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Abstract We propose efficient methods for the numerical approximation of the field
of values of the linear pencil A−λB, when one of the matrix coefficients A or B is
Hermitian and λ ∈ �. Our approach builds on the fact that the field of values can
be reduced under compressions to the bidimensional case, for which these sets can
be exactly determined. The presented algorithms hold for matrices both of small
and large size. Furthermore, we investigate spectral inclusion regions for the pencil
based on certain fields of values. The results are illustrated by numerical examples.
We point out that the given procedures complement the known ones in the literature.

1 Introduction

Consider the linear pencil A−λB, where A and B are n× n complex matrices and
λ ∈ �. The study of linear pencils has a rich and long history that goes back to
Weierstrass and Kronecker in the nineteenth century, usually in the context of their
spectral analysis. A complex number λ is said to be an eigenvalue of the pencil if
there exists a nonzero x ∈�n such that
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Ax = λBx. (1)

The vector x is called an eigenvector of the pencil corresponding to the eigenvalue
λ . The set of all eigenvalues is known as the spectrum of A−λB and denoted by
σ(A,B).

In the present work we are particularly interested in the numerical computation
of certain fields of values, that are spectral inclusion regions for linear pencils. Mo-
tivations to investigate this problem come from stability theory and from the study
of certain over-damped vibration systems, e.g. see [7].

The field of values of a linear pencil is denoted and defined as

W (A,B) = {λ ∈� : x∗(A−λB)x= 0, x ∈�n, ‖x‖= 1}, (2)

where ‖x‖= 〈x,x〉1/2 =(x∗x)1/2 is the usual Euclidean norm in�n (cf. [10, 14, 12]).
The set (2) does not contain the point at infinity. If B is singular, then σ(A,B) may
have an infinite eigenvalue. Therefore, from the above definition, W (A,B) is not
necessarily a spectral inclusion region for the generalized eigenvalue problem (1).
So, we consider a slightly modified definition: if A,B have a common null space,
then W (A,B) =�∪{∞}; otherwise

W (A,B) =

{
x∗Ax
x∗Bx

: x �= 0

}
, (3)

where 1/0 is understood as the point at infinity. When B = I, (3) reduces to the
classical field of values of the n× n matrix A,

W (A) = {x∗Ax : ‖x‖= 1},

that has been extensively investigated; see, for instance, [8].
Psarrakos [14] investigated the problem of the numerical computation of W (A,B),

when one of the coefficients A or B is Hermitian. His approach uses the algorithm
of Li and Rodman [11] to compute boundary points (u,v,w) of the so-called joint
numerical range

JNR(B,H,S) = {(x∗Bx,x∗Hx,x∗Sx) : x ∈�n, with x∗x = 1},

where A=H+ iS and H and S are Hermitian. Given a point (u,v,w) of JNR(B,H,S)
the solutions of the equations uλ + v+ iw = 0, (u �= 0) are points of W (A,B). Psar-
rakos method performs specially well for matrices of small size. So, for large ma-
trices, there is place for improvement and this is one of our main concerns. Our se-
cond goal is to obtain eigenvalue inclusion regions for linear matrix pencils, based
on fields of values.

If B is Hermitian positive definite (HPD), we clearly have W (A,B) =
W (B−1/2AB−1/2) and due to the convexity of the classical field of values (stated by
the Toeplitz-Hausdorff Theorem [6]), W (A,B) is a convex set. However, W (A,B)
is not always convex and not even bounded or connected [10]. If 0 ∈ W (B), then
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W (A,B) is unbounded and consequently this set is not an informative spectral inclu-
sion region for the pencil. This motivated the investigation of other inclusion regions
of field of values type. If B is nonsingular, the spectrum of B−1A coincides with that
of the pencil A−λB. Henceforth, W (B−1A) and W (AB−1) are inclusion regions for
the eigenvalues of (1). Interchanging the roles of A and B and considering the ge-
neralized eigenvalue problem Bx = λ −1Ax, the sets 1/W(A−1B) and 1/W (BA−1),
for nonsingular A, are also inclusion regions for (1). Division is interpreted elemen-
twise.

