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Abstract. Consider the Hilbert space (H, 〈· , ·〉) equipped with the indefinite inner product [u, v] =

v∗Ju, u, v ∈ H, where J is an indefinite self-adjoint involution acting on H. The Krein space numerical

range WJ(T ) of an operator T acting on H is the set of all the values attained by the quadratic form

[Tu, u], with u ∈ H satisfying [u, u] = ±1. We develop, implement and test an alternative algorithm

to compute WJ(T ) in the finite dimensional case, constructing 2 by 2 matrix compressions of T and

their easily determined ellipses and hyperbolical numerical ranges. The numerical results reported

here indicate that this method is very efficient, since it is faster and more accurate than either of the

existing algorithms. Further, it may yield easy solutions for the inverse indefinite numerical range

problem. Our algorithm uses an idea of Marcus and Pesce from 1987 for generating Hilbert spaces

numerical ranges of matrices of size n.
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1 Introduction

Let J be an indefinite self-adjoint involution acting on a Hilbert space (H, 〈· , ·〉). Define the

sesquilinear form (indefinite inner product) associated with J by [u, v] = 〈Ju, v〉 = v∗Ju, u, v ∈ H.

The indefinite numerical range of a linear operator T : H → H is the set of complex numbers

WJ(T ) =
{

[T w,w]
[w, w]

: w ∈ H, [w,w] 6= 0
}

.

This concept generalizes the well-known (classical) numerical range, defined by

W (T ) =
{〈T w,w〉
〈w, w〉 : w ∈ H, 〈w, w〉 6= 0

}
.
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The numerical range is a useful tool in the study of matrices and operators, that has been investigated

extensively (e.g., see [1, 8] and [17] and references therein). Several results are known which connect

analytic and algebraic properties of an operator with the geometrical properties of its numerical

range. Likewise, the indefinite numerical range motivated the interest of researchers (see [2, 6, 13, 14,

15]), which in particular have investigated these relations in the Krein space setting. The indefinite

numerical range, although sharing some analogous properties with the classical numerical range, has

a quite different behavior. In contrast with the classical case, WJ(T ) is generally neither closed nor

bounded [15, Section 2]. On the other hand, WJ(T ) may not be convex [15].

We also define the related sets

W+
J (T ) =

{
[Tw, w]
[w, w]

: w ∈ H, [w, w] > 0
}

,

and

W−
J (T ) =

{
[Tw, w]
[w, w]

: w ∈ H, [w, w] < 0
}

.

It is easy to check that W+
−J(T ) = −W−

J (T ) and

WJ(T ) = W+
J (T ) ∪W−

J (T ).

Thus, we can focus our study on W+
J (T ) and translate the results on W+

J (T ) to W−
J (T ) and WJ(T ).

We mostly consider H = Cn and we denote by Mn the algebra of n × n complex matrices.

We assume that the inertia of J is (r, n − r), i.e., J has r positive and n − r negative eigenvalues.

According to Sylvester law of inertia [11, p.222–223], there exists a non-singular matrix S ∈ Mn such

that S∗JS = Ir ⊕ −In−r. Clearly, WIr⊕−In−r

(
S−1TS

)
= WJ(T ). So, without loss of generality we

shall consider J = Ir ⊕−In−r.

In this paper we revisit the question of numerically determining WJ(T ), which has already already

deserved the attention of researchers (cf. [4] and [14]). Nevertheless, the existing methods are not

efficient in some cases, namely, because this set is very often unbounded and so it is difficult to approach

accurately its boundary. Our main aim is to present an alternative algorithm for plotting WJ(T ), which

refines an idea used by Marcus and Pesce to numerically determine the classical numerical range [16]

(see also [18]). As it will be shown, our method has clear advantages over the existing ones [4, 13],

both in accuracy and in execution time (cf. Section 5). Further, the presented algorithm is crucial for

the line of attack we adopt for solving the inverse indefinite numerical range stated as follows: for a

given point z ∈ WJ(T ), determine a vector u ∈ Cn such that z = [Tu, u]/[u, u]. For more details see

[7]

This paper is organized as follows. In Section 2, results used throughout our investigation are

surveyed. In Section 3, the indefinite numerical range is described as a union of elliptical and hyper-

bolical disks. In Section 4, an algorithm to plot WJ(T ) based on the previous result is presented. In
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Section 5, numerical examples illustrating the proposed approach are provided, and the performance

of the different algorithms is discussed. We end with some conclusions in Section 6. The images were

computed numerically using MATLAB.

