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Abstract. The field of values of a linear operator is the convex set in the complex plane comprising

all Rayleigh quotients. For a given complex matrix, Uhlig proposed the inverse field of values problem:

given a point inside the field of values determine a unit vector for which this point is the corresponding

Rayleigh quotient. In the present note we propose an alternative method of solution to those that

have appeared in the literature. Our approach builds on the fact that the field of values can be seen

as a union of ellipses under a compression to the bidimensional case, in which case the problem has an

exact solution. Refining an idea of Marcus and Pesce, we provide alternative algorithms to plot the

field of values of a general complex matrix, that perform faster and more accurately than the existing

ones.
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1 Introduction

Let (H, 〈·, ·〉) be a Hilbert space and B(H) denote the set of bounded linear operators H → H.

The field of values (also known as the numerical range) of a linear operator T : H → H is the set of

complex numbers

F (T ) =
{〈T w, w〉
〈w, w〉 : w ∈ H, 〈w,w〉 6= 0

}
.

Thus, the field of values is the set of all Rayleigh quotients of T. The numerical range is an useful

tool in the study of matrices and operators (e.g., see [5] and [7] and references therein), that has

applications in stability analysis of dynamical systems and convergence theory of matrix iterations,

among others.
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The field of values is a convex and compact set. The compactness follows readily from the fact

that F (T ) is the image of the unit compact sphere in H under the continuous mapping x → 〈Tx, x〉.
The convexity of F (T ) was stated by Toeplitz [11] and Hausdorff [6] in the first decades of the last

century.

Given a point z ∈ F (T ), the inverse field of values problem seeks to determine a unit vector wz ∈ H
such that z = 〈Twz, wz〉, referred to as a Ritz value. Such a vector is called a generating vector for z.

The inverse field of values problem was firstly proposed by Uhlig in [12], motivated by the importance

of the condition 0 ∈ F (T ) on the stability of continuous or discrete systems ẋ = Tx or xk+1 = Txk.

The problem searches for the solution of the two coupled-equations

w∗zTwz = z, w∗zwz = 1,

for wz ∈ H. So this is an algebraic problem consisting on a system of two complex quadratic equations

in the complex components of wz. Finding an algebraic solution can be performed with computer

algebra systems such as MATHEMATICA, but this works only for moderate dimensions. Also an

analytic approach using the Lagrange multipliers formalism makes sense, however this is only feasible

for low dimensions. We are interested in finding solution vectors for larger dimensions than algebraic

or analytic methods can provide, such as n of the order of hundreds or thousands.

Following Uhlig, we shall use the acronym “FOV” for “field of values”. The inverse FOV (iFOV)

problem deserved the attention of some authors, e.g., Carden [2], Meurant [10] and different methods

of solution have been proposed. A new method was given in [3] that is simpler and faster than the

existing ones, and provides accurate numerical results where the previous ones often fail, namely for

very close points to the field of values boundary. In these algorithms, most of the computing time is

spent computing eigenvalues and eigenvectors of the Hermitian part of the matrix, and in [2] and [3]

the minimum number of eigenanalyzes is two.

This paper has two main goals. The first one is to provide algorithms to plot quickly and accurately

the field of values. The second goal is to revisit the iFOV problem, and to propose an alternative and

simpler approach. Our method is conceptually straightforward, since it is essentially based on the

reduction to the 2 × 2 case. It requires a small number of eigenanalyzes, sometimes only one, and

compares well in execution time and in error with the existing ones in the literature.

This paper is organized as follows. In Section 2, the main ideas used in our method are presented.

In Section 3, two alternative algorithms for plotting the field of values of a general complex matrix

are proposed. We emphasize that these algorithms play a crucial role in the solution of the iFOV

problem, and remarkably improve the approximation of the FOV’s boundary. Section 4 provides an

overview of the approaches to the iFOV problem. In Section 5, this problem is solved for a matrix of
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arbitrary size by a reduction to the 2-dimensional case. In Section 6, some numerical examples that

illustrate the theory are given, and the different approaches are compared. The images here included

were numerically computed using MATLAB 7.8.0.347 (R2009a).

