberapy treatment requires the
optimization of the fluence intensities. The fluermoap optimization (FMO) is many times
based on a non-linear continuous programming pnopleing necessary for the planner to
define a priori weights and/or lower bounds that are iterativelyarged within a
trial-and-error procedure until an acceptable pdareached. In this work we describe a new
approach for FMO that releases the human planoer frial-and-error procedures, being a
truly automated optimization process.

Methods. The FMO is represented by a voxel-based convealpe continuous non-linear
model. This model makes use of both weights andetyper bounds to guide the
optimization process towards interesting solutitreg are able to satisfy all the constraints
defined for the treatment. All the model’s parametee iteratively changed by resorting to a
fuzzy inference system. This system analyses howhéacurrent solution is from a desirable
solution, changing in a completely automated waty beeights and lower/upper bounds. The
fuzzy inference system is based on fuzzy reasotiiagenables the use of common-sense
rules within an iterative optimization process. Thethod is built in two stages: in a first
stage an admissible solution is calculated, gueeamy that all the treatment planning
objectives are being satisfied. In this first stathee algorithm tries to improve as most as
possible the irradiation of the planning targetuwoés. In a second stage, the algorithm tries

to improve organ sparing, without jeopardizing twmooverage.
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Results: The proposed methodology was applied to ten laeadneck cancer cases already
treated in the Portuguese Oncology Institute ofn@wa (IPOCFG) and signalized as
complex cases. IMRT treatment was considered, withand 11 equidistant beam angles. It
was possible to obtain admissible solutions fottedl patients considered and with no human
planner intervention. The results obtained werepamed with the optimized solution using a
similar optimization model but with human plannatervention. For the vast majority of
cases, it was possible to improve organ sparingaaiide same time to assure better tumour
coverage.

Conclusions: Embedding a fuzzy inference system into FMO afloiwman planner
reasoning to be used in the guidance of the opaitioiz process towards interesting regions
in a truly automated way. The proposed methodolegyapable of calculating high quality
plans within reasonable computational times and lwam@an important contribution towards
fully automated radiation therapy treatment plagnin

Keywords: Radiotherapy treatment planning, Fluence Map QOp#8tion, Automated

planning, Fuzzy Logic, IMRT

1.INTRODUCTION

Radiotherapy is the most technologically demandiagcer treatment approach, requiring a
complex treatment planning process. In clinicalcpca, most of the times, the planning is
done by resorting to a lengthy trial-and-error gahare assisted by a dedicated software
(Treatment Planning System). In inverse treatmdsatrpng optimization, the planner will
have to define several different parameters, lilkgghts and bounds. These parameters are
iteratively changed by the planner, using his owasoning and experience, until an
acceptable plan is reached. This process can beydengthy process, especially for difficult

cases where proper tumour coverage and organ ggaonme difficult to obtain.
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In this paper we will focus our attention on fluenmap optimization (FMO) for IMRT
treatment planning, where the beam angles are denesl determined and fixeal priori.
There is a vast literature associated with FMO. FMG been mainly tackled by constrained
optimization models such that an objective functisnoptimized while meeting dose
requirements®. The objective function usually considers a weighsum of deviations from
prescribed doses (underdose for PTVs and overaws®ARS). The constraints to consider
will depend on the organs’ functionality. It is gdde to find examples of linear modgls
mixed integer linear modélsnonlinear modefs'®, and multiobjective modefs Most models
known from the literature require some level ofitignand trial-and-error procedures, making
treatment planning a lengthy and sometimes cumbersaorocess. To invest in automated
treatment planning, taking advantage of current maational resources and optimization
algorithmic developments, is an increasingly aceepiath of researth There have been
very interesting steps in this directién’.

