Dynamic preprocessing for the minmax regret robust shortest
path problem with finite multi-scenarios

Marta M. B. Pascoal} Marisa Resende

August 22, 2015

Department of Mathematics, University of Coimbra
Apartado 3008, EC Santa Cruz, 3001-501 Coimbra, Portugal
Phone: +351 239 791150, Fax: +351 239 832568

Institute for Systems Engineering and Computers — Coimbra (INESCC)
Rua Antero de Quental, 199, 3000-033 Coimbra, Portugal

E-mails: {marta, mares}@mat.uc.pt
Abstract

The minmax regret robust shortest path problem aims at finding a path that minimizes the
maximum deviation from the shortest paths over all scenarios. It is assumed that different arc
costs are associated with different scenarios. This paper introduces a technique to reduce the
network, before a minmax regret robust shortest path algorithm is applied. The preprocessing
method enhances others explored in previous research. The introduced method acts dynamically
and allows to update the conditions to be checked as new network nodes that can be discarded
are identified. Computational results on random and Karasan networks are reported, which
compare the dynamic preprocessing algorithm and its former static version. Two robust shortest
path algorithms as well as the resolution of a mixed integer linear formulation by a solver are
tested with and without these preprocessing rules.

Keywords: Robust shortest path, Discrete scenarios, Dynamic preprocessing.

1 Introduction

One approach for dealing with costs uncertainty is to consider several possible scenarios. In the
case of the shortest path problem this is done either by associating a discrete set of costs with
each arc, or by assuming each arc cost varies within an interval. In this paper, the former case is
considered for the minimax regret robust shortest path problem, here simply called robust shortest
path problem. This problem consists of finding a path between two nodes of a network, which
minimizes the maximum regret cost of each path towards the shortest path, for all scenarios.

Yu and Yang [12] and, more recently, Pascoal and Resende [10], developed algorithms for the
robust shortest path problem. Later, inspired by the works of Karasan, Pinar and Yaman [5] and

then Catanzaro, Labbé and Salazar-Neumann [3|, for the interval data case, Pascoal and Resende
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[11] presented theoretical results and algorithms that allow to reduce the network before a robust
shortest path algorithm is applied. These preprocessing techniques can identify a priori arcs that are
certainly part of any optimal solution, as well as nodes that do not belong to any optimal solution,
in order to be deleted later.

The goal of this work is to enhance the preprocessing strategy developed in [11] for nodes.
The improvement consists in developing a dynamic rule, in the sense that it is updated as the
preprocessing algorithm runs and paths are computed. The idea behind this improvement is to
further reduce the network before a robust shortest path algorithm is applied, that is, to increase
the number of detected nodes that do not belong to any optimal solution. The latest aspect
concerns limiting the number of scenarios to consider in the tests, and thus to save computational
time. Empirical experiments compare the new rules with the former. Even though the extension of
the rule introduced in [11] for detecting arcs in optimal solutions is expected to enhance the former,
the performed tests did not show its usefulness in practice. For this reason that rule is omitted in
the following. The interested reader may consult [9] for further details.

The remainder of the paper contains five other sections. Notation and concepts related with
the robust shortest path problem are introduced in the next one. In addition, a brief sketch of the
labeling and the hybrid robust shortest path algorithms presented in [10] is given. Section 3 is dedi-
cated to the development of the new preprocessing rule and of the algorithm that implements it. An
example is provided in Section 4. Results of computational tests on random and Karasan instances,
comparing the new rule and its original static version, when used together with the labeling and
the hybrid approaches, as well as with using CPLEX for solving a mixed integer formulation of the
robust shortest path problem, are reported and discussed in Section 5. Conclusions are drawn in

Section 6.

2 Preliminary concepts

A finite multi-scenario model is represented as G(V, A, Si), where G is a directed graph with a set
of nodes V.={1,...,n}, aset of marcs A C {(i,7) :4,j € V and i # j} and a finite set of scenarios
Sk = {1,...,k}, k > 1. The density or average degree of G is denoted by d, which is given by
d = m/n. For each arc (i,j) € A, cfj represents its cost in scenario s, s € Si. It is assumed that
the graph contains no parallel arcs.

A path from i to j, i, € V, in graph G, also called an (i, j)-path, is an alternating sequence of

nodes and arcs of the form

p = (v1, (v1,v2),v2, ..., (Vr_1,0p), V),

with v; =4, v, = j and where vy € V, for [ =2,...,r — 1, and (v;,v41) € A, for Il =1,...,r — 1.
Because it is assumed that graphs do not contain parallel arcs, in the following paths will be
represented simply by their sequence of nodes.

The set of arcs (nodes) in a path p is denoted by A(p) (V(p)). Given two paths p, g, such that
the destination node of p is also the initial node of g, the concatenation of p and ¢ is the path

formed by p followed by ¢, and is denoted by p ¢ q. The cost of a path p in scenario s, s € S, is



defined by
= Y o 1
(4,5)€A(p)
With no loss of generality, 1 and n denote the origin and the destination nodes of the graph G,
respectively. The set of all (1,n)-paths in G is represented by P(G).

Let g;; represent the shortest (1,7)-path in G, i,j € V, for a given scenario s € Si. In order to
simplify the notation, ¢® is used to denote the (1,n)-path, ¢;,,, and Lij is used to denote the cost
of the path ¢;; in scenario s, ¢*(q;;).

The minmax regret robust shortest path problem aims at finding a path in P(G) with the least
maximum robust deviation, i.e., satisfying

in RC(p), 2
arg min, () (2)

where RC(p) is the robustness cost of p, defined by

RC(p) := max RD*(p), (3)

and RD?*(p) represents the robust deviation of path p in scenario s, s € Sk, defined by
RD?*(p) := *(p) — LBY,. (4)

An optimal solution of (2) is called a robust shortest path.

A node is called robust 1-persistent if it belongs to some robust shortest (1, n)-path. Otherwise,
the node is denominated robust O-persistent. The origin and the destination nodes of the network
are trivially robust 1-persistent nodes.

Three methods for finding a robust shortest path were developed in [10]. The two with the
best performances in empirical terms were the labeling algorithm (LA) and the hybrid algorithm
(HA). The LA is a variant of the labeling approach proposed in |7], adapted to the minmax regret
objective function, but using the cost lower and upper-bounds similarly. The HA ranks simple paths
for a suitable scenario and limited to an upper-bound that depends on the costs of the computed
paths. The ranking is complemented with pruning rules based on the cost bounds imposed for the

first method. This allows to discard useless solutions at an early stage.

3 Preprocessing techniques

In [11], a sufficient condition was established to identify robust 0-persistent nodes. This condition
allows to test all the nodes that do not belong to a given path in the network. In this section, a
new rule is developed to improve the previous preprocessing method, by restricting the number of
tested scenarios and also by updating dynamically the tests as new solutions are computed. This
rule allows to find a bigger number of robust O-persistent nodes, than the previous.