2 Prerequisites

We start recalling some useful facts. A matrix T ∈ Mn is called J-Hermitian (or J-self-adjoint),

if T = T#, where T# = JT ∗T is the J-adjoint of T . Any matrix T may be uniquely written in the

form T = ReJ T + iImJ T , where ReJ T := 1/2(T + T#) and iImJ T := 1/2(T − T#) are J-Hermitian

matrices . The spectrum of a J-Hermitian matrix is symmetric relatively to real axis. It is well-known

that WJ(T ) ⊆ R if and only if T is J-self-adjoint. We clearly have WJ

(
ReJ T

)
= Re (WJ(T )) ⊆ R

and WJ(ImJ T ) = Im (WJ(T )) ⊆ R. Further, if T has complex eigenvalues, then WJ(T ) is the whole

real line [2].

A matrix U is J-unitary if UU# = I. Assume that T is a J-Hermitian matrix with real spectrum

and J-unitarily diagonalizable. Let define

σ±J (T ) = {λ ∈ R : ∃x ∈ Cn, [x, x] = ±1, T x = λx}.

Throughout, we shall be specially concerned with the class of matrices T ∈ Mn, for which there

exists θ ∈ [θ1, θ2], with 0 < θ2 − θ1 < π, such that the J-Hermitian matrix

Hθ := ReJ
(
e−iθT

)
=

1
2
(e−iθT + eiθT#), (1)

has real eigenvalues satisfying the following conditions:

(i) λ1 (Hθ) ≥ · · · ≥ λr (Hθ) ∈ σ+
J (Hθ);

(ii) λr+1 (Hθ) ≥ · · · ≥ λn (Hθ) ∈ σ−J (Hθ);

(iii) λr(Hθ) > λr+1(Hθ).

For T in this class, WJ(T ) is non-degenerate, i.e., is not a singleton, a whole line (possibly without

a point), the whole complex plane (possibly without a line) or the union of two non-intersecting half

planes. This class of matrices will be denoted by ND, the acronym for non-degenerate.

In our subsequent discussion, we shall use the following basic properties. We have WJ(T ) = {λ}
if and only if T = λI, and for any T and α, β ∈ C, WJ(α T + β I) = α WJ(T ) + β. The J-unitary

transformations preserve the shape of Krein space numerical ranges, WJ(U#TU) = WJ(T ). The set

WJ(T ) is pseudo-convex [15], that is, for any pair of distinct points x, y either the line segment with
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end points x, y is contained in WJ(T ), or the two half-lines (1− t)x + ty for t ≤ 0 or t ≥ 1 are there

contained.

We denote the boundary of WJ(T ) by ∂WJ(T ). The supporting lines of WJ(T ) are the supporting

lines of the convex sets W+
J (T ) and W−

J (T ). If ` is a supporting line of WJ(T ) and `∩∂WJ(T ) contains

more than one point, then ` ∩ ∂WJ(T ) is called a flat portion on the boundary of WJ(T ) [5]. There

is a flat portion in ∂W+
J (T ) if and only if there exists θ such that the smallest eigenvalue λr (Hθ) in

σ+
J (Hθ) is multiple and the set {z = [Tu, u]/[u, u] : Hθu = λr (Hθ) u} is not a singleton. An analogous

result is valid for W−
J (T ).

A point z ∈ ∂W+
J (T ) is called a corner of W+

J (T ) if it is in more than one supporting line. In [14,

Theorem 3.1], it was proved that if z is a corner, then it is an eigenvalue of T .