In this paper we propose a completely different hodblogical approach for FMO. A
non-linear unconstrained continuous programmingehadl| be used, and will be iteratively
solved by having the model's parameters changedninautomated way using a fuzzy
reasoning inference system. This methodology rekeathe human planner from
trial-and-error procedures, being a completely matied approach for FMO. The physician
will define the objectives that have to be achieveda treatment plan to be considered
admissible. These objectives can, in fact, be pméted as constraints that are defined for the
different structures: percentage of the PTV voluhe receives at least a percentage of the
prescribed dose, maximum or average doses thabtaenexceeded, maximum percentage
of the structure’s volume that receives more thagiven dose, for example. In this
methodological approach, the planner can definariggs that are associated with PTVs and
organs at risk (OAR). For PTVs, priorities are usdtenever it is not possible to comply

with all the defined treatment objectives (meantingt some corresponding constraints are
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being violated). Regarding OARs, priorities areduséhen the algorithm is trying to spare
further these structures. A priority is simply aamteger value belonging to a given interval.
The width of this interval can be defined takingoiraccount the number of structures
considered in the optimization and the degree fiémintiation among structures’ priorities
that is intended. In the present case, we havadmres! an interval between 0 and 10.

The algorithm will then generate a treatment plgmg to comply with all the constraints

defined, and without human intervention. To thet lifsour knowledge, it is the first time

that fuzzy inference is applied for radiation thmréreatment planning.
2METHODS

There are many ways of performing IMRT FMO. We hab®sen to use a voxel-based
convex penalty non-linear model where each voxepegalized considering the square
difference of the amount of dose received by the vanxeéla given upper and/or lower bound.
This formulation yields a programming problem wathly linear nonnegativity constraints on
the fluence values. Considering that beam angles alagady been fixed, I&t represent the
number of voxelsN the number of beamlets abdthe dose matrix, such thBt; represents

the contribution of beamlgtto the total dose deposited in voxeWe can thus calculate the

N
total dose received by voxieblsZDijwj with w, representing the weight of beamjet et
j=1

U. be the upper bound associated with vaxdl the lower bound associated with voxel

A and A the penalty weights of underdose and overdosexél, respectively. The FMO

model can be defined as follows, whér$, = max{0,} :
v N 2 N 2

f(w)=Min,> Ai[Li —ZD”WJ} +/1{ D,W, —UJ (1)
i=1 =1 N =)

i= +

stw; 20,j=1.,N (2)
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Although this formulation allows unique weights amdique upper/lower bounds for each
voxel, in the current approach weights are assidpyestructure only so that every voxel in a

given structure has the weight assigned to thattire. Considering a given structi8eve
can thus defineds, Ag, Ug and L such that A =As,0i0S, A =A0i0S,
U, =Ug,0i0Sand L, =Lg,0i0S. This nonlinear formulation implies that a venmpal

amount of deviation from the established bounds bwwccepted, but larger deviations are
decreasingly tolerated. It should be stressedttiteatonsidered objective function does not
have any meaningful clinical interpretation. It gltbbe interpreted as a technical tool that
will allow the guidance of the optimization proceeuowards regions where admissible

treatment plans can be found.

2. A. Initialization of the parameters

The upper and lower boundd { and js) are initialized considering the desired presaipt
defined by the physician. To illustrate this poiodnsider a PTV structure for which two

objectives have to be attained: the physician ledimet 70 Gy as the prescribed dd§,)
and, at the same time, he does not allow any PTRéMo receive more than 107% &f.

This PTV will have both upper and lower bounds asged with it. The lower bound will be

first initialized as being equal to the prescrilwibse in the PTV (70 Gy). The upper bound
will be initialized as the maximum dose allowed .&/4Gy). Regarding OARSs, only upper
bounds will be defined. These upper bounds willebeal to the maximum or mean dose
allowed for the structure. Considering the spirmatc for instance, if the physician defines 45
Gy as the maximum admissible dose in any spinal ®oixel, than this will be the upper

bound considered. For parotids, if a mean dose&dsy is considered admissible, then this