For the sake of completeness, first, a result introduced in [11] is recalled to be used later.

Proposition 1 concerns the identification of robust O-persistent nodes.



Proposition 1 ([11]). Consider a path p € P(G), and a node i ¢ V(p). If
35 € S+ RD*(a5; ¢ 45,) > RO(p), (5)
then node i is robust 0-persistent.

Some results are now presented to support an algorithm for identifying robust 0-persistent nodes.
As mentioned earlier, the idea behind this version is to make the search dynamic and detect robust
O-persistent nodes, according to the least robustness cost of the (1,n)-paths obtained along the
process.

Let RC'min be a variable which stores the least robustness cost of a computed (1, n)-path at any
iteration of the algorithm. Considering only the shortest (1,n)-path in scenario 1, ¢!, that variable
is initialized with

RCmin = RC(q"),
for identifying robust O-persistent nodes. Let Nod denote the set of nodes to be scanned. The
condition provided by Proposition 1 can be rewritten, using variable RC'min. For any node ¢ € Nod,
if
35€ S, : RD%(q5; 0 q,) > RCmin, (6)
is satisfied, then the node 7 is robust O-persistent. This condition demands the trees of the shortest
(1, j)-paths and of the shortest (j, n)-paths for each scenario s, denoted by 7;* and 7,7, respectively,
jevV,se S, and their costs LBy; and LBj, to be known. Any shortest path tree algorithm can
be used with such purpose [1].
Let Vj be used to collect the robust 0-persistent nodes. According to Proposition 1, and to the

initialization of RC'min, Nod is initialized by
Nod = V\V(q").

The value of variable RCmin may change along the algorithm. The (1,n)-paths computed by
the algorithm are stored in a list X p, without repetitions. The set of nodes to scan may also change,
every time a new (1,n)-path p such that p ¢ Xp has a robustness cost not greater than RC'min.
If RC(p) < RCmin, RCmin is updated with RC(p). In what follows, it is shown how to update
Nod, depending on the obtained path p satisfying RC'(p) < RCmin.

When searching for robust O-persistent nodes, Proposition 1 establishes that the analysis of the
nodes of path p, V(p), can be skipped. Thus, if RC(p) = RCmin, the nodes of V(p) can be removed
from Nod, and, if RC(p) < RCmin, the search focuses all the nodes outside V(p) that were not
already identified as robust O-persistent. For a selected node i € Nod, path p has the particular
form qf; ¢ ¢q;,, s € S;. Then, one can write
Nod\V(q;;¢q;,) if RC(¢5;¢q;,) = RCmin

Nod = { VAV (g;; 0 q5,) UV) if RC(g5; 04, < RCmin (7)

Nodes may be scanned more than once, because the analyzed (1,n)-paths may have nodes in
common. This makes that some tests may be repeated after RCmin is updated. Besides, in order

to avoid repeating the path robust deviations, it is useful to store them, as

RD} = RD*(q}; 0 q3,), s € Sy i € V\{L,n}. (8)



A list X is used to store the nodes that have already been analyzed along the process.

The number of scenarios used to test condition (5) may make the robust O-persistent nodes
test computationally demanding. In [11] this test uses k scenarios. The same holds for condition
(6), so in order to make this task lighter, in the following only a small number of scenarios to
test, M, M < k, will be considered. Moreover, for each node i € Nod, when the first scenario
s; € Sy, for which (6) holds is known, then i is a robust 0-persistent node and its analysis can halt.
Hence, the tests for scenarios s; + 1,..., M, can be skipped. Generally, if max{s; : i € Nod} # M,
the computation of the trees 7;° can be skipped for s € {max{s; : i € Nod} + 1,...,M}. The

pseudo-code is given in Algorithm 1.

Algorithm 1: Dynamic version for finding robust 0-persistent nodes

1 for s=1,...,k do
2 Compute the tree 7,%;
for j=1,...,ndo LB;, < c*(q,);

w

RCmin < RC(q');

4

5Xp<—{q1};XN<—(b;

6 Nod <+ V\V(q') ; Vo + 0;

7 while Nod # () do

8 Choose a node ¢ € Nod,

9 Nod + Nod — {i};

10 if i ¢ Xy then

11 Xy + Xy U{i};

12 for s=1,...,M do

13 if tree T;° was not yet determined then Compute the tree 7;° ;
14 RD; < LB{; + LBj, — LB{,;

15 if RD; > RC'min then

16 Vo + Vo U{i};

17 break;

18 if ¢5, 0 ¢S, ¢ Xp then

19 Xp <+ XpU{q,0q¢,};

20 RC(q3; ¢ ¢,) < max {RDf, max {RD"(¢5; 0 ¢,) : 7 € Sk\{s}}};
21 if RC(q3, ©¢;,) = RCmin then Nod < Nod\V(¢3;©q3,) ;
22 if RC(q3; ©q;,) < RCmin then

23 RCmin <+ RC(q}; ¢ ¢,);

21 L Nod & V\(V (g3, 0 a5,) U Vo);

25 else

26 for s=1,...,M do

27 if RD; > RCmin then

28 Vo + VoU{i};

29 L break;

30 return 1}

In terms of the worst case computational time complexity, the first phase of Algorithm 1 is
similar to the first phase of the static version [11]. The former initializes RCmin with RC(q'),
which means it is performed in Of = O(km + kn) = O(km) time for acyclic networks and in

0§ = O(k(m + nlogn)) for general networks.



The second phase concerns searching for robust 0-persistent nodes, which compared to the
static version has the additional work of calculating RD?, i € Nod, s € Sy, updating set Nod, and
repeating the tests (6) due to the updates of RCmin. For the first task, assuming that the trees 7;°
and 7,7, and the associate costs for all scenarios were previously computed, RD;, i € Nod, s € Sk,
is obtained in O(k) time. The second task concerns the update of Nod and involves differences
and unions of sets with n nodes at most. These operations require an O(n) complexity, when using
indexation by hash sets [2]. The third procedure demands O(1) operations for each scenario in Sk,
and each node i € Nod, since RD; was already determined.

In a worst case, the three tasks above are performed k(n — 2) times at most, one per each
scenario s, s € S, and each node selected in Nod, with up to n — 2 nodes. Thus, an additional
work of O(kn? 4 k?n) is added to the second phase of the static version. In conclusion, Algorithm 1
has a time complexity of O(kn? + k?n) for all types of networks, since logn < n and m < n?.

4 Example

In the following, the dynamic algorithm for finding robust O-persistent nodes introduced in Sec-
tion 3 is exemplified. In order to better understand the differences introduced in the previous
algorithm with respect to the static preprocessing method presented in [11], the application of the

two approaches is described.
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Figure 1: Network G(V, A, S2)

Let G(V, A, S2) be the network depicted in Figure 1. Figure 2 shows the shortest path trees
from every node to node 7 in G, in scenario 1 — Figure 2.(a) — and in scenario 2 — Figure 2.(b).