The paper is organized as follows. In Sect. 2 we characterize the field of val-
ues of selfadjoint linear pencils, i.e., with Hermitian matrices as coefficients. In
Sect. 3, auxiliary background is presented. In Sect. 4 we give a method to approx-
imate W (A,B) for Hermitian positive semi-definite B. In Sect. 5, a procedure to
numerically approximate W (A,B) for indefinite invertible B is presented, based on
the connection of this set with the Krein space field of values. Finally, in Sect. 6,
some some conclusions are included. A few illustrative examples are provided. All
images were computed numerically using MATLAB.

The key idea behind the algorithms here proposed is the following: we use sub-
space projection methods, a line of attack exploited by Hochstenbach in [7], stres-
sing the fact that the field of values is often well approximated from a low dimension
Krylov space. Our attempts are in this vein, and in summary, their advantages over
the existing ones are that we perform projections on bidimensional spaces, in which
case the fields of values are easily and exactly determined.

2 Linear pencils with Hermitian coefficients

In the sequel, Mn denotes the algebra of n× n complex matrices. Throughout, we
assume that the matrices A and B have no common nonzero isotropic vectors, i.e.,
x∗Ax = 0 and x∗Bx = 0, and so W (A,B) �=�.

The shape of W (A,B) when A and B are Hermitian is described in Theorem 4.1 of
[10]. Since the statement of this theorem is not correct, and is incorrectly reproduced
in [14, Theorem 9], we include the proper result and proof.

Theorem 1. Let A−λB be a n× n self-adjoint pencil with W (A,B) �=�.
a) If B is positive or negative definite, then W (A,B) is a closed interval in �.
b) If B is positive (or negative) semi-definite, then 2 possibilities occur for W (A,B):

1) an unbounded interval of the form [a,+∞[ or ]−∞,a].
2) �.

c) If B is indefinite and A is positive (negative) definite, then W (A,B) is the union of
2 disjoint unbounded intervals and 0 /∈W (A,B).

d) If B is indefinite and A is semi-definite positive (or negative), then one of the
following holds

1) W (A,B) =�,
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2) W (A,B) =]−∞,a]∪ [0,+∞[ with a < 0,
3) W (A,B) =]−∞,0]∪ [b,+∞[ with 0 < b.

e) If both B and A are indefinite, then two possibilities may occur:

1) W (A,B) =]−∞,a]∪ [b,+∞[, with 0 ∈W (A,B).
2) W (A,B) =�.

In all cases, the endpoints of the intervals are eigenvalues of the pencil.

Proof. a) Observing that W (A,B) = W (B−1/2AB−1/2), the result follows, because
the classical field of values of a Hermitian matrix is a line segment whose endpoints
are eigenvalues of the matrix (cf. [6]).

b) There exists a nonsingular matrix T =U ⊕V, U ∈ Mr,V ∈ Mn−r, such that

T ∗BT = Ir ⊕ 0n−r, T ∗AT =

[
A11 A12

A21 A22

]
, (4)

where
A11 = diag(α1, . . . ,αr), A22 = diag(αr+1, . . . ,αn). (5)

Since W ((T ∗AT,T ∗BT )) =W (A,B), without loss of generality we may assume that
T = In.

Now, firstly, we prove 1). Let us assume that A22 is positive (negative) definite.
Denote by e j the vector obtained from the null vector by replacing the ith zero by 1.
Let β be the smallest (largest) eigenvalue of the pencil A−λB, and u an associated
eigenvector. Notice that, for v = u+ γer+1, γ ∈�, we have

v∗Av
v∗Bv

= β + |γ|2 αr+1

v∗Bv
.

Then, {
v∗Av
v∗Bv

: v = u+ γer+1,γ ∈�,v∗Bv �= 0

}
= [β ,+∞[ ,

and 1) follows. If A22 and B are both negative definite, the same conclusion holds.
Otherwise, W (A,B) = ]−∞,β ].