will be the upper bound considered for each pasotidxels.
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Weights are considered equal to 1 for every voXbis means that each voxel will have
exactly the same weight regarding the optimizatpocess, and no rescaling is made
considering, for instance, the number of voxelsach structure. An exception to this rule is
considered whenever one structure is delineataderenother one. This is very common in
the PTVs, where a PTV structure can be totallytetanside another PTV. In this case, the
inner PTV structures should have a greater welggtause in reality each voxel in the inner
PTV will belong to more than one structure, possiith conflicting objectives. This is
illustrated in kG. 1, where a CT slice for one patient is depicted, iirs possible to see two
PTVs with a prescribed dose of 70 Gy inside a PTithwa prescribed dose of 59.4 Gy.
Voxels included in PTV70 belong to two PTV struetsiat the same time, and they will be
subject to conflicting constraints. This means thatvoxels of PT¥o should have a greater
weight in the optimization procedure when they @wasidered as belonging to Ph\than
when they are considered as belonging to 8LV

The proposed methodology is intended to be a cdeiplautomated methodology for FMO,
so we would not like to have the planner initialgi or adjusting these weights by
trial-and-error. As a matter of fact, the initia@tion of the weights considering values
different than 1 will only have as consequence@atese in the total computational time (the
weights will be automatically updated by the alon, and giving a better starting point will
only contribute to a decreased number of weightsfaties), and not in the quality of the final
treatment plan calculated. We have chosen to censidrery simple way of automatically
initializing the weights, considering only the rted@ between the volume of the inner PTVs

and the volume of the outer PTV: the smallest tlame, the greater the weight.



FiG. 1. Contoured structures in one CT slice for oneesgntative patient. In this CT slice it is possita identify 4 PTV structures, with
two of them (PTV_1 and PTV_2) being located indgtda/_3.

155
If the inner PTV volume is less than 5% of the o€V volume, then the weight of all inner
PTV voxels will be equal to 50. If the volume isgter than 5% but less than or equal to
10%, then the weight will be equal to 10. In ahet cases, it will be equal to 5. The choices
of these thresholds and of the initial weights’'wesl can seem as being arbitrary, and they
160 really are arbitrary to some extent. Many otheesholds or initial values could be used,

provided that they are based in the same reasoning.

2. B. First Phase: PTV Coverage

In the first phase of the automated methodology,allgorithm will try to achieve the desired
165 PTV coverage, guaranteeing at the same time p@AE& sparing (it will try to ensure that

all the treatment constraints are satisfied). Thidone in an iterative way, first by trying to

change upper and lower bounds only. If this issufficient, the structures’ weights are also

changed.
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Lower and upper bounds are changed following venpke common-sense rules: if a given
treatment constraint is being violated, then chatige upper or lower bound that can
contribute to the satisfaction of that constrafxg.an example consider that the dose received
by a given structur& (spinal cord, for instance) in the current treattq@an is greater than
the acceptable value defined by the prescriptiba thaximum dose is greater than 45 Gy).
Then we would like to increase the contributiontfoe objective function (1) of all voxels of
the spinal cord, making the optimization procedsgarch for solutions such that the dose in

these voxels is lower than in the current solutidhis is achieved by decreasing the

2
N
respective upper bound g, contributing to an increase of the te{rﬁ: Dyw, —Uij in the

j=1 +

objective value, for all voxeld S that are receiving a dose greater thdn. The

N
optimization procedure will try to decrea§ D,w;,0i 0S, contributing to the satisfaction
j=1

of the violated constraint. On the other handh# tose received b$ is lower than the

corresponding prescribed dose (in case of a PTMn&tance), then the current lower bound

2
N
L should be increased, guaranteeing an increa%lai inY D, w]} ,0i0S. This will force

= +
the optimization procedure to increase the doseived byS. The question that remains is
how much should these bounds be adjusted? A common-sense rule will tell us that the greater
the deviation of the current solution from an at¢able solution (the greater the violation of
the corresponding constraint), the greater thesaiignt. We can then consider that:

If, for a given structure, the deviation betweene thlmeceived dose and the

prescribed/accepted dose l@mv (the corresponding treatment constraint is beinty o

slightly violated), then the upper/lower bound diddee onlyslightly decreased/increased.
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If, for a given structure, the deviation betweene tlieceived dose and the
prescribed/accepted dosel@&ge, then the upper/lower bound should underglarge
decrease/increase.
If, for a given structure, the deviation betweene thlmeceived dose and the
prescribed/accepted dosenmedium, then the upper/lower bound should suffenemlium
decrease/increase.
It can be very difficult to define in a crisp aniéar way what we mean bgrge, medium or
low. We understand these concepts and these commse-sdas, but how can we translate
this into a computational algorithm? It is possiblg resorting to fuzzy logic and fuzzy
reasoning.
2.B.1. Fuzzy Inference Mechanism
Fuzzy logic allows us to mathematically represenmtcepts that we can understand but that
may be difficult to define in a precise wWaylt is based on the conceptfozy sets: sets that
do not have clear boundaries so that a given elen@nbelong to a set with only a partial
degree of membership. What ddesv mean? What elements can belong to thel@e?
Instead of considering a crisp definition, we vatinsider a membership function that will
represent théow concept. This means that a given deviation candmsideredow with a
given degree of membership (a number between QL anthe same thing happens with the
medium andlarge concepts. Actually, a given deviation can belonguianeously to more
than one of these sets, with different degreeseshlyership.
Membership functions can be represented by marigrdiit ways, the only requisite being
that they must vary between 0 and 1. In this woekhave decided to work with triangular
and trapezoidal membership functionss.2 and kG. 3 illustrate the membership functions
considered for determining the change in the bouhkds input is given by the percentage of
deviation between the prescribed/accepted dosdahendctual dose received (the input will

belong to [0%,100%], and this is simply a measurdnawv much the constraint is being
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violated). The output is given by the percentagelange in the corresponding bound. A
deviation of 9% in the current dose delivery to igeg structure, for instance, will be
interpreted as belonging simultaneously to therseium deviation andlarge deviation with
different membership functions. Ind= 2 and kG. 3, although thex-axis considers values
from 0% to 100%, we only represent a subset ofittiesval, to illustrate in a better way the

behaviour of the membership functions.

Membership Functions for Deviation Membership Functions for Changing Bounds

hip Val
hip Val

embership Value
embership Value

Percentage of deviation Percentage of change

FiG. 2. Input (Percentage of Deviation) Membership Fomst FiG. 3. Output (Percentage of Change in the Bound) Meshie
(deviations belonging to [12% ,100%)] are considéaede with functions (changes belonging to [20%,100%] are icemedlarge
membership equal to 1) with membership equal to 1).

Input and output membership functions are connetedugh a set of fuzzy rules that
constitute a fuzzy inference mechanism. These fualgs are no more than simple if-then
rules. “If deviation idow then the change in the corresponding bourddws is an example
of a fuzzy rule. Notice that the input to a fuzayeris a degree of membership (a value
between 0 and 1, in this case the degree of mehipen$ the current deviation to the set
low), whereas the output of a fuzzy rule is a wholezjuset (the output fuzzy skiw). The
reasoning in evaluating a fuzzy rule is that if @uatecedent is true to some degree of
membership function, then the consequent will &dlsdrue to the same degresyglication
method). In the present case, we have three fuzzy rldes should be simultaneously
evaluated: the one already cited and two similasobut that considenedium deviations
implying medium changes anthrge deviations implyindarge changes to bounds. In a fuzzy

inference system, all rules are simultaneouslywatall. After evaluating all the fuzzy rules,



235 we end up with a set of truncated output fuzzy,dsgg then necessary to calculate a single
crisp value from these sets. This procedure, usudalown asdefuzzfication, will first
aggregate all output fuzzy sets into a single and,then will produce a crisp value. This can
be done by several different ways, being the mostnaon one the centroid calculation that
returns the centre of the area under the curve.Win@e process is illustrated ingr- 4,

240 considering as example a deviation of 9%.