3 WJ(T ) as a union of elliptical and hyperbolical discs

One important result in the Krein space numerical ranges is the hyperbolical range theorem [2]

asserting that for a linear operator T ∈ M2, with eigenvalues λ1 and λ2, and a self-adjoint involution

J2, WJ2(T ) is bounded by a (possibly degenerate) 2-component hyperbola with foci λ1 and λ2, and

transverse and non-transverse axis of length
√

Tr(T#T )− 2Re (λ1λ2) and
√
|λ1|2 + |λ2|2 − Tr(T#T ),

respectively. For the classical numerical range, the elliptical range theorem [12] states that if T ∈ M2,

then W (T ) is a (possibly degenerate) closed elliptical disc, whose foci are the eigenvalues of T , λ1

and λ2 and the lengths of the axis are
√

Tr (T ∗T )− 2Re
(
λ1λ2

)
, and

√
Tr (T ∗T )− |λ1|2 − |λ2|2. For

T acting on higher dimensional spaces, the shape of WJ(T ) is more complicated. In this section, we

prove a theorem that reduces the general case to the bi-dimensional one.

Let P ∈ M2 be a J-orthogonal projection, i.e., P 2 = P, P# = P . For T ∈ Mn, we recall that the

restriction of PTP to the range of P is called a 2-dimensional compression of T . In matrix form

Txy =


 εx [Tx, x] εx [Ty, x]

εy [Tx, y] εy [Ty, y]


 , (2)

where x e y are real J-orthonormal column n-tuples, i.e.,

[x, y] = 0, εx = [x, x] = ±1, εy = [y, y] = ±1, Px = x, and Py = y. (3)

Explicitly, we have PTP = Txy ⊕ 0n−2, the zero block of size n− 2.

The following theorem will be applied to the problem of devising an effective procedure for gener-

ating the indefinite numerical range of an arbitrary n× n complex matrix.
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Theorem 3.1 Let T ∈ Mn and J = Ir ⊕−In−r. Then WJ(T ) is the union of all the sets



⋃

x,y∈Rn

[x,x]=[y,y]=1

WJxy (Txy)




⋃



⋃

x,y∈Rn

[x,x]=[y,y]=−1

WJxy (Txy)




⋃



⋃

x,y∈Rn

[x,x]=−[y,y]=1

WJxy (Txy)


 ,

where Txy is the matrix (2), x and y run over all pairs of real J-orthonormal vectors and Jxy =

diag (εx, εy), with εx and εy given by (3).

Proof. Let w = u + iv be a complex vector in which u and v are real n-vectors. Assume that

[w,w] 6= 0, and [Tw, w] / [w, w] ∈ W+
J (T ). (If [Tw,w] / [w, w] ∈ W−

J (T ) a similar treatment holds.)

Thus,

1 = [w,w] = [u, u] + [v, v] . (4)

If v = αu, α ∈ R, then w = u + iαu = (1 + iα)u and so

[Tw, w] = [T |1 + iα|u, |1 + iα|u] . (5)

Since |1+ iα|u is a real J-unit vector, from (5) we infer that [Tw,w] ∈ W+
Jxy

(Txy), where x = |1+ iα|u
and y is chosen to be a real J-unit vector such that [x, y] = 0.

If u and v are linearly independent, then [w,w] = [u, u] + [v, v] 6= 0. Assume that [u, u] 6= 0, and

let

x =
u√
|[u, u]| . (6)

Consider

s = [u, v]u− [u, u]v,

so that [u, s] = 0. Assume that [s, s] = [u, u][u, v]([u, u]− [u, v]) 6= 0 and let

y =
s√
|[s, s]| . (7)

We may write

w = u + iv = αxx + αyy,

where

αx =
√
|[u, u]|

(
1 + i

[u, v]
[u, u]

)
, αy = −i

√
|[s, s]|
[u, u]

.