2 Main ideas

2.1 General properties of F

From now on we shall consider H = Cn. Let Mn be the algebra of n×n complex matrices. Writing

the cartesian decomposition of T ∈ Mn, that is, T = H(T ) + i K(T ), where

H(T ) =
T + T ∗

2
and K(T ) =

T − T ∗

2i
,

are Hermitian matrices, we can easily conclude that F (H(T )) is the orthogonal projection of F (T ) on

the real axis and F (K(T )) is the orthogonal projection of F (T ) on the imaginary axis.

We recall that a supporting line of a convex set S ⊂ C is a line containing a boundary point of S

and defining two half planes, such that one of them does not contain S. For θ ∈ [0, 2π), if we consider

a supporting line of F (T ) perpendicular to the direction of slope θ, the orthogonal projection of the

numerical range on this direction is given by F (H(e−iθT )).

The following well known properties of F are directly related with the subject of this note. For

their proofs we refer the interested reader to [7].

(1) σ(T ) ⊂ F (T ), where σ(T ) denotes the spectrum (set of eigenvalues) of T.

(2) For any unitary matrix U , F (U∗TU) = F (T ).

(3) For any complex number z, F (T + zI) = F (T ) + z.

(4) F (T ) is a real line segment if and only if T is Hermitian.

(5) If T is normal, then F (T ) = Co{σ(T )}, where Co{·} denotes the convex hull of {.}.
(6) Let xθ be a unit eigenvector associated with the largest, or with the smallest, eigenvalue of

H(e−iθT ). Then, zθ = x∗θTxθ ∈ ∂F (T ), the boundary of F (T ). Furthermore, zθ ∈ Lθ ∩F (T ) where Lθ

is the tangent line at zθ.

(7) The boundary of F (T ) is a piecewise algebraic curve, and each of its non-differentiable boundary

points is an eigenvalue of T .

2.2 F as the union of elliptical discs

For P a 2-dimensional orthogonal projection, the restriction of PTP to the range of P is called a

2-dimensional compression of T . For completeness, we recall the following important result, usually

known as the Elliptical Range Theorem (for a proof see, e.g., [7] or [13]).
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Theorem 2.1 Let T ∈ M2. Then F (T ) is a (possibly degenerate) closed elliptical disc, whose foci

are the eigenvalues of T , λ1 and λ2. The Cartesian equation of the boundary of this elliptical disk is

X2

M2
+

Y 2

N2
=

1
4

where

X = (x− Re(c)) cos γ + (y − Im(c)) sin γ, Y = (x− Re(c)) sin γ + (y − Im(c)) cos γ,

c = (λ1 + λ2) /2 is the center of the ellipse, and γ is the slope of the line segment with endpoints λ1

and λ2. The lengths of the major and minor axis of the ellipse are

M =
√

Tr (T ∗T )− 2H
(
λ1λ2

)
, N =

√
Tr (T ∗T )− |λ1|2 − |λ2|2,

respectively.

The following result is fundamental in our approach to the iFOV problem.

Theorem 2.2 (Marcus and Pesce [9]) For any T ∈ Mn,

F (T ) =
⋃

ũ,ṽ

F (Tũṽ),

where

Tuv =


〈T ũ, ũ〉 〈T ṽ, ũ〉
〈T ũ, ṽ〉 〈T ṽ, ṽ〉


 , (1)

ũ and ṽ varying over all pairs of real orthonormal vectors.

The Marcus-Pesce Theorem is applicable to the problem of devising an effective procedure for cons-

tructing the field of values of an arbitrary n×n complex matrix. The idea is to generate a reasonable

complete set of orthonormal pairs ũ, ṽ, not necessarily real, and actually compute the union of the

elliptical discs F (Tũṽ). This is the so-called inside-out approach, an alternative to the outside-in ap-

proach (e.g., [8]), which consists of determining the smallest and the largest eigenvalues of H
(
e−iθT

)

for various values of θ ∈ [0, 2π). These eigenvalues provide sharp approximations for the projection

of the field of values on the direction θ. The collection of these sharp bounds gives an outer polygo-

nal approximation to F (T ), whose sides are tangent to ∂F (T ) (see Property (6) of Subsection 2.1).