Figure 3 shows the shortest path trees from node 1 to any node in G(V, A, S2), in scenario 1 —
Figure 3.(a) — and in scenario 2 — Figure 3.(b).

In what follows the number of scenarios tested is limited to M € {1,2}. As mentioned in the
previous section, this constraint was not used in [11], it will be applied to both approaches for the

sake of comparing them.

Static approach The variable RCmin is initialized by the minimum robustness cost of the
shortest (1,7)-paths of G. According to Figure 2, ¢! = (1,2,7), with LB{, = 2, and ¢*> = (1,4,6,7),
with LB?. = 7. Given that ¢*(¢!) = 12 and c!(¢?) = 8, one has RC(¢') = 5 and RC(¢*) = 6.
Hence, ¢' is the shortest (1,7)-path with the least robustness cost and, therefore, RCmin = 5.
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Figure 2: Shortest path trees rooted at node 7 in G(V, A, S2)
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Figure 3: Shortest path trees rooted at node 1 in G(V, A, S3)

This value does not change along the static method and the set of arcs Nod to scan is initialized
by VAV (g!) = {3,4,5,6}.

e M =1

Starting with node 3, the inequality (6) is not satisfied in scenario 1, given that

RDj = LB}, + LB3}, — LB}; = 1 < RCmin.
The same thing happens for nodes 4, 5 and 6, because
RD} = LB}, + LB}, — LB}, =5 < RCmin, i = 4,5,6.

Therefore, no robust 0-persistent nodes are detected when considering only scenario 1, Vp = 0.
o M =2

For scenario 2, the nodes 3, 4 and 6 still do not satisfy (6), given that

RD? = LB?, + LB3, — LB}, = 3 < RCmin,



and
RD? = LB}, + LB% — LB}, = 0 < RCmin, i = 4,6.

Nevertheless, (6) holds for node 5 and scenario 2,
RD? = LB}, + LB2, — LB}, = 6 > RCmin,

therefore, node 5 is the only one identified as robust 0-persistent, Vy = {5}.

Dynamic approach According to Algorithm 1, RCmin is initialized with RC(q') = 5 and
Nod with V\V(¢') = {3,4,5,6}.

o M =1
Starting by scanning node 3, condition (6) is not satisfied for scenario 1. Then, the robustness
cost of the path ¢} ¢ ¢i- = (1,3,2,7) is determined, RC({1,3,2,7)) = 3, and this value
improves RC'min. Additionally, by (7), Nod is updated to V\V((1,3,2,7)) = {4, 5,6}, since
at this point Vy = 0.
For the updated RCmin = 3, when choosing nodes 4, 5 and 6 to scan, inequality (6) is always

satisfied for scenario 1, given that
RD}! = 5> RCmin, i =4,5,6.
Consequently, all the nodes in Nod are identified as robust O-persistent, i.e., Vi = {4,5,6}.

o M =2

Condition (6) holds for node 3 and scenarios 1 and 2, with the initial RC'min = 5. Then, the
path associated with node 3 for scenarios 1 and 2, ¢j3 ¢ ¢37, s € S, is given by (1,3,2,7),
which has a robustness cost of 3. The remaining steps are those presented for M = 1, thus
Vo ={4,5,6}.

For this example, Algorithm 1 is more effective than its static version, given that it detects more

robust O-persistent nodes than the former version.

Computing a robust shortest path after preprocessing The reduced network obtained from
preprocessing is depicted in Figure 4. The arcs in G are represented with a dashed line in Figure 4.
The robust 0-persistent nodes, 4, 5 and 6, are removed from G, as well as all the arcs that start or

end in these nodes.

0,3
(2) 0

Figure 4: Reduced network after preprocessing



There are only two (1, 7)-paths containing arc (2,7) in the reduced network, ¢' = (1,2,7), with
RC(q') =5, and q = (1,3,2,7), with RC(q) = 3. Therefore, g is the robust shortest (1,7)-path in
G.

5 Computational experiments

This section is dedicated to the computational comparison of the static (presented in [11]) and the
dynamic (in Algorithm 1) methods for preprocessing robust 0-persistent nodes, and to their impact
on solving the robust shortest path problem when combined with the LA and the HA introduced
in [10]. Additionally, the integer formulation of the robust shortest path problem with discrete

scenarios

s S L. S
min max g ¢;;%ij — LBY

sESK (if)ed
s. t. Z T15 — Z T = —1

(1,5)eA (i,1)eA (9)
Z Ty — Z Tiu =0, uweV—{l,n}

(u,7)€A (j,u)eA
Z Tpj — Z Tin = 1

(n,j)eA (i,n)€A

zi; € {0,1}, (i,j) € A

was solved using CPLEX [4], after having been rewritten as a mixed integer linear problem.
Algorithm 1 and its static version were implemented in Matlab 7.12 and the IBM ILOG CPLEX
Optimization Studio, 12.6.2. version, was used to solve the linear formulation obtained from (9).
The tests ran on a computer equipped with an Intel Pentium Dual CPU T2310 1.46GHz processor
and 2GB of RAM. As a preliminary task for all the codes, Dijkstra’s algorithm [1] is used to
solve the single destination shortest path problem for a given scenario. As mentioned earlier, the
preprocessing techniques were combined with the LA and the HA in [10], and with CPLEX. The

robust shortest path problem was solved with and without preprocessing.

5.1 Test problems

The benchmarks used in the experiments are divided into two main classes: randomly generated
directed graphs and Karasan graphs.

The tests performed on random graphs are divided in three groups. The first two include those
with arc costs assigned with integer numbers in U (0, ¢), ¢ > 0. In this case, networks with n nodes,
density d and k scenarios are denoted by R]:L:Z For the considered instances, n € {500, 7000},
d € {5,10,20}, k € {2,3} and ¢ € {100,10000}. In addition, n € {2000,5000} is used, when LA
and HA are applied for ¢ = 100, given that these instances have already been considered in [9]. The
third group considers networks with two scenarios and negatively correlated costs. Following the
procedure in [8], half of the arc costs in scenario 1 are integers randomly chosen in U(0,¢/2) and
the costs in scenario 2 are random integers in U(c/2, ¢), ¢ > 0. The remaining arc costs are assigned
similarly, but to scenarios 2 and 1. Such networks are denoted by RELZZ’NC. The tests comprised
instances with n € {500, 7000}, d € {5, 10,20} and ¢ = 100.



The Karasan graphs have the structure presented in [5], i.e. they are acyclic and layered graphs.
Each arc cost is assigned with a random integer in U (0, ¢), ¢ > 0. In the following, Karasan networks
with n nodes, width w and k scenarios are denoted by Kﬁjﬁ, The source and the destination are
dummy nodes that link to the first and from the last layers, respectively. The tests include instances
with n € {30,60,90}, w € {10,20}, k € {2,3} and ¢ = 100. The considered widths are bigger than
usual (see, for instance, |5, 6]) because the preprocessing techniques were not effective for networks
with small width compared to the number of nodes.