Consider now that A22 is indefinite, either nonsingular or singular. If A22 is in-
definite nonsingular, assume that αr+1αr+2 < 0 and take the compressions of the
pencil to the subspaces spanned by e1,er+1 and by e1,er+2, respectively:

(A−λB)e1er+1 =

[
α1 −λ a1,r+1

ar+1,1 αr+1

]
, (A−λB)e1er+2 =

[
α1 −λ a1,r+2

ar+2,1 αr+2

]
.

It is clear that

W
(
Ae1er+1 ,Be1er+1

)∪W
(
Ae1er+2 ,Be1er+2

)
=�.

If A22 is singular, assume that αr+1 = 0. Since the matrices A and B have no common
nonzero isotropic vectors, then a j,r+1 �= 0, 1 ≤ j ≤ r. Assume that ar+1,1 �= 0 and
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take the compression of the pencil to the subspace spanned by e 1,er+1,

(A−λB)e1er+1 =

[
α1 −λ a1,r+1

ar+1,1 0

]
.

It is easy to verify that
W

(
(A,B)e1er+1

)
=�,

which proves b)2).
Similarly, we prove c), d), e). ��
We notice that the half ray in b)1) is of the form [a,+∞) if B and A 22 in (5)

are both positive definite or negative definite. Otherwise, the half ray is of the form
(−∞,a].

3 Background

The classical field of values may be characterized as a union of elliptical disks. This
result is many times referred as the Marcus-Pesce Theorem [13], although it was
already known long before. In the following, we recall the standard compression of
W (A,B) into the fields of values of 2× 2 pencils [4].

Theorem 2. (Chien and Nakazato) For any A,B ∈ Mn,

W (A,B) =
⋃
u,v

W (Auv,Buv),

where u and v vary over all pairs of orthonormal vectors in�n and

Auv =

[ 〈Au,u〉 〈Av,u〉
〈Au,v〉 〈Av,v〉

]
, Buv =

[ 〈Bu,u〉 〈Bv,u〉
〈Bu,v〉 〈Bv,v〉

]
. (6)

When B is Hermitian positive definite, then also Buv is Hermitian positive de-
finite, because it is a principal submatrix of a positive definite matrix. The field
of values W (A,B) in the 2 by 2 case, can be easily drawn from the entries of the
matrices according to (for a proof, see e.g. [8]):

Theorem 3. (Elliptical Range Theorem) Let A,B ∈ M2, with Hermitian positive de-
finite B. Then W (A,B) is a (possibly degenerate) closed elliptical disc, whose foci
are the eigenvalues of B−1A, λ1 and λ2. The equation of the ellipse is

X2

M2 +
Y 2

N2 =
1
4

where

X = (x−Re c)cosγ − (y− Im c)sinγ, Y = (x−Re c) sinγ +(y− Im c)cosγ,
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c = (λ1 +λ2)/2 is the center of the ellipse, and γ is the slope of the major

axis. The length of the major axis is M =

√
Tr (A∗B−1AB−1)− 2Re(λ 1λ2), and

N =
√

Tr (A∗B−1AB−1)−|λ1|2 −|λ2|2. is the length of the minor axis.

If B is indefinite Hermitian, then Buv in (6) may be definite or indefinite. The
following result treats this case [1].

Theorem 4. (Hyperbolical Range Theorem) Let A,B ∈ M2 with B indefinite Hermi-
tian. ThenW (A,B) is bounded by a hyperbola with foci at λ 1 and λ2, the eigenvalues
of B−1A, and transverse and non-transverse axis of length

M =

√
Tr(B−1A∗B−1A)− 2Re(λ1λ 2) and N =

√
|λ1|2 + |λ2|2 −Tr(B−1A∗B−1A).

Consider W (A,B) for A,B ∈ M2, with B positive (negative) semidefinite. Observing
that

W (eiφ (A+ ζB),kB) =
1
k

eiφ (W (A,B)+ ζ ), k,φ ∈�, ζ ∈�,
without loss of generality, we can take

B = diag(1,0), A =

[
aeiγ ceiγ

d b

]
, c,d ≥ 0,b > 0,a =

cd
b
. (7)

Notice that W (A,B) =� if b = 0.

