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Abstract

The minmax regret robust shortest path problem aims at finding a path that minimizes the
maximum deviation from the shortest paths over all scenarios. It is assumed that different arc
costs are associated with different scenarios. This paper introduces a technique to reduce the
network, before a minmax regret robust shortest path algorithm is applied. The preprocessing
method enhances others explored in previous research. The introduced method acts dynamically
and allows to update the conditions to be checked as new network nodes that can be discarded
are identified. Computational results on random and Karasan networks are reported, which
compare the dynamic preprocessing algorithm and its former static version. Two robust shortest
path algorithms as well as the resolution of a mixed integer linear formulation by a solver are
tested with and without these preprocessing rules.

Keywords: Robust shortest path, Discrete scenarios, Dynamic preprocessing.

1 Introduction

One approach for dealing with costs uncertainty is to consider several possible scenarios. In the
case of the shortest path problem this is done either by associating a discrete set of costs with
each arc, or by assuming each arc cost varies within an interval. In this paper, the former case is
considered for the minimax regret robust shortest path problem, here simply called robust shortest
path problem. This problem consists of finding a path between two nodes of a network, which
minimizes the maximum regret cost of each path towards the shortest path, for all scenarios.

Yu and Yang [12] and, more recently, Pascoal and Resende [10], developed algorithms for the
robust shortest path problem. Later, inspired by the works of Karasan, Pinar and Yaman [5] and
then Catanzaro, Labbé and Salazar-Neumann [3], for the interval data case, Pascoal and Resende
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[11] presented theoretical results and algorithms that allow to reduce the network before a robust
shortest path algorithm is applied. These preprocessing techniques can identify a priori arcs that are
certainly part of any optimal solution, as well as nodes that do not belong to any optimal solution,
in order to be deleted later.

The goal of this work is to enhance the preprocessing strategy developed in [11] for nodes.
The improvement consists in developing a dynamic rule, in the sense that it is updated as the
preprocessing algorithm runs and paths are computed. The idea behind this improvement is to
further reduce the network before a robust shortest path algorithm is applied, that is, to increase
the number of detected nodes that do not belong to any optimal solution. The latest aspect
concerns limiting the number of scenarios to consider in the tests, and thus to save computational
time. Empirical experiments compare the new rules with the former. Even though the extension of
the rule introduced in [11] for detecting arcs in optimal solutions is expected to enhance the former,
the performed tests did not show its usefulness in practice. For this reason that rule is omitted in
the following. The interested reader may consult [9] for further details.

The remainder of the paper contains five other sections. Notation and concepts related with
the robust shortest path problem are introduced in the next one. In addition, a brief sketch of the
labeling and the hybrid robust shortest path algorithms presented in [10] is given. Section 3 is dedi-
cated to the development of the new preprocessing rule and of the algorithm that implements it. An
example is provided in Section 4. Results of computational tests on random and Karasan instances,
comparing the new rule and its original static version, when used together with the labeling and
the hybrid approaches, as well as with using CPLEX for solving a mixed integer formulation of the
robust shortest path problem, are reported and discussed in Section 5. Conclusions are drawn in
Section 6.

2 Preliminary concepts

A finite multi-scenario model is represented as G(V,A, Sk), where G is a directed graph with a set
of nodes V = {1, . . . , n}, a set of m arcs A ⊆ {(i, j) : i, j ∈ V and i 6= j} and a finite set of scenarios
Sk := {1, . . . , k}, k > 1. The density or average degree of G is denoted by d, which is given by
d = m/n. For each arc (i, j) ∈ A, csij represents its cost in scenario s, s ∈ Sk. It is assumed that
the graph contains no parallel arcs.

A path from i to j, i, j ∈ V , in graph G, also called an (i, j)-path, is an alternating sequence of
nodes and arcs of the form

p = 〈v1, (v1, v2), v2, . . . , (vr−1, vr), vr〉,

with v1 = i, vr = j and where vl ∈ V , for l = 2, . . . , r − 1, and (vl, vl+1) ∈ A, for l = 1, . . . , r − 1.
Because it is assumed that graphs do not contain parallel arcs, in the following paths will be
represented simply by their sequence of nodes.