For each network dimension, ten instances were generated. For each instance, the static and
the dynamic preprocessing algorithms were applied, and (6) was tested for the scenarios 1,..., M,
with M € {1...k}. The robust shortest path problems were solved by LA, HA and CPLEX,
after preprocessing. Alternatively, these methods solved the same instances from scratch, with no

preprocessing.

5.2 Results

In order to analyze the performance of the static and the dynamic algorithms, the average total
running times (in seconds) are calculated for each network dimension. Let P, NP and AP represent
the average CPU times to preprocess robust 0-persistent nodes, to solve the robust shortest path
problem with no preprocessing, and to do the same after preprocessing, respectively. Let also TP
denote the average overall CPU time for finding a robust shortest path combined with preprocessing,
i.e., TP = P+ AP. Additionally, let IV represent the average number of detected robust O-persistent
nodes. The application of the static and the dynamic methods is distinguished by the indices s and
d, respectively.

The least total CPU time to find the robust shortest path with LA, HA and CPLEX is bold

typed, for each type of instances that have been considered.

Random networks First, the results obtained for random networks when costs range in [0, ¢/,
¢ = 100, are considered. The averages are presented in Tables 1 — 4. The number of detected robust
O-persistent nodes is high for the networks with the lowest densities (d € {5,10}), particularly for
Algorithm 1 rather than for its static version — Table 1. Moreover, for fixed n, d and M, less nodes
tend to be detected when k increases, since Ny and Ny also decrease. For all the instances, in spite
of the preprocessing work demanded by Algorithm 1 being heavier than the required by the static
version, P; < Py, the additional effort of the dynamic version leads to the detection of more robust
0-persistent nodes, Ny < Ng.

Tables 2 — 4 show that preprocessing robust O-persistent nodes can be more effective to solve
the robust shortest path problem by LA, HA or CPLEX, rather than without using preprocessing.
Combining dynamic preprocessing with finding a robust shortest path was the most efficient method
when HA was applied for M = 1 on the biggest networks (n = 2000, d = 5 and k = 3; n = 5000,
except for d = 20 and k£ = 3, and n = 7000, for d = 10 or for d = 20 and k = 2). The same
happened when LA was applied on most of the networks (except for n = 500 and d = 20). In case
of CPLEX, the dynamic procedure stood out for all the smallest networks, except for d = 10 and
k = 2, and for the biggest networks, for the single cases d = 10 and k£ = 2.

10



M P, Py N, | Ng M P, Py N, | Ng
gz | 1 0.713 [ 0772 || 267 [ 491 [ 2100 | 1 4.744 | 4.872 || 1518 | 1992

5005 [ 0.948 | 0.986 || 361 | 495 | 20005 [ 6.094 | 6.384 || 1788 | 1995

1 1.142 [ 1.083 || 130 [ 410 1 5.745 5.977 || 764 | 1730

Rige [ 2 1.384 | 1.308 || 222 | 479 | Royos | 2 7.150 7.353 || 1126 | 1963

3 1557 | 1.527 || 279 | 493 3 8.559 8.748 || 1336 | 1992

g2 | 1 0.877 [ 1.060 [[ 149 [ 430 [ o100 1 4315 | 4.632 | 911 [ 1943
500,10 [ 0.199 | 1.238 || 196 | 483 | ~'2000,10 [75 5.637 | 5.883 || 1144 | 1990

1 1.201 | 1.318 65 | 170 1 6.313 6.846 || 106 | 1250

Rioto | 2 1.520 | 1.584 || 120 | 324 | Ryjop10 | 2 8.047 8.431 || 188 | 1806
3 1777 | 1915 || 151 | 389 3 9.474 | 10.094 || 264 | 1925

praoo |1 0.856 | 1.572 19 [ 103 [ p2100 1 4.823 5.845 8 | 1662
500,20 [ 1.127 | 1.630 34 [ 201 | "'2000.20 [ 6.218 7.203 14 | 1862

1 1.145 | 1.328 2 16 1 7.140 | 8.809 57 | 266

Rioso | 2 1.481 | 1.723 41 44| Ryonao | 2 9.802 9.774 || 138 | 710
3 1.800 | 1.939 5 97 3 11.392 | 11.421 || 179 | 963

pzaoo | 1 [ 20.486 | 20.905 || 3247 | 4990 | poa00 | 1 [| 129.504 | 134.173 [ 4838 | 6908
5000,5 [T971726.391 | 26.770 || 4110 | 4994 | ~ 70005 T2 ["142.658 | 143.929 || 5667 | 6995

1 || 25.805 | 25.979 || 1477 | 4646 1 || 186.513 | 196.549 || 4006 | 6421

Ry | 2 || 31760 | 32.382 || 2193 | 4966 | Riyo’s | 2 || 205.702 | 212.144 || 5037 | 6925
3 |[37.897 | 38.531 || 2633 | 4994 3 | 222.072 | 223.820 || 5561 | 6990

R2.100 1 [ 21.449 [ 21.797 ][ 1260 [ 4939 [ 1»100 1 [ 132.743 | 141.608 || 1606 | 6598
5000,10 [T5[727.264 | 27.888 || 1788 | 4993 | = 7000.10 [ [[7145.890 | 152.684 || 1892 | 6991

1 || 27.601 | 26.594 || 353 | 3782 1 || 199.218 | 212.207 || 324 | 5634

Rionio | 2 || 34233 (33236 || 661 | 4724 | Riyoh, | 2 || 216.220 | 228.328 || 736 | 6798
3 |[40.223 ] 39.827 || 900 | 4915 3 | 232.169 | 246.511 || 1055 | 6953

R2.100 1 [[22.396 [ 27453 | 119 [ 4404 [ 1100 1 ] 149.545 | 160.489 | 1014 | 5217
5000,20 7571729 453 | 33.095 || 208 | 4806 | = 7000.20 [T [[7164.483 | 180.172 || 1412 | 6681

1 || 28.653 | 42.394 60 | 1383 1 || 213.284 | 237.520 58 | 2841

Risonao | 2 || 34135 [ 42.061 || 108 | 2713 | Riyonao | 2 || 232389 | 248.409 || 122 | 4177
3 | 41.741 | 45.958 || 155 | 3248 3 | 244.730 | 270.563 || 160 | 4838

Table 1: Average preprocessing CPU times (in seconds) and number of detected robust O-persistent
nodes

11
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The fact that more robust 0-persistent nodes were detected by the dynamic method than by
the static method contributes for a more significant reduction of the network and, consequently, of
the average CPU times when finding a robust shortest path after preprocessing, AP, > AP;. In
conclusion, the dynamic version outperformed the static version. Besides, preprocessing with the
dynamic search was also a better alternative than solving the problem without any preprocessing,
TP; < NP.