This procedure may be extended to the infinite dimensional setting, as well as for linear unbounded

operators.
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3 Algorithms for plotting F of a general complex matrix

The main purpose of this section is to provide two alternative algorithms for numerically deter-

mining F (T ) within some prescribed tolerance tol. These algorithms are used in our solution method

for the iFOV problem. In [9], a MS-BASIC program for plotting F (T ) was presented based on formula

(1), in the case T is a real matrix. Our algorithms improve Marcus-Pesce algorithm, as they work

efficiently for complex matrices and large dimensions. Instead of using randomly generated vectors u

and v, we make use of suitably chosen vectors u and v which generate boundary points of the numer-

ical range. Throughout, we denote by span{u, v} the subspace generated by the linearly independent

vectors u, v, and by ũ, ṽ, two orthonormal vectors in span{u, v}. The respective MATLAB programs

are available at the following website:

http://www.mat.uc.pt/∼bebiano

3.1 Algorithm A

I. Check if T is Hermitian. If so, compute its smallest and largest eigenvalues and the line joining

them is F (T ). If not, proceed to the next step.

II. Check T for normality (TT ∗ = T ∗T ). If T is normal, compute its eigenvalues and their convex

hull is F (T ). If T is not normal, continue.

III. Set θk = (k − 1)π/m, k = 1, . . . ,m for some positive integer m ≥ 3.

IV. Starting with k = 1, up to k = m, take the following steps:

(i) Compute eigenvectors uk and vk associated, respectively, to the largest and smallest eigen-

value of the Hermitian matrix H
(
e−iθkT

)
.

(ii) Compute the compression of T to span{uk, vk}, Tũkṽk
.

(iii) Compute the boundary Γk of F (Tũkṽk
).

(iv) If k < m, take the next k value and return to (i).

V. Plot the convex-hull of the collection of curves Γ1, . . . ,Γm as an approximation for F (T ).

Algorithm A may not be efficient in the case T is unitarily similar to a direct sum of matrices,

because in this case the field of values of the compressed matrices may degenerate into line segments.In

this event, the next modified algorithm, which essentially differs in the choice of generating vectors

for boundary points, is more convenient.
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3.2 Algorithm B

Steps I, II and III are as in algorithm A.

IV. Compute eigenvectors u1 and v1 associated, respectively, to the largest and smallest eigenvalue

of H
(
e−iθ1T

)
.

V. Starting with k = 2 and up to k = m, take the following steps:

(i) Compute eigenvectors uk and vk associated, respectively, to the largest and smallest eigen-

value of H
(
e−iθkT

)
.

(ii) Compute the compressions of T to span{uk, uk−1} and span{vk, vk−1}, Tũkũk−1
and Tṽkṽk−1

,

respectively.

(iii) Compute and draw the boundaries of F (Tũkũk−1
) and F (Tṽkṽk−1

), Γk and Λk, respectively.

(iv) If k < m, take next k value and return to (i). Otherwise, continue.

VI. Take the following steps.

(i) Compute the compressions of T to span{u1, vm} and span{v1, um}, Tũ1ṽm and Tṽ1ũm , re-

spectively.

(ii) Compute the boundaries of F (Tṽ1ũm) and F (Tũ1ṽm), Γ1 and Λ1 respectively.

VII. Take the convex-hull of the collection of curves Γ1, . . . ,Γm, Λ1, . . . ,Λm as an approximation for

F (T ).

3.3 Accuracy and examples

Algorithm B provides a much better accuracy than algorithm A in the approximation of F (T ).

Both algorithms A and B behave especially well when compared with the “outside-in” approach,

which merely provides a polygonal approximation of F (T ), and so it requires a much finer mesh to

reach convenient accuracy. The amount of effort necessary to plot F (T ) by algorithms A and B to a

desired accuracy depends essentially on the shape. For a given difficulty in shape, the effort is of the

same order as that of solving the Hermitian eigenvalue-eigenvector problem necessary to generate a

boundary point. Thus, the necessary effort is O(n3).

The same arguments in [8] suggest that the accuracy of algorithm A increases with m as m2.

Since in algorithm B, the boundary of F is approximated by arcs of ellipses which are tangent to

the boundary at two of its points consecutively determined, one expects that the respective accuracy

increases with m as m4. In Johnson’s method the boundary is piecewise approximated by line segments,

6



which depend linearly on some convenient coordinate, so the error involved is of the order of 1/m2.

In algorithm B, the boundary is piecewise approximated by arcs which have well defined slopes at the

end points. These arcs must be at least cubic curves, so the error involved is of the order of 1/m4.