Theorem 5. (Parabolical Range Theorem) Let A,B ∈ M2 be of the form (7). Then
W (A,B) is bounded by the (possibly degenerate) parabola with focus λ 0 = 0 and
equation

y2

4p2 − x
p
= 1,

where

p =
a2b2 + c4 − 2abc2 cosγ

4bc2 .

Proof. By Theorem 1.4 i) and ii) of [4], W (A,B) is unbounded convex. Let a sup-
porting line of W (A,B) be given by xcosθ + ysinθ + w = 0. Writing
A = H(A)+ iK(A), with H(A) = (A+A∗)/2 and K(A) = (A−A∗)/(2i), Kippen-
han’s Theorem [9] asserts that det(cosθH(A)+ sinθK(A)+wB) = 0. We find

det(cosθ H(A)+ sinθ K(A)+wB) =
1
4

(
−a2b2

c2 − c2 + 2abcosγ + 4bwcosθ
)
,

with θ ∈ [0,2π [. Replacing w by the root of the above characteristic polynomial, we
get

xcosθ + ysinθ +
1
4

(
a2b
c2 +

c2

b
− 2acosγ

)
secθ = 0.

The parametric equations of the envelope of this family of lines are given by
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x =
2abc2 cosγ − a2b2 − c4

4bc2 cos(2θ )sec2 θ

y =
2abc2 cosγ − a2b2 − c4

2bc2 tanθ ,

from which the desired result follows. ��

3.1 Connection of W (A,B) with the Krein space field of values for
indefinite Hermitian B

There is an interesting relation of W (A,B) when B is indefinite Hermitian, with
the Krein space field of values [2, 3]. Indeed, suppose that B is an n× n indefinite
Hermitian matrix with inertia (r,n− r). Consider�n endowed with indefinite inner
product [x,y] = y∗Bx, x,y∈�n. The Krein space field of values of A∈Mn is defined
by

WB(A) =

{
[Aw,w]
[w,w]

: w ∈�n, [w,w] �= 0

}
.

We easily find the connection of WB(A) with the field of values of the pencil
BA−λB. Indeed, we easily get

WB(A) =W (BA,B) =

{ 〈BAw,w〉
〈Bw,w〉 : w ∈�n, 〈Bw,w〉 �= 0

}
,

and so, W (A,B) =WB(B−1A).

4 Approximation of W (A,B) for positive semidefinite B

4.1 Algorithm 1. Approximation of W (A,B), B HPSD

Input: A matrix A ∈ Mn, a Hermitian positive semidefinite matrix B and m angles.
Output: An approximation for W (A,B).

1. Set θk = (k− 1)π/m, k = 1, . . . ,m+ 1 for some positive integer m ≥ 3.
2. Starting with k = 1 and up to k = m, take the following steps:

(i) Compute an eigenvector uk associated to λmin(ℜ
(
e−iθkA

) − λB) if
W (ℜ

(
e−iθkA

)
,B) = [a,+∞[ ( to λmax(ℜ

(
e−iθkA

)−λB) if W (ℜ
(
e−iθkA

)
,B)

=]−∞,a]).
(ii) Compute the compressions of A and B to span{uk,uk+1}, denoted by Aũkũk+1

and Bũkũk+1 .
(iii) Compute and draw the boundary of W (Aũkũk+1 ,Bũkũk+1) denoted by Γk.
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(iv) If k < m, take next k value and return to (i). Otherwise, continue.

3. Take the convex-hull of the collection of curves Γ1, . . . ,Γm, as an approximation
for W (A,B).

Some observations are in order. According to the Elliptical and the Parabolical
Range Theorems, the collection of curves in Step 3 of Algorithm 1 is constituted by
ellipses and parabolas. We observe that, if the smallest and the largest eigenvalues
of the pencil ℜ

(
e−iθkA

)− λB are both infinite, then W (ℜ
(
e−iθkA

)
,B) = � (cf.