We obtain

[Tw, w] = αxαx[Tx, x] + αyαy[Ty, y] + αxαy[Tx, y] + αyαx[Ty, x]

= [αx, αy]


εx 0

0 εy





[Tx, x]εx [Ty, x]εx

[Tx, y]εy [Ty, y]εy





αx

αy


 . (8)
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Further,

[w, w] = αxαx[x, x] + αyαy[y, y] = [αx, αy]


εx 0

0 εy





αx

αy


 ,

and we easily find
[Tw, w]
[w,w]

=
[Txyz, z]

[z, z]
, (9)

where z = [αx, αy]T . The equality (9) shows that any element in W+
J (T ) belongs to some WJxy(Txy).

If [s, s] = 0, we perturb w so that [s, s] 6= 0. For this purpose, we consider w′ = u′+ iv′, u′, v′ ∈ R,

such that [u′, u′][u′, v′]([u′, u′] − [u′, v′]) 6= 0 and replace w by wε = εw + (1 − ε)w′. For a sufficiently

small ε, we have

[uε, uε][uε, vε]([uε, uε]− [uε, vε]) 6= 0.

Further, the point generated by wε is in the neighborhood of the point generated by w, and approaches

it as ε → 0.

The reciprocal inclusion is a consequence of the following facts. Any 2-dimensional real J-

orthogonal compression of T is a 2-square principal submatrix of a matrix J-orthogonally similar

to T, and WJ(T ) is invariant under J-orthogonal similarities. Moreover, WJ ′(B) ⊂ WJ(T ) for any

principal submatrix B of T and J ′ a conformally defined principal submatrix if J .

4 Algorithms for plotting WJ(T )

One typical method to generate WJ(T ) consists on the determination of the algebraic curve ∂WJ(T )

(cf. [17]). This method depends on symbolic computations. In [13] and [4] algorithms and computer

programs for plotting the indefinite numerical range have been presented. These methods depend

on numerical computations related with some eigenvalues and eigenvectors of Hθ. In this section we

propose an alternative algorithm that is more efficient than the existing ones in the literature, both in

accuracy and in speed. We remark that our algorithm still behaves well for matrices of large size. Our

approach consists in generating certain subsets of the indefinite numerical range according to Theorem

3.1, and to show that they can fill up its interior getting an accurate approximation. Since WJ(T ) is

very often unbounded, this task may be somewhat difficult.

For the sake of completeness, we survey the approaches in [13] and [4]. Li-Rodman algorithm

exploits the connection between the Krein numerical range of T = ReJT + iImJT and the joint

numerical range of (JReJT, JImJT, J) denoted and defined by

W (JReJT, JImJT, J) = {(〈JReJTv, v〉, 〈JImJTv, v〉, 〈Jv, v〉) ∈ R3 : v ∈ H, 〈v, v〉 = 1}.
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This connection is described by the following result (cf. [13, Proposition 1.1]).

Let T = ReJT + iImJT be an operator acting on H. Then

x + iy ∈ W+
J (T ) ⇔ (x, y, 1) ∈ K(JReJT, JImJT, J),

where K(JReJT, JImJT, J) is the convex cone generated by W (JReJT, JImJT, J).

It is known [1] that W (JReJT, JImJT, J) is always convex for dim H > 2, and is the surface of a

(possibly degenerate) ellipsoid if dim H = 2. The central idea of Li-Rodman algorithm is to compute

the boundary points of the compact set W (JReJT, JImJT, J) in each direction determined by a grid

point on the unit sphere in R3. Then these boundary points are joined to form a polyhedron inside

W (JReJT, JImJT, J). The points (x/z, y/z), where (x, y, z) ∈ W (JReJT, JImJT, J) with z > 0, are

collected and this collection of points provides an approximation for W+
J (T ). Since the computations

(x/z, y/z) are used, and z may be very small, the algorithm is not stable numerically.

The approach in [4] uses the elementary idea that the boundary of WJ(T ) may be obtained by

computing the extreme eigenvalues of ReJ(e−iθT ) in σ+
J (e−iθT ) and in σ−J (e−iθT ) and associated J-

unit eigenvectors x+
θ and x−θ , for θ running over a finite mesh of points of the interval [−π/2, π/2].