Since the boundary points produced by a given mesh distribute themselves on the boundary with a

density which is inversely proportional to the local radius of curvature of the boundary, it follows that

the local accuracy is also inversely proportional to the radius of curvature. It is in order to observe

that, with respect to computational effort, the most convenient interpolation between two successive

computed points on the boundary of F (T ) is by the unique cubic which has the right slopes at the

interpolated points.

In a recent paper, Uhlig [14] addresses the accurate computation of the boundary of F (T ) by a

method which is similar to algorithm B. His careful numerical analysis supports the expected fast

convergence of this algorithm.

−4 −2 0 2 4 6 8

x 10
4

0

1

2

3

4

5

6

7

8

9

10

x 10
4

(a) Johnson’s algorithm with m = 14, n = 500
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(b) Johnson’s algorithm with m = 21, n = 500
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(c) Agorithm A with m = 7, n = 500
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(d) Algorithm B with m = 7, n = 500

Figure 1: Comparing the performance of Johnson’s algorithm, algorithm A and algorithm B.

Example 3.1 In Figure 1, the 500× 500 complex matrix A in [3, p. 202] is considered. This matrix

is constructed from the complex matrix B = F + iM , where F is the Fiedler matrix F = (|i− j|) and
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m area acc. digits seconds

Johnson’s algorithm

7 8.6260× 109 0 5.082322

14 9.0890× 109 1 7.229055

28 9.2140× 109 2 14.252341

56 9.2439× 109 2 24.169221

112 9.2513× 109 3 47.456900

Agorithm A

7 9.1064× 109 1 3.363152

14 9.2060× 109 2 6.152282

28 9.2383× 109 2 11.847686

56 9.2487× 109 2 23.233351

112 9.2514× 109 3 46.187566

Agorithm B

7 9.2406× 109 2 3.424524

14 9.2509× 109 3 6.330416

28 9.2528× 109 3 12.108766

56 9.2533× 109 4 23.853617

112 9.2534× 109 4 47.086406

Table 1: Performance of Johnson’s algorithm, algorithm A and algorithm B for the 500× 500 matrix

of the Example 3.1.

M is the Moler matrix M = UT U for the upper triangular matrix U with ui,j = −1 for j > i. By

adding 3 + 5i multiplied by the 500 × 500 matrix whose entries are ones, we obtain the matrix A, or

in MATLAB notation A = B + (−3 + 5i)ones(500). The execution time of the different algorithms

for this matrix is compared in Table 1. The subroutine fv.m of the MTLAB ”Matrix Computation

Toolbox” has been used to implement Johnson’s algorithm.

The accuracy of algorithms A and B may be improved by choosing a finer mesh.

4 The iFOV problem: the state of the art

Uhlig [12] provided a complicated solution for the inverse field of values problem, that initially

generates points that surround the given point z, by using the fact that points on the boundary of

F (T ) and their generating vectors can be computed by Johnson’s method [8]. Uhlig’s method proceeds

with a randomized approach to surround z tighter and tighter, by successive attempts, and iteratively

refines the generating vector approximation.
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In the continuation, Carden [2] pointed out the connection between the iFOV problem and iterative

eigensolvers, and presented a simpler method of solution based on the following procedure:

(1) Solution of the 2× 2 case by reduction to a form that is useful for proving the FOV convexity.

(2) Using Property (6), the given point z is surrounded by points on the FOV boundary and

associated generating vectors are determined.

(3) From the triangle defined by three points on the FOV boundary that surround z and convexity,

generating vectors for the endpoints of a line containing z are determined. By compression to the

subspace spanned by these vectors, iFOV is solved by reduction to the 2× 2 case.

A more efficient method for the iFOV problem than either those in [12] or [2], has been presented

in [3] along the following lines:

(1) Direct solution of the 2× 2 case.

(2) Generation of points on the FOV boundary according to Property (6). Surrounding of z by

ellipses determined by compressions defined by the generating vectors of all possible pairs of vertices

of the inner approximation. For each ellipse, its intersection with the real axis is determined. If in any

ellipse there are points on both sides of z, then corresponding generating vectors are used to reduce

to the 2× 2 case and to solve the iFOV problem.