Theorem 1). Algorithm 1 may be applied to B HPD with the following replacements
of Sub-steps (i), (ii), (iii) of Step 2:

(i) Compute eigenvectors uk (or vk) associated to λmin(ℜ
(
e−iθkA

) − λB)
(λmax(ℜ

(
e−iθkA

)−λB))
(ii) Compute the compressions of A to span{uk,uk+1} and span{vk,vk−1}, denoted

Aũkũk+1 and Aṽkṽk−1 , and do the sane for B, notation: Bũkũk+1 and Bṽkṽk−1 .
(iii) Compute and draw the boundary of W (Aũkũk+1 ,Bũkũk+1) denoted by Γk and the

boundary of W (Aṽkṽk−1 ,Bṽkṽk−1) denoted by Λk.

and the following replacement of Step 3:
3. Take the convex-hull of the collection of curves Γ1, . . . ,Γm,Λ1, . . . ,Λm as an

approximation for W (A,B).

Example 1. We take the matrix A = C1 ⊕ iC2 and the positive definite matrix
B = I20 + 0.1DD∗, with C1 = randn(10), C2 = randn(10), D = randn(20) with
m = 6. See Fig. 1. The Zoom shows that the bounded complements of 1/W(A−1B)
and 1/W(BA−1) are spectral exclusion regions for the eigenvalues of the pencil.
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(a) A =C1 ⊕ iC2, B = I20 +0.1DD∗.
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(b) Zoom-in of (a)

Fig. 1 (a) Eigenvalues of A−λB (asterisks) and the boundaries of W (A,B), W(B−1A), W (AB−1),
1/W (AB−1), 1/W (B−1A), for Example 1, m = 6. (b) Exclusion regions for the eigenvalues of the
pencil, 1/W (AB−1), 1/W (B−1A).

Example 2. We take the matrix A = randn(20), and the positive semidefinite ma-
trix B = I19 ⊕ 01. We carry out Algorithm 1 with m = 6. Considered as a spectral
inclusion region, W (A,B) has drawbacks since it is unbounded. See Fig. 2.
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Fig. 2 Eigenvalues of A− λB (asterisks) and part of the boundary of W (A,B). Here, B is PSD.
(Example 2).

5 Approximation of W (A,B) for indefinite Hermitian B

Recall that we are assuming that the matrices A and B have no common nonzero
isotropic vectors, and x∗Bx = 0, and so W (A,B) �=�. We may define

W+(A,B) = {λ ∈� : u∗Au−λu∗Bu = 0, u ∈�n, u∗Bu > 0},

W−(A,B) = {λ ∈� : u∗Au−λu∗Bu = 0, u ∈�n, u∗Bu < 0},
and so W (A,B) =W+(A,B)∪W−(A,B). We also define, if A is Hermitian,

σ+(A,B) = {λ ∈� : Au−λBu= 0, u ∈�n, u∗Bu > 0},

σ−(A,B) = {λ ∈� : Au−λBu= 0, u ∈�n, u∗Bu < 0}.
To avoid trivial cases of degeneracy of W (A,B), we shall be specially concerned
with the class of matrices in Mn, for which there exists a real interval [θ1,θ2], with
0 < θ2 −θ1<π , such that for θ ranging over that interval, the Hermitian pencil

H(e−iθ A)−λB, (8)

has real eigenvalues satisfying simultaneously the following conditions:

(i) λ1(H(e−iθ A)−λB)≥ ·· · ≥ λr(H(e−iθ A)−λB)∈ σ+(H(e−iθ A),B);
(ii) λr+1(H(e−iθ A)−λB)≥ ·· · ≥ λn(H(e−iθ A)−λB) ∈ σ−(H(e−iθ A),B);

(iii) λr(H(e−iθ A)−λB)> λr+1(H(e−iθ A)−λB).
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For the pencils of this class, W (H(e−iθ A),B) is non-degenerate, that is, it is not
a singleton, a whole line (possibly without a point), or the whole complex plane
(possibly without a line). This class of pencils is called class N D , the acronym for
non-degenerate.