The set of arcs (nodes) in a path p is denoted by A(p) (V (p)). Given two paths p, q, such that
the destination node of p is also the initial node of q, the concatenation of p and q is the path
formed by p followed by q, and is denoted by p � q. The cost of a path p in scenario s, s ∈ Sk, is
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defined by
cs(p) =

∑
(i,j)∈A(p)

csij . (1)

With no loss of generality, 1 and n denote the origin and the destination nodes of the graph G,
respectively. The set of all (1, n)-paths in G is represented by P (G).

Let qsij represent the shortest (i, j)-path in G, i, j ∈ V , for a given scenario s ∈ Sk. In order to
simplify the notation, qs is used to denote the (1, n)-path, qs1n, and LBs

ij is used to denote the cost
of the path qsij in scenario s, cs(qsij).

The minmax regret robust shortest path problem aims at finding a path in P (G) with the least
maximum robust deviation, i.e., satisfying

arg min
p∈P (G)

RC(p), (2)

where RC(p) is the robustness cost of p, defined by

RC(p) := max
s∈Sk

RDs(p), (3)

and RDs(p) represents the robust deviation of path p in scenario s, s ∈ Sk, defined by

RDs(p) := cs(p)− LBs
1n. (4)

An optimal solution of (2) is called a robust shortest path.
A node is called robust 1-persistent if it belongs to some robust shortest (1, n)-path. Otherwise,

the node is denominated robust 0-persistent. The origin and the destination nodes of the network
are trivially robust 1-persistent nodes.

Three methods for finding a robust shortest path were developed in [10]. The two with the
best performances in empirical terms were the labeling algorithm (LA) and the hybrid algorithm
(HA). The LA is a variant of the labeling approach proposed in [7], adapted to the minmax regret
objective function, but using the cost lower and upper-bounds similarly. The HA ranks simple paths
for a suitable scenario and limited to an upper-bound that depends on the costs of the computed
paths. The ranking is complemented with pruning rules based on the cost bounds imposed for the
first method. This allows to discard useless solutions at an early stage.

3 Preprocessing techniques

In [11], a sufficient condition was established to identify robust 0-persistent nodes. This condition
allows to test all the nodes that do not belong to a given path in the network. In this section, a
new rule is developed to improve the previous preprocessing method, by restricting the number of
tested scenarios and also by updating dynamically the tests as new solutions are computed. This
rule allows to find a bigger number of robust 0-persistent nodes, than the previous.

For the sake of completeness, first, a result introduced in [11] is recalled to be used later.
Proposition 1 concerns the identification of robust 0-persistent nodes.
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Proposition 1 ([11]). Consider a path p ∈ P (G), and a node i /∈ V (p). If

∃ŝ ∈ Sk : RDŝ(qŝ1i � qŝin) > RC(p), (5)

then node i is robust 0-persistent.

Some results are now presented to support an algorithm for identifying robust 0-persistent nodes.
As mentioned earlier, the idea behind this version is to make the search dynamic and detect robust
0-persistent nodes, according to the least robustness cost of the (1, n)-paths obtained along the
process.

Let RCmin be a variable which stores the least robustness cost of a computed (1, n)-path at any
iteration of the algorithm. Considering only the shortest (1, n)-path in scenario 1, q1, that variable
is initialized with

RCmin = RC(q1),

for identifying robust 0-persistent nodes. Let Nod denote the set of nodes to be scanned. The
condition provided by Proposition 1 can be rewritten, using variable RCmin. For any node i ∈ Nod,
if

∃ŝ ∈ Sk : RDŝ(qŝ1i � qŝin) > RCmin, (6)

is satisfied, then the node i is robust 0-persistent. This condition demands the trees of the shortest
(1, j)-paths and of the shortest (j, n)-paths for each scenario s, denoted by T s

1 and T s
n , respectively,

j ∈ V , s ∈ Sk, and their costs LBs
1j and LBs

jn to be known. Any shortest path tree algorithm can
be used with such purpose [1].

Let V0 be used to collect the robust 0-persistent nodes. According to Proposition 1, and to the
initialization of RCmin, Nod is initialized by

Nod = V \V (q1).