(3) Bisection on the angles to refine inner approximation in the direction of z.

A relevant aspect of [2] and [3] is surrounding the desired point by four points on the FOV

boundary, determined by considering the largest and the smallest eigenvalues of the Hermitian matrices

H
(
e−iθ′T

)
and H

(
e−iθ′′T

)
, for θ′′−θ′ = π/2. In our approach, boundary points similarly determined

are also considered, which, however may not surround the desired point, it only being required that this

point belongs to one of the elliptical discs. Moreover, we find it advantageous to relax the restriction

θ′′ − θ′ = π/2.

4.1 Analytic solution of the iFOV problem in the 2× 2 case

Following Carden [2] given T ∈ M2, and z ∈ C, we exactly determine a unit vector wz ∈ C2 such

that z = w∗zTwz. Without loss of generality, we may assume that the trace of T is zero. (If the trace

was nonzero, we would subtract Tr (T/2) from T and from z.) Under this assumption, the eigenvalues

sum to zero, and may be denoted as λ and −λ. Let us assume that the eigenvalues of T are non-zero.

Further, we may assume that the eigenvalues of T are real. (To accomplish this, we need to multiply

both T and z by e−iψ where λ = aeiψ, a > 0.) A unitary matrix U can be found such that T is carried

out into the Schur form
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U∗TU = T̂ =


a c

0 −a


 ,

where c is real. Since the field of values is invariant under unitary similarity transformations, z need not

to be altered. Having in mind that any 2× 2 matrix can be shifted, scaled, and unitarily transformed

into this form, we solve the inverse problem for T̂ .

Let z = x + iy ∈ F (T̂ ). Without loss of generality, we may consider the unit vector wz ∈ C2 as

wz = (cosu, eiφ sinu)T . We find

w∗z T̂wz = a cos 2u +
c

2
sin 2u cosφ + i

c

2
sin 2u sinφ,

which easily gives

cos 2u =
4ax±

√
c4 + 4a2c2 − 4c2x2 − (4c2 + 16a2)y2

4a2 + c2
. (2)

This relation determines u, and the relation

sin φ =
2y

c sin 2u
(3)

determines φ. Hence, given z ∈ F (T̂ ) the u and φ that specify the generating vector wz must satisfy

the above relations, and in terms of the matrix T the generating vector is Uwz.

If c4 + 4a2c2 − 4c2x2 − (4c2 + 16a2)y2 ≥ 0 (the inequality corresponding to x + iy being inside the

ellipse), it is always possible to determine wz such that x + iy = w∗zTwz/w∗zwz, and conversely. The

sought after solution is not necessarily unique [2], because for x+ iy in the interior of F (T ), there exist

two linearly independent vectors determined by u and u− π/4, for u 6= π/4. If u = π/4, then wz is a

point on the boundary, and the generating vector is unique provided that the ellipse is nondegenerate.

If c = 0, then F (T ) is the line segment defined by the two eigenvalues, and the solution is unique only

for the end points. If T = 0, then F (T ) is a singleton and any unit vector in C2 is a generating vector.

The above ideas are now used to develop an algorithm to solve the iFOV in the 2× 2 case, which

will be crucial in solving the general case. Let ũ, ṽ be two orthonormal vectors belonging to span{u, v}.
Given the 2-dimensional compression Tũṽ of T to span{u, v} (cf. (1)) and for z ∈ F (Tũṽ), take the

following steps:

I. Determine the eigenvalues of Tũṽ, λ1, λ2. Construct a unitary matrix U that takes Tũṽ to the

Schur form

Tũṽ = UT
(0)
ũṽ U∗ = U


λ1 eiθd

0 λ2


U∗, d ≥ 0, θ = arg(λ1 − λ2).
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II. Let z0 = (λ1 + λ2)/2, and a = |λ1 − λ2|/2. Thus,

T
(00)
ũṽ =


a d

0 −a


 = e−iθ(T (0)

ũṽ − z0I2),

and ω0 = e−iθ(z − z0) ∈ F (T (00)
ũṽ ).

III. A generating vector ζ(0) = (ζ(0)
1 , ζ

(0)
2 )T of ω0 is easily found using (2) and (3). Hence ζ =

(ζ1, ζ2)T = Uζ(0) is a generating vector of z.