When B is indefinite Hermitian nonsingular, Buv may be indefinite or defi-
nite. If Buv is indefinite, Theorem 4 holds and ∂W (Auv,Buv), the boundary of
W (Auv,Buv), is the union of two hyperbolical arcs, one in W+(Auv,Buv) and the
other in W−(Auv,Buv). If Buv is definite, ∂W (Auv,Buv) may be in W+(A,B) or
in W−(A,B). Let the curves C+

1 ,C+
2 , . . . ,C+

r (C−
1 ,C

−
2 , . . . ,C−

s ) denote the arcs of
∂W (Auv,Buv) in W+(A,B) (W−(A,B)). Let K+ = conv(C+

1 ,C+
2 , . . . ,C+

r ), K− =
conv(C−

1 ,C−
2 , . . . ,C−

s ). The pseudo-convex hull of C+
1 ,C+

2 , . . . ,C+
r , C−

1 ,C−
2 , . . . ,C−

s ,
denoted pconv(C+

1 , C+
2 , . . . ,C+

r ,C−
1 ,C−

2 , . . . ,C−
s ), is the union of all half-rays of the

lines passing through z+ ∈ K+, z− ∈ K− with endpoint in z+ not containing z−, or
with endpoint in z− not containing z+.

As a preliminary stage to Algorithm 2, we start by searching an admissible angle
θ . If the matrix is complex, we test the angle −π/2 for this property. If the answer is
positive, we go to Step 0. If not, we test the admissibility of θ = 0. In the affirmative
case, we proceed to Step 0. Otherwise, test the admissibility of the angles

θ�,k =−2k−1π/2k +(2�− 1)π/2k, �= 0,1, . . . ,2k−1,

until an admissible angle is found, and then we proceed to Step 0. It is worth noti-
cing that replacing the matrix A by e−iθ�,kA, where θ�,k is admissible for the pencil
H(A)−λB , then θ = 0 is admissible for the rotated pencil

H(e−iθ�,kA)−λB

Step 0. Choice of [θmin,θmax] Fix a tolerance tol =π/2N , N ≥ 4 and let θ = 0 be
an admissible angle. Starting with θ0 = 0, construct a set of admissible angles, as
follows. Bisect successively the interval [0,π/2] until we find an admissible angle
θ1 = π/2ν1 , the integer ν1 being such that the angle θ1 +π/2ν1 is non-admissible.
Proceed in this way until we find a new admissible angle θ2 = π/2ν1 +π/2ν1+ν2 , the
integer ν2 being such that the angle θ2 +π/2ν1+ν2 is non-admissible, and so on, un-
til we reach the admissible angle θk = π/2ν1 + π/2ν1+ν2 + · · ·+ π/2ν1+ν2+...+νk ,
such that θk + π/2ν1+ν2+···+νk is non-admissible, being ν1 +ν2 + · · ·+νk ≤ N.
The admissible angles θ̄1 = −π/2ν̄1,θ̄2 = −π/2ν̄1 −π/2ν̄1+ν̄2 , . . ., θ̄� = −π/2ν̄1 −
π/2ν̄1+ν̄2 − ·· · − π/2ν̄1+ν̄2+···+ν̄� are analogously obtained. If the matrix is real,
we obviously have θ̄ j = −θ j, j = 1, · · ·k. The interval of admissible angles is
[θmin,θmax] = [θ̄�,θk].
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5.1 Algorithm 2. Approximation of W (A,B), for indefinite
Hermitian B

Input: A matrix A∈Mn, an indefinite Hermitian nonsingular matrix B and m angles.
Output: An approximation for W (A,B).

1. Set θk = θmin +
k−1
m (θmax − θmin), k = 1, . . . ,m + 1 for some positive integer

m ≥ 3.
2. Starting with k = 1 and up to k = m, take the following steps:

(i) Compute eigenvectors uk and vk associated, respectively, to

λmax(H(e−iθ A)−λB)∈ σ−(ℜ(e−iθk A),B)

and
λmin(H(e−iθ A)−λB) ∈ σ+(ℜ(e−iθk A),B).

(ii) Compute the compressions of A and B to span{uk,uk+1} and span{vk,vk+1},
Aũkũk+1 , Aṽkṽk+1 , Bũkũk+1 and Bṽkṽk+1 , respectively.