Fuzzify Inputs Apply Fuzzy Implication

1. nput Low Membarship Function Output Low Membership Funetion

Membership Value

Percentage of deviation Percentage of change

If deviation islow then the change in the bound shoulddve

2. Input Medium Membership Function Output Medium Membership Function

Membership Value

B
Percentage of deviation Percentage of change

If deviation ismedium then the change in the bound shouldviedium.

3. Input Large Membership Function Output Large Membership Function

|

l

B
Percentage of deviation Percentage of change

lorge

If deviation islarge then the change in the bound shoulddge.

Result of Aggregation

Defuzzification 29.2%

FiG. 4. Diagram representing the whole fuzzy inferesyestem for changing the bounds



This value is evaluated for each of the three fuzdgs: its membership function considering the
input fuzzy set of each rule is calculated. Basedhis membership value, the corresponding output
fuzzy set is created by truncating the maximum nestip value. The aggregation procedure
aggregates all the fuzzy output sets, and basabdi®aggregated set a crisp value is calculatets Th

is the value that will determine the percentagehainge in the corresponding bound.

2.B.2. Automated mechanism for bounds update

In each iteration of the algorithm, and for eacH awery structure considered, the algorithm

will calculate the deviation between the currerltison and the constraints defined for that

structure. If there are deviations (meaning thates@f the constraints for that structure are
245 Dbeing violated), then the respective bounds willupeated resorting to the fuzzy inference

mechanism described in the previous section. Aexample, consider a given PTV structure

with a prescribed dose of 70 Gy. The physiciandedged as acceptable a solution such that

95% of the volume receives at least 95% of the qotesd dose D, =95%D,).

Furthermore, the maximum dose allowed, (,) for PTV voxels should be no greater than
250 107% of the prescribed dose. Imagine that in thieeat solutionDy,, = 659Gyand at the

same timeD,,, = 78GyRegarding theD,;, metric, the algorithm will calculate the current

deviation in percentage (approximately 1%). Using fuzzy inference mechanism, and the
three fuzzy rules considered, it will determineeacentage of change (approximately 3.3%)
and will increase the current structure’s lower b using this percentage. At the same
255 time, the algorithm will also calculate the dewatiregarding the maximum dose achieved
and the maximum dose accepted. In this case thiataevis approximately 4%. Applying
the same fuzzy inference mechanism, the correspgnaipper boundJ ;will be updated

(decreased) in 8.3%. As soon as the upper and Ibawands are updated for every structure

considered in the optimization, the FMO is solvegdia, generating a new current solution.
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The procedure is repeated until an admissible isolus found, or the upper/lower bounds

reach defined thresholds. In the present work wesider changing the Weigh_’ts whenever

its upper boundJ 4 reaches a value lower than 15% of its initial eallihe weightd is
updated whenevekg is greater than twice its original value. It is@lpossible to consider

different thresholds leading to more or less frequghanges of weights. If the threshold

associated witlJ ¢ is increased and the threshold associated Withs decreased, weights

will be updated more often. This can either reBuk decrease in the computational time or
the algorithm having problems to converge to atsmiu Actually, most of the times, only
slight changes in the weights are needed to redohsaible solutions, so it is important to

give enough time for the algorithm to adjust boubdsand Ly before changing the weights.

2.B.3.Automated mechanism for weights update

If it is not possible to reach an admissible soltby manipulating lower and upper bounds
only, the algorithm will automatically change theights associated with structures that are
violating the defined constraints. The weightsas® changed according to a fuzzy inference
system, similar to the one already described. Tizeyf rules used are also similar: if the
deviation between the current solution and the aslnie one is large/medium/small then
increase the corresponding weight by a large/mefdinn@ll amount.