The points z+
θ = [Hθx

+
θ , x+

θ ] and z−θ = −[Hθx
−
θ , x−θ ] are boundary points of W+

J (T ) and W−
J (T ),

respectively [2]. As a consequence, the lines L+
θ and L−θ with slope θ and at the distances from the

origin λr (Hθ) and λr+1 (Hθ), respectively, are tangents (not necessarily unique) to the boundaries

of W+
J (T ) and W−

J (T ). Notice that these lines are supporting lines of the convex sets W+
J (T ) and

W−
J (T ), respectively. According to this method, the boundary is approximated by a collection of

points and by the line segments defined by them.

Theorem 3.1 is the key idea we use here to numerically determine WJ(T ) within some prescribed

tolerance tol. The respective MATLAB programs are available at the following website:

http://www.mat.uc.pt/∼bebiano

Before we present the algorithm some considerations are in order.

Let us consider the curves C+
1 , C+

2 , . . . , C+
r (C−

1 , C−
2 , . . . , C−

s ) generated, as described in Theo-

rem 3.1, by vectors with positive norm (negative norm). Let K+ = conv(C+
1 , C+

2 , . . . , C+
r ), K− =

conv(C−
1 , C−

2 , . . . , C−
s ). The pseudo-convex hull of C+

1 , C+
2 , . . . , C+

r , C−
1 , C−

2 , . . . , C−
s , denoted pconv(C+

1 ,

C+
2 , . . . , C+

r , C−
1 , C−

2 , . . . , C−
s ), is the union of all half-rays of the lines passing through z+ ∈ K+,

z− ∈ K− with endpoint in z+ not containing z−, or with endpoint in z− not containing z+.

Suppose T ∈ Mn and a pre-specified level of tolerance tol are given. The tol depends on the machine

precision and how much of the unbounded region one wants to generate. When we are dealing with non-

degenerate numerical ranges, we are interested in finding an interval [θmin, θmax], 0 < θmax−θmin ≤ π,
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such that for θ in that interval the conditions (i), (ii) and (iii) of Section 2 are fulfilled. For commodity,

such a θ will be called an admissible angle. Contrarily, θ is said to be non-admissible.

If we wish to computationally generate the numerical range of an arbitrary matrix T = ReJT +

iImJT , our first task is to test whether the matrix belongs to the class ND. As a preliminary test we

should check whether 0 is in the corresponding joint numerical range W (JReJT, JImJT, J). If this

is the case, WJ(T ) is degenerate (cf. [13, Proposition 2.4]) and T /∈ ND. Indeed, T ∈ ND if and

only if it is not a scalar matrix and 0 /∈ W (JReJT, JImJT, J). If T ∈ ND, we have to search for an

interval [θmin, θmax], 0 < θmax− θmin < π of admissible angles θ. For a real matrix in ND, θ = 0 is an

admissible angle while θ = ±π/2 are non-admissible angles. In general, after a convenient rotation, for

any complex matrix in the class ND, θ = 0 is an admissible angle, while θ = ±π/2 are non-admissible

angles. So we shall restrict our attention to this case.

4.1 Algorithm

Step 0. Search for an admissible angle θ. If the matrix is complex, we test the angle −π/2 for this

property. If the answer is positive, go to Step 1.

If not, bisect the interval [−π/2, π/2]. If θ = 0 is admissible, we proceed to Step 1.

Otherwise, we continue analyzing the angles in the sets

{−pi/4, π/4}, {−3π/8,−π/8, π/8, 3π/8}, {−5π/16,−3π/16,−π/16, 3π/16, 5π/16}, . . . ,

until, for some k, one of the angles θ`,k = −2k−1π/2k +(2`−1)π/2k, ` = 0, 1, . . . , 2k−1, in the set
{

(1− 2k−1)π
2k

,
(3− 2k−1)π

2k
,
(5− 2k−1)π

2k
, . . . ,

(2k−1 − 1)π
2k

}
,

is admissible, and we proceed to Step 1.