5 Algorithms for the inverse FOV problem

Given an n×n complex matrix T and z = x+iy ∈ C, let ε > 0 denote some tolerance (for example,

ε = 10−16||T || for a double precision computation). Our approach to the iFOV problem is based on

Marcus-Pesce Theorem, having in mind that we can exactly generate any point in the interior of the

ellipses, as well as in its boundary, as described in Section 4.1.

5.1 Algorithm A′

I. Discretization of the interval [0, π]: Choose a m-mesh θk =
π(k − 1)

m
, k = 1, . . . , m, for some

positive integer m ≥ 2.

II. For k ∈ {1, . . . ,m}, starting with k = 1, take the following sub-steps.

(i) Construct the matrix Tk = H
(
e−iθkT

)
, and compute its largest and smallest eigenvalues.

Determine a pair of associated eigenvectors uk and vk. In each step this is a well defined

Hermitian eigenvalue-eigenvector problem.

(ii) If |λmin(Tk) − λmax(Tk)| < ε, then F (T ) is approximately a line segment, so that T is

approximately either Hermitian or skew-Hermitian (or a complex shift of one of these). If

the line segment degenerates into a point, then T is a scalar matrix. In either of these

cases, it can be easily decided if z belongs to F (T ), and if so, a generating vector may be

determined. Otherwise, continue.

(iii) Check whether the given point z = x + iy belongs to the intersection of the following

half-planes

x cos θk + y sin θk ≤ λmax(Tk)

x cos θk + y sin θk ≥ λmin(Tk).

If z is not inside the above half-planes intersection, then z /∈ F (T ). Otherwise, continue.
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(iv) Take the compression Tukvk
of T to span{uk, vk}. If z ∈ F (Tukvk

), let Tũṽ = Tukvk
and

continue to III. Otherwise, take the next value of k and go to (i).

III. The generating vector of z ∈ F (T ) is given by wz = ũζ1+ ṽζ2, where ũ, ṽ are orthonormal vectors

such that (1) holds, and ζ1, ζ2 are as defined in III Section 4.1.

Next we introduce a slight modification to algorithm A′ changing the form of generating the

compressions. This modification allows the treatment of some deficiencies revealed by algorithm A′

with the degeneracy of the elliptical discs into line segments.

5.2 Algorithm B′

I. As Step I of algorithm A′.

II. As sub-steps (i), (ii), and (iii) of Step II with k = 1 of algorithm A′.

III. For k ∈ {2, . . . , m}, starting with k = 2, take the sub-steps (i), (ii) and (iii) of Step II of algorithm

A′.

(iv) Take the compression Tuk−1,uk
of T to span{uk−1, uk}. If z ∈ F (Tuk−1,uk

), let Tũṽ = Tũk−1,ũk

and continue to IV. Otherwise, take the compression Tvk−1,vk
of T to span{vk−1, vk}. If

z ∈ F (Tvk−1,vk
), let Tũṽ = Tṽk−1,ṽk

and continue to IV. Otherwise and if k < m, take the

next value of k and go to (i) of this step.

IV. Compute the compressions of T to span{u1, vm} and span{v1, um}, Tũ1ṽm and Tṽ1ũm , respectively.

V. As Step III of algorithm A′.

Algorithms A′ and B′ may be refined by replacing the interval [0, π] by a smaller one around

the perpendicular direction to the slope of the boundary at the closest point to the point under

investigation, and by choosing a fine mesh in that interval.

6 Discussion and examples

We observe that algorithms A′ and B′ are particular forms of a super-algorithm in which the

compression of T to the space spanned by eigenvectors associated with the largest and smallest eigen-

values of H
(
e−iθkT

)
and H

(
e−i(θk−α)T

)
are considered for some convenient α. In algorithm A′, we

have α = π, and in algorithm B′, α = θ2, as the largest eigenvalue of H
(
e−iθkT

)
is the smallest
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eigenvalue of H
(
e−i(θk−π)T

)
and θk+1 = θk + θ2. However, other values of α may be more appropriate

according with the particular case taken into consideration.