To prevent the algorithm from not converging, thaxitmum allowed change is increasing
the weight by adding at most 10 to the current timeifihe input fuzzy membership functions
are the same depicted imsF2. The output membership functions are differeantthe ones
shown before and are depicted ie.F5. Whenever the weights are changed, the lower and
upper bounds take their initial values, and thertlgm progresses by changing these bounds

again, until an admissible solution is found.
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Membership Functions for Changing Weights

Membership Value

Increase in the Weight

FiG. 5. Output Membership functions for updating weights

2.B.4.Achieving PTV Coverage

By changing the lower/upper bounds and also upgadtie weights associated with each
structure, the algorithm will guide the search psscand will, eventually, find a solution that
satisfies all the constraints defined by the phgsiclf indeed an admissible solution is found,
then, at this stage, the algorithm will try to irape even more PTV coverage, by being more
demanding than the physician initially was. At firesent moment, this is done by changing

Dyo 10 Dy .y ¢ if the planner has defined that an admissibleitsmi should haveDyg,

greater than or equal to a given valyethen the algorithm will now try to guarantee that

Doy, iS greater than or equal fa The improvement of PTV coverage can also be done

other ways, depending on the type of constrairaswiere defined. The procedure is repeated
until the algorithm is no longer capable of improyiPTV coverage.

If, however, the algorithm is not capable of finglian admissible solution considering the
initial prescribed constraints, it will even so txy calculate a solution. To this end, a slack
associated with each PTV is considered, represgerdam acceptable deviation from the
defined constraints (the constraint is slighthaxeld). Slacks represent a percentage such that
if the current deviation is within that percentagds disregarded. As an example, imagine

that the physician has defined the constiaigf = 67G¥yen this constraint will be

considered satisfied by, = (1-slack)x 67Gy The slacks associated with PTVs are
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automatically determined by the algorithm, res@rtagain to a fuzzy inference mechanism.
The physician can assign priorities to each PT¥ &me for all PTVs or different priorities

to different PTVs). These priorities are translabgdthe planner into a number belonging to
[0, 10], where 0 is no priority and 10 is the gesatpriority of all (as already noticed, other
intervals could be considered if a thinner différ@ion between structures’ priorities is

desired). The greater the priority, the smaller stk (meaning that only slight deviations
from the desired constraints will be accepted).e€hfiuzzy rules are also considered: if the
priority is high/medium/low then the slack is smhakdium/high. k. 6 and KG. 7 illustrate

the membership functions considered.

Membership Functions Structure’s Priority Membership Functions Structure’s Slack

ership Value

mb

Priority Slack in percentage

FIG. 6. Input Membership Functions considering the $tmats FIG. 7. Output Membership Function considering the slack
priority associated with the structure’s constraints.

The first phase of the algorithm is illustrated=in. 8.



The physician defines
constraints for each of the
structures to be considered.

l

Weights and lower/upper bound
are automatically calculated by th
algorithm.

improved—O0. iter1.

[P

Update bounds.

A

FMO is performed. A current

solution is calculated.

Update weights. Initialize iter«—iter+1.
bounds.

A

No Does the current
solution satisfy all

constraints?

1z

Has any bound
reached a threshold?

Change the constraints
Yes related to the PTVs thal
become more demanding.
improved—1.
Stop. Go 10| ¢———
Phase :
|No
Increase the slacks
associated with the PTVs. —>

FiG. 8: Flowchart representing the algorithm’s first pha

315 2. C. Second Phase: OAR sparing
After the first phase, the algorithm has deliveeedjiven solution satisfying as much as
possible the physician defined treatment conssaintthe second phase, the algorithm will

now try to improve OAR sparing, maintaining the iagled PTV coverage. The OAR sparing
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is done by becoming more demanding in relation hite initial accepted doses. As an
example, imagine that the physician has defined aenstraint stating that the spinal cord
maximum dose should be no greater than 45 Gy. Them,algorithm will be more

demanding and will consider a constraint statirgt the maximum dose acceptable in the

spinal cord has to be less than or equab®45Gy. The magnitude of this chandé5- p)

will be automatically determined considering th#ettence between what is being achieved
and what is considered admissible: if the condtrigitbeing satisfied by a great amount then

we can be more demanding and consider lower vd@ue , but if the constraint is being
satisfied almost as an equality then we have tte$® demanding and consider closer to

45, At the same time, slacks are defined for al @ARs that we are trying to spare in a
better way, to give the algorithm flexibility tonfil better solutions. The physician can define
different priorities for the OARs, in a manner damito the one described for the PTVs. The
greater the priority, the more demanding the atgori will be for that structure, so the

smaller the corresponding slack will be. Once agalichanges are automatically performed
by resorting to fuzzy inference systems using traestype of fuzzy rules already described.
The procedure is repeated until it is not possioleimprove the current solution in a

predetermined number of iterations or a global maxn number of iterations is reached.