Replacing the matrix T by e−iθ`,kT , where θ`,k is admissible for T , then θ = 0 is admissible for

the rotated matrix.

Step 1. Choice of [θmin, θmax] Fix a tolerance tol =π/2N , N ≥ 4. Suppose θ = 0 is an admissible angle.

Construct a set of admissible angles, starting with θ0 = 0, as follows. Bisect successively the

interval [0, π/2]. until we find an admissible angle θ1 = π/2ν1 , the integer ν1 being such that the

angle θ1 +π/2ν1 is non-admissible. Proceed in this way until we find a new admissible angle θ2 =

π/2ν1 + π/2ν1+ν2 , the integer ν2 being such that the angle θ2 + π/2ν1+ν2 is non-admissible, and

so on, until we reach the angle θk = π/2ν1 +π/2ν1+ν2 + · · ·+π/2ν1+ν2+...+νk , which is admissible,

while the angle θk+π/2ν1+ν2+···+νk is non-admissible, being ν1 + ν2 + · · ·+ νk ≤ N. Similarly, we

obtain the admissible angles θ̄1 = −π/2ν̄1 ,θ̄2 = −π/2ν̄1−π/2ν̄1+ν̄2 , . . ., θ̄` = −π/2ν̄1−π/2ν̄1+ν̄2−
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· · · − π/2ν̄1+ν̄2+···+ν̄` . If the matrix is real, it is obvious that θ̄j = −θj , j = 1, · · · k. The required

interval of admissible angles is [θmin, θmax] = [θ̄`, θk], and continue.

Step 2. Set θk = θmin + (k − 1)(θmax − θmin)/m, k = 1, . . . , m + 1 for some positive integer m ≥ 3. For

each θk, construct the J-Hermitian matrix ReJ
(
e−iθkT

)
and compute its eigenvalues.

Step 3. Starting with k = 1, up to k = m + 1, take the following steps:

(i) Compute eigenvectors uk and vk associated, respectively, to the largest eigenvalue in σ−J
(
ReJ

(
e−iθkT

))

and to the smallest eigenvalue in σ+
J

(
ReJ

(
e−iθkT

))
.

(ii) Compute the J-compression of T to the subspace span{uk, vk}, Tũk ṽk
.

(iii) Compute the boundary of WJũkṽk
(Tũk ṽk

), Γk.

(iv) If k < m + 1, take the next k value and return to (i). Otherwise, continue.

Step 4. Plot, separately, the convex-hulls of the positive and of the negative branches of the collection

of hyperbolas Γ1, . . . , Γm, taking care, for each hyperbola, which branch is in W+
J (T ) and in

W−
J (T ). Then take their pseudo convex hull, as an approximation for WJ(T ). If there are

common tangents to the boundaries of both convex-hulls, then ∂WJ(T ) will have flat portions

at infinity.

This algorithm may not be efficient when the numerical ranges of the compressed matrices degen-

erate into line segments or half-rays. This is the case when T is a direct sum of blocks. This suggests a

modified algorithm in which the choice of generating vectors for boundary points is more convenient.

The Steps from 0′ to 2′ are as in the previous algorithm.

Step 3′. Compute eigenvectors u1 and v1 associated, respectively, to the largest eigenvalue in

σ−J
(
ReJ

(
e−iθ1T

))
and to the smallest eigenvalue in σ+

J

(
ReJ

(
e−iθ1T

))
.

Step 4′. Starting with k = 2 and up to k = m + 1, take the following steps:

(i) Compute eigenvectors uk and vk associated, respectively, to the largest eigenvalue in

σ−J
(
ReJ

(
e−iθkT

))
and to the smallest eigenvalue in σ+

J

(
ReJ

(
e−iθkT

))
.

(ii) Compute the J-compressions of T to the subspaces span{uk, uk−1} and span{vk, vk−1},
respectively Tũkũk−1

and Tṽkṽk−1
.

(iii) Compute and draw the boundaries of WJũkũk−1
(Tũkũk−1

) and of WJṽkṽk−1
(Tṽkṽk−1

), respec-

tively Γk and Λk.