Our algorithms are deterministic, in the sense that they determine a solution provided the consid-

ered discretization of the interval [0, π] is fine enough. The lack of determinism occurs if the boundary

of F (T ) contains line segments (also called flat portions), which occurs when the extreme eigenval-

ues of H(e−iθkT ) for a certain k have multiplicities greater than one. For a given point in F (T ) the

algorithms will always determine a generating vector which may only depend on the chosen mesh.

algorithm m seconds eigenanalyses error

invnrp from [3] − 0.027332 11 3.5527×10−15

µ = 23.5 + i20 A′ 41 0.043476 33 7.9441×10−15

B′ 2 0.036121 2 1.4648×10−14

invnrp from [3] − 0.026650 12 3.5527×10−15

µ = 23.7 + i20 A′ 41 0.042243 33 1.0658×10−14

B′ 5 0.050956 5 5.0243×10−15

invnrp from [3] − 0.026945 12 7.1054×10−15

µ = 23.7289639701427 + i20 A′ 41 0.043584 33 7.1054×10−15

B′ 5 0.050975 5 3.5527×10−15

Table 2: Performance of algorithms A′, B′ and invnrp from [3], for Example 6.1.

Example 6.1 Our first example features a 10 × 10 matrix generated by the MATLAB command

T = randn(10) + (3 + 3i)ones(10). The obtained results are summarized in Table 1 and in Figure 2,

illustrating the advantage of algorithm B′, which requires a smaller value of m to solve the problem,

than algorithm A′ does, without implementation of the refinement procedure.

Example 6.2 The 45× 45 complex matrix whose field of values is depicted in Figure 3 is defined as

A = B + (−3 + 5i)ones(45), where B = F + iM (cf. Example 3.1). Our results, for the test point

µ = −200+500i, are summarized in Table 2 and compared with those for the algorithms of [2] and [3].

In Figure 3, the advantage of algorithms A′ and B′, which solve the problem with a smaller number of

eigen-analyzes as compared with the approaches in [2] and [3], is illustrated.

We have also replaced the interval [0, π] of Step 1 in algorithm B′ by [α, α+π], for α = ±π/4,±π/2,

±3π/4. We found that the performance of the algorithm is only slightly affected by this replacement,

confirming that the good quality of the performance is not accidental.
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Figure 2: Solution of the iFOV problem for the matrix A = randn(10) + (3 + 3i)ones(10) of Example

6.1, using algorithms A′ and B′, being µ = 23.5 + 20i the point indicated.

algorithm m seconds eigenanalyses error

inversefov from [2] − 0.204922 3 2.2737×10−13

invnrp from [3] − 0.028962 3 1.6078×10−13

A′ 2 0.028287 1 1.1369×10−13

B′ 2 0.037529 2 3.4224×10−13

Table 3: Performance of algorithms A′, B′, inversefov [2] and invnrp [3], for Example 6.2.

Example 6.3 Our last example considers the 188 × 188 Jordan block J for the eigenvalue 1 + 3i

(with all co-diagonals equal to 1) and the test point µ = 1.707 + i3.707, that lies inside F (J) within

10−5 from the boundary. As it is well known, in this case F (J) is a circular disc centered at 1 + 3i.

Since the fields of values of the 2-dimensional compressions of this high dimensional Jordan block

are elliptical discs with a huge eccentricity, the solution of the iFOV problem requires a very careful

consideration of the relevant range of θk, in order to find an elliptical disc which contains the point µ.

We have considered the refinement of algorithms A′ with m = 2 and B′ with m = 3 and the interval[
arc tan(3.707−3

1.707−1), arc tan(3.707−3
1.707−1) + 0.05π

]
. The results are summarized in Table 3. The performance

of algorithms A′ and B′ compares very well with the ones of the approaches in [2] or [3].

Our codes have been tested in a PC with an Intel Core 2 Duo T5550 (1.83 GHz) processor and 3
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Figure 3: Solution of the iFOV problem for the matrix A = (B + (−3 + 5i)ones(45)) and the point

µ = (−200 + 500i) considered in Example 6.2, using algorithms A′ and B′.

GB random-access memory (RAM).

algorithm m seconds eigenanalyses error

inversefov from [2] − 0.478268 3 2.0948×10−15

invnrp from [3] − 0.261283 3 4.9651×10−16

A′ 2 0.276974 1 1.6012×10−15

B′ 3 0.395581 2 2.2204×10−16

Table 4: Performance of algorithms A′, B′, inversefov [2] and invnrp [3], for Example 6.3.
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