3.RESULTS

The described methodology was applied to ten salebtad-and-neck clinical examples
where proper target coverage and organ sparinggirincular parotid sparing (parotid glands
are in close proximity to or even overlapping witle PTV), proved to be fiicult to obtain.

In this study, the OARs used for treatment optitirawere limited to the spinal cord, the
brainstem and the parotid glands. For the headracl-cases in study there are two or more

PTVs with different prescribed doses. We will imgeal refer to them as PTV1 (prescription
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of 70 Gy) and PTV2 (prescription of 59.4 Gy). Foostpatients, at least one PTV1 is inside
PTV2. Table 1 presents the defined constrainte&mh of the considered structures, as well
as the priorities defined for each structure taded if it is not possible to achieve the desired

PTV coverage, or in the second phase of the algorfor OAR sparing.

Table 1. Prescribed doses for all the structures considerdeMO

Structure Type of constraint Limit Priority
Spinal cord Maximum dose lower than (2371 10
Brainstem Maximum dose lower than 64 10
Left parotid Mean dose Lower than 2] 5
Right parotid Mean dose Lower than (1] 5
PTV1 Dosy, Greater than 66.6y 10
PTV1 Maximum dose Lower than 74y

PTV2 Do Greater than 56.Gy

Percentage of PTV1 volume inside 10

PTV2 plus a 10% margin
Body Maximum dose Lower than &y 2

PTV2 Mo Lower than

Our tests were performed on an Intel Core i7 CRAJGHz computer with 4GB RAM and
Windows 7. We used CERR 3.2.2 versfoand MATLAB 7.4.0 (R2007a). The dose was
computed using CERR'’s pencil beam algorithm (QIR}h corrections for heterogeneities.
For each of the ten head-and-neck cases, the saatpleised for Body was 32 and for the
remaining structures was 4 (meaning that eachfsg? @ody voxels was considered as one
voxel in the optimization procedure and, for alhet structures, one out of 4 voxels was used
in the optimization procedure). To address the egmon-linear formulation of the FMO
problem we used a trust-region-reflective algorittimncon) of MATLAB 7.4.0 (R2007a)
Optimization Toolbox. The termination criteria fahe algorithm are as follows: the
algorithm will stop after 75 iterations without hgiable to find an admissible solution, or if
300 iterations in total are reached.

The algorithm was applied considering 7, 9 and ddlanar equidistant beam angles. For all
patients it was possible to find an admissible tsmi satisfying all of the defined constraints,
within reasonable computational times (Table 2)tHea vast majority of cases, it was also

possible to improve both PTV coverage and OAR sgakgompared with the first admissible
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solution found. In Table 2 the computational tinaes depicted. The times corresponding to
the first admissible solution show how long it taker the algorithm to calculate the first
plan complying with all the treatment constrainddter this first solution, the algorithm
continues, first trying to improve PTV coverage dpé 1) and then trying to improve OAR

sparing (phase 2). Thenproved solution corresponds to the last solution calculated during

phase 2.
Table 2. Computational times for the Fuzzy Inference bd3d®
Patients
Number of angles Time (minutes) 1 2 3 4 5 6 7 8 9 10
7 First admissible solution 8 15 9 8 18 36 6 10 4 45
Improved solution - 89 75 15 34 102 49 112 27 153
9 First admissible solution 12 12 9 5 15 14 5 9 5 56
Improved solution 120 89 124 17 183 122 69 17 20428 1
11 First admissible solution 47 19 22 10 31 27 13 950 127
Improved solution - 223 333 45 87 62 108 439 68 535

The treatment plans calculateBugzy FMO) are also compared with the treatment plans
calculated by using FMO without automated parameteing Gmple FMO). In this case,
both weights and bounds are defined by the planter.bounds are kept constant and given
by the defined constraints. Weights were optimizg@ manual trial-and-error procedure.