In spite of the previous considerations, HA was the fastest method for the smallest networks
without preprocessing, being replaced by CPLEX for the biggest and densest networks. Still, for the
majority of the tested networks, the results of HA combined with preprocessing were more effective
than the homologous results for LA and CPLEX, except when n = 7000, d = 10 and k = 3, or
n = 7000 and d = 20, for which CPLEX outperformed the remaining algorithms.

LA was never the fastest method, however it was the most sensitive to preprocessing, and showed
the most drastic reductions with respect to NP. This can be explained by the fact that removing
nodes from the network allows to discard a considerable number of labels in LA, making easier the
computation of an optimal solution. For HA, despite the fact that eliminating nodes reduces the
effort on calculating reduced costs, preprocessing does not have so much impact, given that the
search for a robust shortest path is more focused on selecting suitable deviation arcs and that can
be done in few iterations without preprocessing [10]. Another aspect to take into account is that
with the increase of n, the available number of deviation arcs may increase substantially, making
the problem harder to solve with HA, rather than with CPLEX. In fact, CPLEX depended mainly
on the number of arcs of the network, which means that its stability was not greatly affected by the
network structure.

For each fixed n, d and k, the smaller the number of scenarios for testing (6), the less effort was
required for computing the shortest path trees rooted at node 1. Hence, small values of M implied
small preprocessing times. This is valid for both the static and the dynamic approaches. The latter
is always better than the first in detecting robust O-persistent nodes, Ny < Ny, when M is fixed —
Table 1. In general, the best value of M to consider in order to ensure that finding a robust shortest
path with preprocessing is faster than solving the problem without preprocessing, must assure that
P < NP and that the number of detected robust O-persistent nodes is sufficient to reduce the CPU
time which may not exceed NP — P. Tables 2 — 4 show that Algorithm 1 was more effective than
its static version with this respect when M = 1, except if n = 7000, with d = 5 for HA and CPLEX
and with d = 10, £k = 3 for CPLEX, and if n = 500, with d = 10, k¥ = 2 for CPLEX and with
d = 20 for LA. When M = 2,3, the dynamic preprocessing combined with LA or CPLEX was the

most efficient method in very few cases.
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M NP AP, | AP, TP, TPy

2000 | 1 2.087 | 1.960 2.800 2.732
Rt [ 3387 o3 T 1800 2.891 2.786
1 2.365 | 2.045 3.507 3.128

Rigs [ 2 4.620 || 1.950 | 1.840 3.334 3.148
3 1.945 | 1.820 3.502 3.347

2100 | 1 3.233 [ 2.993 4.110 4.053
Rst010 3 1085 I GR3 T 2.147 2.882 3.385
1 3.445 | 2.600 4.646 3.918

Rito | 2 5.159 || 2.695 | 2.475 4.215 4.059
3 2.520 | 2.305 4.297 4.220

2100 | 1 3.540 [ 2.813 4.396 4.385
Rso020 3 516 63 T 2210 4.590 3.840
1 3.265 | 2.770 4.410 4.098

R [ 2 5.472 | 2.905 | 2.585 4.386 4.308
3 2.750 | 2.415 4.550 4.354

2100 | 1 8.307 | 4.263 || 137.811 | 138.436
Frooos 140900 |— oo 1.050 || 147.885 | 145870
1 8.550 | 3.435 || 195.063 | 199.984

Rions | 2 195.734 || 5.685 | 2.420 || 211.387 | 214.564
3 4.590 | 2.315 || 226.662 | 226.135

2,100 1 25.300 | 6.003 [ 158.043 [ 147.611
Faoon.0 3 163533 | 7563 [ 2.047 | 163.453 | 155.631
1 14.335 | 7.495 || 213.553 | 219.702

Rion1o0 | 2 215.976 |[ 11.060 | 4.320 || 227.280 | 232.648
3 10.195 | 2.150 || 242.364 | 248.661

2,100 1 20.167 | 6.647 [[ 169.712 [ 167.136
Rrooo.20 57| 153454 | 565683 || 183.560 | 183.855
1 30.863 | 18.517 || 244.147 | 256.037

Riona0 | 2 || 222.188 | 29.733 | 12.693 | 262.122 | 261.102
3 29.027 | 7.497 || 273.757 | 278.060

Table 4: Average CPU times (in seconds) for CPLEX with and without preprocessing

Tables 5 — 8 summarize the average results obtained when arc costs range between 0 and ¢ =
10000. A bigger effort is required to preprocess nodes when the arc costs are larger than for the
previous set of benchmarks. This is reflected by the increase of the number of detected robust
O-persistent nodes by both the static and the dynamic approaches — Table 5. With the dynamic
procedure, in particular, this is more expressive for the biggest networks and less significant for the
smallest networks. Nevertheless, this procedure is still better than the static in terms of detected
robust 0-persistent nodes.

In general, the best CPU times to solve the robust shortest path problem (with and without
preprocessing) for ¢ = 10000 are bigger than the homologous values for ¢ = 100, for all the methods
and the smallest networks. The same happened for the biggest networks, with LA and H A, except
when d = 20, whereas CPLEX was faster when larger costs were involved.

For ¢ = 10000, the improvement of combining the dynamic procedure for solving the robust
shortest path problem was observed in more cases than for ¢ = 100, rather than combining the
static procedure or determining a solution from scratch. The only exception was the application of
CPLEX for n = 7000, which was faster to solve from scratch. Still for ¢ = 10000, HA combined
with the dynamic procedure is faster on instances with n = 500 (d € {5,10} and k = 3), for which

no kind of preprocessing is effective in terms of CPU times for ¢ = 100, and on instances with
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n = 7000, d =5 and k£ = 2, for which the static procedure is more efficient when ¢ = 100 — Tables
2 and 6. The latter situation happened for LA when n = 500, d = 20 and k£ = 2 — Tables 3 and 7 —
and for CPLEX when n = 500, d = 10 and k¥ = 2 — Tables 4 and 8.