(iii) Compute and draw ∂W (Aũkũk+1 ,Bũkũk+1) and ∂W (Aṽk ṽk+1 ,Bṽkṽk+1), denoted by
Γk and Λk, respectively.

(iv) If k < m, take next k value and return to (i). Otherwise, continue.

3. Take the pseudo-convex-hull of the collection of curves Γ1, . . . ,Γm,Λ1, . . . ,Λm as
an approximation for W (A,B).

We now present an illustrative example.

Example 3. The fields of values W (A,B) and W (B−1A), where A= randn(20)+7I20

and B = I10 ⊕−I10, have been obtained using Algorithm 2 and are plotted in Fig. 3.
We have used θmax = −θmin = 0.5915413 and m = 6. To compare, in accuracy,
Algorithm 2 with Psarrakos Algorithm, we have computed the area of the domain
bounded by the obtained approximation of ∂W (A,B) and by the lines parallel to the
imaginary axis with abscissas x = 8 and x = −8. We have also considered higher
values of m in order to improve the accuracy. As Table 1 shows, Algorithm 2 requires
much fewer eigenanalyses and reaches faster a given number of accurate digits.

6 Conclusions

We have given procedures to numerically approximate W (A,B), of which at least
one of the two matrices is Hermitian. In our approach we used the key fact that the
field of values of a linear pencil is efficiently approximated by the compression into
bidimensional linear pencils. Our algorithms compute the extreme eigenvalues of a
small number of rotated pencils H(e−iθ jA)−λB together with the respective eigen-
vectors u j. In a second stage compression matrices of size 2 for the span{u j,u j+1}
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Fig. 3 Field of values W (A,B), eigenvalues of the pencil (asterisks), boundaries of W (B−1A)
(green) and of 1/W (B−1A) (blue) for A = randn(20)+7I20 , B = I10 ⊕−I10 m = 6.

Table 1 Performance of Algorithm 2 and Psarrakos Algorithm [14], for the matrix of Example 3.
The computed area is the one of the domain bounded by the approximation of ∂W (A,B) and by
the vertical lines x =−8 and x = 8.

m eigenanalyses area acc. digits seconds

Algorithm 2 6 24 160.7854 2 0.121777
12 30 161.5071 3 0.230439
24 42 161.6953 3 0.322045
48 66 161.7327 5 0.494298
96 114 161.7378 5 1.082117

192 210 161.7391 6 2.783337
Psarrakos Algorithm 6 602 159.2174 1 0.387542

12 2354 160.6860 2 0.731580
24 9314 161.5101 3 1.967806
48 37058 161.6773 3 7.043684
96 147842 161.7255 4 27.077536

192 590594 161.7368 5 111.270553

for each j = 2, . . . ,m are constructed. Elliptical and hyperbolical arcs generated from
the compression matrices provide a quick and quite accurate approximation of the
searched boundaries. Evaluating eigenvalues and eigenvectors involves O(n 3) ope-
rations for n sized matrices. Performing 2-by-2 compressions is an O(n 2) process
and determining ellipses, parabolas or hyperbolas by using Theorems 3, 4, 5 takes
almost no time. Variations in relative speed and accuracy occur for varying dimen-
sions, varying matrices and obviously changing the prescribed degree of accuracy.
The preliminary stages for Algorithm 2 take negligible time. We stress that the pro-
posed algorithms hold for both matrices of small and large dimensions. Psarrakos
method [14] can be used for pairs of matrices of small dimension but it appears not
to be interesting for large sized matrices. In fact, his method uses a discretization
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of the unit sphere in �3 and for each grid point a maximum eigenvalue of a certain
associated Hermitian matrix has to be computed. Hochstenbach’s Algorithm [7] ap-
plies only for Hermitian positive definite matrices B (or any HPD linear combination
of A and B). We have also focused on spectral inclusion regions for matrix pencils
based on fields of values.

It would be of interest to obtain accurate and fast algorithms to plot W (A,B)
whenever neither A nor B are Hermitian.
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