The automated treatment plan was able to comply alltthe defined treatment constraints,
considering both PTV coverage and OAR sparing. Goatve results regarding PTV1 and
PTV2 coverage are presented ic.PA and RkG. 9B, considering 7, 9 and 11 equidistant
beams with the simple and the fuzzy FMO. For akesawhere PTV1 and/or PTV2
correspond to more than one structure, a weightedage was considered (considering the
number of voxels in each structure). The horizofite represents 95% of the prescribed

dose. The treatment constraint determines g}, = D, so an admissible solution will

correspond to values above this horizontal linec&s be seen, only simple FMO solutions
present values under this admissibility threshold.
Fic. 9C and kc. 9D present comparative results regarding spinal emd brainstem. The

horizontal line represents the maximum dose allowedny voxel of these OARs, so we
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would like to have all values under this line. Alshaall solutions comply with these
constraints, that are violated by few simple FMQusons only. kG. 9E and k. 9F depict
similar results for the parotids. In this case tiwizontal line represents the maximum
acceptable value for the mean dose. It is possiblabserve that the only values above the
horizontal line correspond to simple FMO solutioBglutions calculated by the proposed
fuzzy methodology satisfy all the constraints definfor OARs, and they are able of
considerably improving organ sparing. More detailddsimetry metrics information
regarding all the 6 different solutions for eachigra is given as supplemental material.
Comparative DVHs are also shown, considering twsesand 11 beams solutionsc(FR.0
and RG. 11). These cases were chosen as representativibe aforst and best average
solution improvement achieved by the fuzzy FMO rodtilogy proposed compared to the
simple FMO solutions. DVHs for the 11 beam fuzzy ®GMolution for all 10 cases are

presented as supplemental material.
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4.DISCUSSION
In this paper we present a novel approach for FRHD iteleases the human planner from any
parameter tuning or trial and error procedures. g@roef of concept of this new approach was

done resorting to ten head-and-neck cancer casesapproach relies on a fuzzy inference
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system that mimics the human planner reasoningmwiéh iterative optimization procedure.
Simple rules of the fornf the OAR is not spared enough then increase the importance of this
OAR are used to automatically update the FMO modeliameters.

It was possible to observe that the proposed autmhfaMO approach was able to generate
admissible treatment plans, according to the dedfsmnstraints. The first admissible solution
is generated within a short computational time windThe algorithm then tries to improve
this calculated admissible solution, first guarairtg a better PTV coverage, and then sparing
as much as possible the OARs. The achieved resgits compared with the equidistant
solutions obtained by solving FMO with all paramstelefined by the planner in a
trial-and-error procedure. The Fuzzy FMO solutiprssent better dosimetry metrics than the
simple FMO solution. This comparison can be considieinfair, since it is not possible to
demonstrate that a real effort was made to tunenibdel’'s parameters for the simple FMO
solution as much as possible. Actually, it is novial to compare trial-and-error and
automated procedures, due to the intrinsic diffeesrthat exist in both approaches.

The proposed methodology presents as main advatitagact that no human interaction is
needed during treatment plan optimization. Prioth® beginning of the optimization, the
planner only needs to define constraints basechemtedical prescription and the priorities
for each structure. The algorithm will automatigalbdate both upper/lower bounds as well
as weights (whenever necessary), guiding the sgmodess into interesting regions where it
is possible to find high quality solutions corresgimg to acceptable treatment plans.

The computational results described considered RbiOstep-and-shoot IMRT treatment
planning. However, it will be possible to applystsame methodology for FMO applied to
other treatment techniques, like VMAT. Future waik consider developments for VMAT,
as well as the consideration of increased numbestrattures in the optimization process.
Future work will also consider the use of similazZy inference methodologies in IMRT

beam angle optimization, especially for noncopldreatments.
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