M PS Pd NS Nd M Ps Pd Ns Nd

pzaoooo | 1 [ 1168 [ 1.249 [| 351 [ 460 | 210000 | 1 || 149.159 | 151.669 || 3700 | 6923
500,5 2 |[ T.412 | 1.504 || 426 | 495 | 770005 [T 2 ([ 156.563 | 160.888 || 4725 | 6996

1 || 2.083 [ 2.060 || 163 | 304 1 || 195.342 | 208.062 || 4107 | 6457

R3S |2 | 2242 [ 2.652 || 266 | 441 | Ryyops | 2 || 208.873 [ 219.120 || 5105 | 6931
3 ][ 2.390 | 2.566 || 319 | 479 3 || 221.730 | 245.684 || 5604 | 6991

pzaoooo | 1 [ 1.278 [ 1.449 [[ 211 [ 371 | pa10000 | 1 [[ 150.612 [ 163.895 [ 361 [ 6800
500,10 [T ["1.453 | 1.636 || 284 | 487 | = 7900,10 [T ["167.918 | 174.420 || 781 | 6993

1 || 1.964 | 2.055 || 72 | 226 1 |[ 205.741 | 220.140 || 118 | 5858

RETY | 2 [[2:209 [ 2421 || 128 [ 350 | Rion1o | 2 || 223.808 | 231.268 || 284 | 6845
3 || 2481 | 2.696 || 152 | 413 3 || 228126 | 234.946 || 435 | 6967

p2aoooo | 1 [ 1.382 [ 1.532 [[ 108 [ 276 | 210000 [ 1 [[ 156.746 | 177.824 ] 2569 [ 5862
500,20 [T IT1.612 | 1.847 || 124 | 369 | = 700020 T2 [162.099 | 180.452 || 2773 | 6827

1 [[ 2281 [ 2.230 || 22 5 1 [ 202.199 | 214.773 || 106 | 2750

Rio0” | 2 [[2:206 [ 2544 || 33| 38| Rinopao | 2 || 223.909 | 234.823 || 220 | 4699
3 |[2.484 [ 2.860 || 50 | 89 3 || 240.718 | 253.720 || 286 | 5556

Table 5: Average preprocessing CPU times (in seconds) and number of detected robust O-persistent
nodes

Average results when arc costs vary between 0 and ¢ = 100 and are negatively in the two
scenarios are shown in Tables 9 — 12. It can be observed that preprocessing is more time demanding
on these instances than with costs in U(0,100). Besides, the same happened for some instances
with costs in U(0, 10 000), in particular for the smallest networks with the highest densities, namely,
d =10, M = 2 and d = 20. In terms of the number of identified robust O-persistent nodes, the
dynamic procedure is still more effective than the static, but globally, fewer robust O-persistent
nodes are found than when ¢ = 100. In particular, the preprocessing is not effective for the tested
denser networks, where they were rarely detected.

In general, all the smallest CPU times for finding the robust shortest path are bigger than those
obtained by all the methods when costs range in U(0,100) and even in U(0,10000) for most of the
cases. In terms of running time, the preprocessing was not effective for H A, given that the problem
was much easier to solve from scratch — Table 10. For LA and CPLEX, fewer situations tend to
be improved with the combination of the dynamic procedure to solve the problem, when compared
with the experiments for costs in U(0,100). Namely, for LA, when n = 7000 and d = 20 — Tables 3
and 11, which was outperformed by the combination with the static procedure. The same situation
happened for CPLEX, when n = 500 and d = 20, and, additionally, when n = 7000 and d = 10,

which was outperformed by solving the problem with no preprocessing — Tables 4 and 12.

Karasan networks Now the results obtained for Karasan networks are presented. The averages
are shown in Tables 13 — 16.

Like for random networks, for this new class of graphs the dynamic algorithm outperformed
the static in terms of the number of preprocessed nodes (Ng > N;). Besides, it can be observed
that the wider the Karasan graph, the easier it is to identify robust O-persistent nodes — Table 13.

When the graph width increases, there exist more arcs between layers, which can lead to bigger
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M NP AP, | AP, TP, TP,
210000 | 1 0.073 | 0.007 1.241 1.256
5005 2 1153 |5 646 | 0.002 1.458 1.506
1 0.219 | 0.047 2.302 2.107

Rigs® [ 2 2.205 || 0.119 | 0.005 2.361 2.657
3 0.087 | 0.003 2.477 2.569

210000 | 1 0.157 | 0.032 1.435 1.481
Fso010 1283 | —5 103 T 0.002 1.556 1.638
1 0.319 | 0.095 2.283 2.150

Rt | 2 2.198 || 0.283 | 0.018 2.492 2.439
3 0.250 | 0.007 2.731 2.703

210000 | 1 0.256 | 0.067 1.638 1.599
Rst020 1357 |56 T 0018 1.858 1.865
1 0.468 | 0.221 2.749 2.451

RIS’ [ 2 2.311 ([ 0.429 | 0.094 2.635 2.638
3 0.417 | 0.073 2.901 2.933

210000 | 1 15.111 | 0.055 || 164.270 | 151.724
Faoons [ 14960 | 555 T 0.001 | 164.083 | 160.8%0
1 8.870 | 0.270 || 204.212 | 208.332

Rions | 2 216.540 | 8.659 | 0.010 || 217.532 | 219.130
3 21.035 | 0.006 || 242.765 | 245.690

210000 | 1 42.287 | 0.184 || 192.899 | 164.079
Fiono 10 5 1841 516 T 0.063 | 207.264 | 174.483
1 66.776 | 1.140 || 272.517 | 221.280

Rionto | 2 252.671 || 31.455 | 0.045 || 255.263 | 231.313
3 20.198 | 0.012 || 257.324 | 234.958

210000 | 1 23.473 [ 1.230 || 180.219 | 179.054
R0 182971 |5 951 [ 0.052 | 185.053 | 180.504
1 36.775 | 16.417 || 238.974 | 231.190

Rionso | 2 || 224.993 |[35.700 | 3.877 || 259.609 | 238.700
3 36.281 | 1.348 || 276.999 | 255.068

Table 6: Average CPU time (in seconds) for HA with and without preprocessing

path deviation costs, thus increasing the possibilities of satisfying condition (6). For the considered
Karasan instances, no type of preprocessing was effective for the biggest networks (n € {60,90})
with the smallest width, given that no robust 0-persistent nodes were found with the static or the
dynamic procedures. For the biggest width, more robust O-persistent nodes were detected by the
dynamic strategy, except for n = 90 and k = 3.

In terms of the CPU times to solve the robust shortest path problem, of the three methods used,
the combination with the dynamic procedure was the most effective for CPLEX. That is shown on
Table 16, for almost all the instances, expect the biggest with £ = 3. Other exceptions were observed
for the LA and HA cases — Tables 14 and 15. However, for the latter instances, the combination
with the dynamic preprocessing resulted better, but with worse CPU times, than CPLEX without
preprocessing.