(iv) If k < m + 1, take next k value and return to (i). Otherwise, continue.
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Step 5′. Take the following steps.

(i) Compute the J-compressions of T to the subspaces span{u1, v1} and span{vm+1, um+1},
respectively Tũ1ṽ1 and Tṽm+1ũm+1 .

(ii) Compute the boundaries of WJṽ1ũ1
(Tṽ1ũ1) and WJũm+1ṽm+1

(Tũm+1ṽm+1), respectively Γm+2

and Λm+2.

Step 6′. Take the convex-hulls of the positive and the negative branches of the collection of conics

Γ1,Γ2, . . . , Γm+2, Λ1, Λ2, . . . , Λm+2. Then take their pseudo-convex hull as an approximation

for W±
J (T ). If there are common tangents to the boundaries of both convex-hulls, then ∂WJ(T )

will have flat portions at infinity.

Remark 4.1 If a flat portion exists in the boundary of WJ(T ), then ReJ(e−iθT ) has multiple eigen-

values for some θ. If such a direction is found, then the associated flat portion may be easily produced.

For instance, suppose that ReJT has a multiple eigenvalue in the situation of Step 4(i). Let ua, ub be

linearly independent eigenvectors associated with it. Take u(α) = ua + αub with α real and compute

the extreme values of [ImJTu(α), u(α)]/[u(α), u(α)]. The flat portion is so produced.

Remark 4.2 If there is a corner in ∂W+
J (T ) (or ∂W−

J (T )), then it may happen that the vectors

uk, uk+1, . . . , uk+l are pairwise linearly dependent. If that happens, the conics associated with the (one-

dimensional) spaces span{uk, uk+1}, . . . , span{uk+l−1, uk+l} (or span{vk, vk+1}, . . . , span{vk+l−1, vk+l})
degenerate trivially into the point [uk, uk] ([vk, vk]), which is easily found.

5 Discussion and examples

We have judiciously chosen optimal compressions, instead of considering randomly generated com-

pression vectors. We observe that, in general, the modified algorithm of Section 4 provides a much

better accuracy than the preliminary algorithm in the approximation of WJ(T ). Remarkably, both

behave especially well when compared with the one in [4], which merely provides a polygonal approxi-

mation of WJ(T ), and so it requires a much bigger mesh to reach a convenient accuracy. The algorithm

of Section 4.1 provides branches of hyperbolas whose convex-hull should be determined. Henceforth,

small flat portions may arise when joining consecutive branches of hyperbolas. In the modified algo-

rithm, the interpolation between consecutive boundary points is made by arcs of ellipses, so spurious

flat portions do not in general arise. In the event the boundary of WJ(T ) has “flat” portions but it

is not polygonal, the algorithms work well (cf. Examples 5.2 and 5.3), and are also efficient in the

extreme case of a polygonal boundary. We recall that the computational cost for determining WJ(T )
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by approximating its boundary curve ∂WJ(T ) by eigenvalues and eigenvectors evaluations requires

O(n3) operations per point, while finding 2 by 2 compressions for T is an O(n2) process. Finally we

notice that the algorithms apply on the definite case J = I.
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Figure 1: WJ(T ) for Example 5.1

Example 5.1 We illustrate in Figure 1, the indefinite numerical range of a pentadiagonal matrix of

order 50 with main diagonal −1, 2,−1, 2, . . ., first super diagonal 1,−1, 1,−1, . . ., and first and second

subdiagonals 1, 0, 1, 0, . . . and 0, 1, 0, 1, . . ., respectively. We considered m = 15 and took θmax =

−θmin = 0.4172. The computation was done with MATLAB R2012b on a OpenSUSE Linux 12.2

computer equiped with Intel(R) Xeon(R) E5520 (2.26 GHz, quad core) and 48 GB of RAM.

To compare the accuracy of numerical ranges plotters we use the idea in [18], via their enclosed

partial areas, namely, the areas determined by a line through the points x = −6 and x = 6 and ∂WJ(T ).