In general, for the widest Karasan networks, except n = 90, kK = 3, HA was the fastest method
to find a robust shortest path. More concretely, without preprocessing for the smallest networks
and with preprocessing for the remaining. Instead, for the Karasan networks with the smallest
width, LA combined with the static procedure was the fastest method for the smallest networks,

and CPLEX combined with the dynamic preprocessing was the fastest for the biggest networks.
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M NP AP, AP, TP, TP,
210000 | 1 0.310 0.033 1.478 1.282
5005 2 1.859 0.118 0.009 1.530 1.513
1 1.074 | 0.361 3.157 2.421

Rige® | 2 2.981 0.629 0.045 2.871 2.697
3 0.444 | 0.012 2.834 2.578

210000 | 1 0.946 0.358 2.224 1.807
Rs010" [ 2.238 0.613 0.008 2.066 1.644
1 1.636 0.798 3.600 2.853

Rioto. | 2 4.125 1.331 0.292 3.540 2.713
3 1.227 | 0.126 3.708 2.822

210000 | 1 1.628 0.793 3.010 2.325
Rso020 3.028 1.514 | 0.347 3.126 2.194
1 2.005 2.082 4.286 4.312

RI5’ [ 2 4.787 1.889 1.848 || 4.095 4.392
3 1.818 1.508 4.302 4.368

210000 | 1 122.866 0.937 || 272.025 | 152.606
Frono5 | 201859 | —75 555 0.334 || 232.449 | 161.222
1 112.566 3.616 || 307.908 | 211.678

Rigns’ | 2 || 338.993 || 62.828 0.897 || 271.701 | 220.017
3 42.721 0.662 || 264.451 | 246.346

210000 | 1 359.487 [ 2.888 [| 510.099 | 166.783
Faooo. 10 7] 399-071 | 35375 0.632 || 491.706 | 175.052
1 384.061 | 18.511 || 589.802 | 238.651

Risonto | 2 || 486.093 || 366.564 5.469 || 590.372 | 236.737
3 348.150 0.662 || 576.276 | 235.608

210000 | 1 235.617 | 22.316 | 392.363 | 200.140
Faono.20 571 378675 537500 1.662 || 396.903 | 182.114
1 384.548 | 180.010 | 586.747 | 394.783

Risons0 | 2 || 488.825 | 371.658 | 58.189 | 595.567 | 293.012
3 364.307 | 24.839 || 605.025 | 278.559

Table 7: Average CPU time (in seconds) for LA with and without preprocessing

6 Conclusions

In this work, a new technique was developed to identify robust O-persistent nodes of a network.
This technique is a dynamic version of the preprocessing strategy presented in [11], because the
involved tests are updated as new paths are computed. The dynamic technique was exemplified
and its improvement towards the former version was empirically tested. The experiments comprised
random instances with different methods for generating costs, namely: (1) costs in U(0, 100), (2)
costs in U(0,10000) and (3) negatively correlated costs between scenarios, as well as (4) Karasan
instances with costs in U(0, 100),

The experiments showed that both methods were more effective for the first two sets of instances
than for the last two. In particular, for the random networks it was easier to detect robust 0-
persistent nodes for the smallest densities. On the contrary, for the Karasan networks that task was
easier for the widest instances. Nevertheless, the dynamic preprocessing was almost always able to
detect more robust O-persistent nodes than the former static version. For these cases, the increase
of the number of these nodes found by the dynamic method ranged between: (1) 11% and 20 675%,
(2) 25% and 4864%, (3) 71% and 62033%, and (4) 14% and 1100%. For some of the instances,

the dynamic preprocessing was faster than the static, however, for most of them it was more time
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M NP AP, | AP, TP, TP,

210000 | 1 1.915 | 1.665 3.083 | 2.914
Fs005 2 3180 250 T 1585 3.232 3.089
1 2.175 | 1.910 4.258 | 3.970

Rios™ [ 2 3.705 | 1.935 | 1.835 4177 4.487
3 1.905 | 1.785 4.295 4.351

210000 | 1 2.705 | 2.205 3.983 [ 3.654
Fso010 4087 5360 T T840 3.813 | 3.476
, 1 2.490 | 1.920 4.454 | 3.975
Rt | 2 4.161 || 2450 | 1.845 4.659 4.266
3 2.390 | 1.825 4.871 4.521

210000 | 1 3.200 | 2.135 4582 [ 3.667
Rst020 4342 =10 T 1830 1.752 3.677
, 1 2.780 | 2.680 5.061 4.910
RIS [ 2 5.156 || 2.710 | 2.597 4.916 5.141
3 2.675 | 1.985 5.159 | 4.845

210000 | 1 8.135 | 5.775 || 157.294 | 157.444
Faoons' [ 136:069 o5 150 || 163.008 | 163.03%
1 8.480 | 3.505 || 203.822 | 211.567

Rigns’ | 2 || 201.303 || 6.460 | 2.070 || 215.333 | 221.190
3 5290 | 1.885 || 227.020 | 247.569

210000 | 1 13.055 | 4.200 || 163.667 | 168.095
Faoonno [ 142:025 5055460 || 178.293 | 176.880
1 20.900 | 6.340 || 226.641 | 226.480

Rionto | 2 || 207.208 |[17.665 | 5.115 || 241.473 | 236.383
3 11.675 | 2.730 || 239.801 | 237.676

210000 | 1 16.940 | 4.515 || 173.686 | 182.339
R,z 5| 149-038 |\ 5 oes 5 675 || 177.384 [ 183.127
1 25.740 | 16.360 || 227.939 | 231.133

Risonso | 2 || 213.566 || 24720 | 6.575 || 248.629 | 241.398
3 22.250 | 4.470 || 262.968 | 258.190

Table 8: Average CPU time (in seconds) for CPLEX with and without preprocessing

demanding. For the latter cases, the increase in the running times was at most: (1) 522%, (2) 18%,
(3) 20%, and (4) 35%.

The computational experiments also evaluated the performance of methods to find the robust
shortest path before and after the application of the dynamic or the static preprocessing techniques.
These tests involved the HA and the LA introduced in [10], as well as CPLEX for solving a linear
version of the robust shortest path problem formulation given in (9).

The results obtained by each algorithm were similar for (1) and (2). In general, the LA and
the HA after dynamic preprocessing outperformed their combination with the static version for
almost all the cases. Besides, the LA was always more efficient with preprocessing than with no
preprocessing at all. The same only happened with the HA for networks with a large number of
nodes using the dynamic preprocessing when considering just M = 1 testing scenario, even for the
cases for which the static approach was not efficient.