When comparing the effort to achieve several accurate leading digits for the searched partial areas, we

may conclude that our 2 by 2 compressions matrix algorithm is faster and more accurate than the

algorithms in [4] and [13]. As the table shows, our algorithm achieves a more quickly stabilization

than the others.
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Algorithm m Seconds Eigenanalyses Area

Present algorithm 7 0.883730 24 149.2469

14 1.062783 31 149.3682

28 1.255899 45 149.4168

Algorithm from [13] 7 1.204616 812 147.7302

14 3.531369 3192 149.0175

28 14.676580 12656 149.3215

Algorithm from [4] 7 0.941884 42 133.2116

14 2.356972 84 136.6461

28 8.335534 168 142.5310

Table 1: Performance of algorithms from [14], [4] and the present one.

Example 5.2 Figure 2 refers to WJ(T ), with

T =




i 0 1
2

0 0 1
2

1
2

1
2 −√2


 , J = diag (1, 1,−1),

being m = 3, θmin = −0.5400, θmax = 0.8345,

Example 5.3 Figure 3 refers to WJ(T ), with

T =




2 + i 0 −1 0 0 0

0 −2 0 −1 0 0

2 0 2 + i 0 −1 0

0 2 0 −2 0 −1

0 0 2 0 2 + i 0

0 0 0 2 0 −2




, J = diag (1,−1, 1,−1, 1,−1),

being m = 3, θmax = 0.8647, θmin = −0.6122. The tolerance in Step 1 of the algorithm was fixed

taking N = 15. Notice that there exists a permutation matrix P such that T = P (T1 ⊕ T2)P−1, J =

P (I3 ⊕−I3)P−1 and that θmax, θmin give the directions of the flat portions extending to infinity.

6 Concluding remarks

We have approximated Krein space numerical ranges by compression methods, in particular we

have developed the Marcus-Pesce process [16]. To this end, we have judiciously generated 2 by 2
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Figure 2: WJ(T ) for Example 5.2

matrix compressions, and their easily determined elliptical and hyperbolical numerical ranges. Our

approach is essentially the standard one for Hilbert space numerical ranges [18], except that here

anisotropic vectors (i.e, vectors with vanishing norm) can occur, and the inner product defined by the

identity matrix In in Hilbert spaces becomes now indefinite, and defined by the involution J . Pairs

of vectors u and v with u∗Ju× v∗Jv > 0 behave as in the definite case providing elliptical numerical

ranges, while those with u∗Ju × v∗Jv < 0 originate hyperbolical numerical ranges for the boundary

curve approximations.

We emphasize that the presented algorithm plays a crucial role in obtaining solution vectors for

the inverse indefinite numerical range problem, namely in the case of large dimension matrices and

given points near to the boundary (see [7]).
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Basel-Boston, 1983.

[11] R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press, New York, 1985.

[12] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis. Cambridge University Press, Cam-

bridge, 1991.

[13] C.-K. Li and L. Rodman, Shapes and computer generation of numerical ranges of Krein space

operators. Electron. J. Linear Algebra, 3 (1998) 31–47.

[14] C.-K. Li and L. Rodman, Remarks on numerical ranges of operators in spaces with an indefinite

metric, Proc. Amer. Math. Soc. 126 No. 4, (1998) 973–982.

[15] C.-K. Li, N.K. Tsing and F. Uhlig. Numerical ranges of an operator on an indefinite inner

product space. Electron. J. Linear Algebra 1 (1996) 1–17.

[16] M. Marcus and C. Pesce, Computer generated numerical ranges and some resulting theorems.

Linear Multilinear Algebra, 20 (1987), 121–157.

[17] P.J. Psarrakos, Numerical range of linear pencils, Linear Algebra Appl. 317 (2000) 127-141.

[18] F. Uhlig, Faster and more accurate computation of the field of values for n by n matrices,

Linear and Multilinear Algebra (2013) DOI: 10.1080/03081087.2013.779269.

15