For (3), the number of robust O-persistent nodes found statically and dynamically was small.
Therefore, applying preprocessing in these cases, be it static or dynamic, was not advantageous in
terms of the total running time. Preprocessing might, however, be useful in these cases, if the robust
shortest path computation can be independent from the initial reduction of the network, given that

APy < AP;. The results were similar for (4) when the graph width is small in comparison with the

19



M Ps Pd Ns Nd M Ps Pd Ns Nd

pzaonc | L || 1148 [ 1225 [[ 217 [ 372 | poioowe | 1 | 127.238 | 142.450 || 951 | 5406
500,5 2 1.336 | 1.433 || 260 | 477 7000,5 2 146.496 | 149.616 || 2132 | 6777
gzaoone | 1 [[1225 [1384 [ 10 [ 58 [ poroone | L [ 148.747 [ 159.104 3| 1864
500,10 2 1.463 | 1.756 17 | 140 7000,10 2 164.714 | 174.971 16 | 3977
pzaoove | L [[ 1461 [ 1572 0 L[ peaoonve [ 1 [ 142.003 [ 146.625 0 0
500,20 2 1.627 | 1.905 1 1 7000,20 2 159.410 | 162.777 0 0

Table 9: Average preprocessing CPU times (in seconds) and number of detected robust O-persistent
nodes

M NP AP; APy TP, TPy
e Il
RS o 1292 |-Gy oom | Tras | Tao
e e il Y A A
Bi3388° ] 140581 | e | Toron 1962
RS || 262279 | S on oty | 502
il il 2 2 AR AR

Table 10: Average CPU time (in seconds) for HA with and without preprocessing

number of nodes. Yet, the number of detected robust 0-persistent nodes was much higher for graphs
that are wider than longer. Again, in these cases, the dynamic method behaved better than the
static with respect to the number of nodes found, as well as in terms of running times in general.
Like before, when applying CPLEX, the total times for solving the problems did not always decrease
when preprocessing was used.

When solving the problem with CPLEX, the reduction of the network was not enough to pay
off the running times increase, for the biggest instances. In fact, in general, CPLEX was the least

sensitive method to the application of preprocessing techniques, and also the most stable with

M NP AP AP, TP, TPy

2,100,8Cc | 1 1.009 0.287 2.157 1.512
Rs00.5 2 2.093 0.924 0.014 2.260 1.447
2,100,NCc | 1 1.968 1.633 3.193 3.017
500,10 2 2.954 1.914 1.056 3.377 2.812
2,100,8c | 1 2.193 2.124 3.654 3.696
500,20 2 3.599 1.084 1.080 2.711 2.985
2,100,NCc | 1 287.377 24.298 414.615 166.748
Ro00.5 2 204.481 212.268 1.469 358.764 | 151.085
R2100.NC 1 591.997 415.733 | 222.316 564.480 381.420
7000,10 2 ’ 411.210 77.898 575.924 | 252.869
R%B%Oéjgc 1 609.060 405.509 | 403.522 || 547.512 550.147
’ 2 404.279 | 401.172 563.689 563.949

Table 11: Average CPU time (in seconds) for LA with and without preprocessing
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M NP AP, AP, TP TP,
A e il 5
kI 2 il 2. 2
el Al T 2 AN R
RigS8C |] 180.742 o T o | T
RS || 250769 |y e | e | 15026
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Table 12: Average CPU time (in seconds) for CPLEX with and without preprocessing

w =10 M PS Pd Ns Nd w = 20 M PS Pd NS Nd
jzaoo | 1 [[0.057 [0.066 [ 8| 14 | 2100 | L [[0.077 [ 0.055 [| 14| 16
30,10 72170.067 | 0.078 || 9 | 18| 3920 [ ][0.082 | 0.071 || 20 | 23

1 Joor4a 0000 1] 1 1 [[0068 0092 4] 4

K3'%e |2 ]| 0.093 [ 0.110 L[ 12| Ki'so [ 2 [[0.093]0.09 || 6 21
3 [[0.109 [ 0.130 || 2| 14 3 [[0.103°[ 0.106 || 8 | 24

gzaoo | 1 [[0108 T0134 T 0] O] 2000 [ L [0103]0127] 3] 9
60,10 2 70.133 [ 0.171 || 0| 1 60,20 72 170.134 | 0.158 || 6 | 30

1 01530168 0] 0 1 [[o127 (0158 | o] 1

Kg'lo | 2 [ 0171 [ 0.212 0] 0| Kglso | 2 [[0.159 [ 0.182 0] 14
3 02037023 | 0] O 3 (01820212 | 0 18

gzaoo | 1 [[0185 70203 O] O] 2000 [ L [0164]0212] 0] 3
9010 70,192 [ 0248 || 0| 0| 9920 [2][0.219 | 0.251 || 0 | 10

1 [[o216 0277 o] 0 1 Jo217 0258 0] 0

Kgo'lo | 2 || 0.287 [ 0.346 0] 0| Kgoloo | 2 [[0238 0317 || 0] ©
3 02020410 0] O 3 ][0.301 [0367 | 0] O

Table 13: Average preprocessing CPU times (in seconds) and number of detected robust 0-persistent
nodes

respect to the structure of the network. This was specially clear for Karasan instances, which were
difficult to solve by the LA and HA, even though these are small size problems, but solved very
quickly by CPLEX.

The biggest problems, in networks with 7000 nodes, 140000 arcs and three scenarios, were
solved in less than 16 seconds by the HA, 180 seconds by the LA, and 19 seconds by CPLEX, after
preprocessing. In average, finding the robust shortest path in Karasan instances after dynamic
preprocessing took up to 280 seconds with the HA, 86 seconds with the LA, and 3 seconds with
CPLEX.
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w=10 | M NP AP, APy TP, TP,
2100 | 1 0.017 | 0.011 | 0.074 0.077
K310 5 0.082 0.015 | 0.007 0.082 0.085
1 0.031 0.027 || 0.105 0.117

Ko | 2 0.153 0.028 | 0.010 0.121 0.120
' 3 0.025 | 0.008 0.134 0.138
2100 | 1 0.257 | 0.113 0.365 0.247
Kao10 5 0-295 0.235 | 0.109 0.368 0.280
1 4217 | 4.212 4.370 4.380

Kg'to [ 2 4.322 4.202 4.127 4.373 4.339
3 4178 | 4.084 4.381 4.318

2100 | 1 10.209 | 10.164 || 10.394 10.367
Kao10 5 10-358 | 70188 [ 0.004 | 10380 | 10.172
1 280.593 | 280.053 || 280.809 | 280.330

Koo'l | 2 || 281.696 || 280.026 | 279.156 || 280.313 | 279.502
3 279.532 | 278.433 || 279.824 | 278.843

w=20| M NP AP, APy TP, TP,
2100 | 1 0.009 | 0.004 0.086 0.059
K320 5 0.053 0.007 | 0.004 0.089 0.075
1 0.014 | 0.008 0.082 0.100

K3 | 2 0.072 0.014 0.005 0.107 0.101
3 0.013 | 0.003 0.116 0.109

2100 | 1 0.039 [ 0.026 0.142 0.153
Keoz0 0.132 0.030 | 0.013 0.164 0.171
1 0.076 | 0.063 | 0.203 0.221

K39 [ 2 0.217 0.072 0.047 0.231 0.229
' 3 0.069 | 0.023 0.251 0.235
2100 | 1 0.242 [ 0.210 0.406 0.422
Kooz 5 0336 0.226 | 0.066 0.445 0.317
1 3722 | 3.560 3.939 3.818

K3'9 [ 2 3.743 3.608 3.114 3.846 3.431
' 3 3.593 | 2.939 3.894 3.306

Table 14: Average CPU time (in seconds) for algorithm HA with and without preprocessing
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