The value of variable RCmin may change along the algorithm. The (1, n)-paths computed by
the algorithm are stored in a list XP , without repetitions. The set of nodes to scan may also change,
every time a new (1, n)-path p such that p /∈ XP has a robustness cost not greater than RCmin.
If RC(p) < RCmin, RCmin is updated with RC(p). In what follows, it is shown how to update
Nod, depending on the obtained path p satisfying RC(p) ≤ RCmin.

When searching for robust 0-persistent nodes, Proposition 1 establishes that the analysis of the
nodes of path p, V (p), can be skipped. Thus, if RC(p) = RCmin, the nodes of V (p) can be removed
from Nod, and, if RC(p) < RCmin, the search focuses all the nodes outside V (p) that were not
already identified as robust 0-persistent. For a selected node i ∈ Nod, path p has the particular
form qs1i � qsin, s ∈ Sk. Then, one can write

Nod =

{
Nod\V (qs1i � qsin) if RC(qs1i � qsin) = RCmin

V \(V (qs1i � qsin) ∪ V0) if RC(qs1i � qsin) < RCmin
(7)

Nodes may be scanned more than once, because the analyzed (1, n)-paths may have nodes in
common. This makes that some tests may be repeated after RCmin is updated. Besides, in order
to avoid repeating the path robust deviations, it is useful to store them, as

RDs
i = RDs(qs1i � qsin) , s ∈ Sk , i ∈ V \{1, n}. (8)
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A list XN is used to store the nodes that have already been analyzed along the process.
The number of scenarios used to test condition (5) may make the robust 0-persistent nodes

test computationally demanding. In [11] this test uses k scenarios. The same holds for condition
(6), so in order to make this task lighter, in the following only a small number of scenarios to
test, M , M ≤ k, will be considered. Moreover, for each node i ∈ Nod, when the first scenario
si ∈ Sk for which (6) holds is known, then i is a robust 0-persistent node and its analysis can halt.
Hence, the tests for scenarios si + 1, . . . ,M , can be skipped. Generally, if max{si : i ∈ Nod} 6= M ,
the computation of the trees T s

1 can be skipped for s ∈ {max{si : i ∈ Nod} + 1, . . . ,M}. The
pseudo-code is given in Algorithm 1.

Algorithm 1: Dynamic version for finding robust 0-persistent nodes
1 for s = 1, . . . , k do
2 Compute the tree T s

n ;
3 for j = 1, . . . , n do LBs

jn ← cs(qsjn) ;

4 RCmin← RC(q1);
5 XP ← {q1} ; XN ← ∅;
6 Nod← V \V (q1) ; V0 ← ∅;
7 while Nod 6= ∅ do
8 Choose a node i ∈ Nod;
9 Nod← Nod− {i};

10 if i /∈ XN then
11 XN ← XN ∪ {i};
12 for s = 1, . . . ,M do
13 if tree T s

1 was not yet determined then Compute the tree T s
1 ;

14 RDs
i ← LBs

1i + LBs
in − LBs

1n;
15 if RDs

i > RCmin then
16 V0 ← V0 ∪ {i};
17 break;

18 if qs1i � qsin /∈ XP then
19 XP ← XP ∪ {qs1i � qsin};
20 RC(qs1i � qsin)← max

{
RDs

i ,max
{
RDr(qs1i � qsin) : r ∈ Sk\{s}

}}
;

21 if RC(qs1i � qsin) = RCmin then Nod← Nod\V (qs1i � qsin) ;
22 if RC(qs1i � qsin) < RCmin then
23 RCmin← RC(qs1i � qsin);
24 Nod← V \(V (qs1i � qsin) ∪ V0);

25 else
26 for s = 1, . . . ,M do
27 if RDs

i > RCmin then
28 V0 ← V0 ∪ {i};
29 break;

30 return V0

In terms of the worst case computational time complexity, the first phase of Algorithm 1 is
similar to the first phase of the static version [11]. The former initializes RCmin with RC(q1),
which means it is performed in Oa

1 = O(km + kn) = O(km) time for acyclic networks and in
Oc

1 = O(k(m+ n log n)) for general networks.
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The second phase concerns searching for robust 0-persistent nodes, which compared to the
static version has the additional work of calculating RDs

i , i ∈ Nod, s ∈ Sk, updating set Nod, and
repeating the tests (6) due to the updates of RCmin. For the first task, assuming that the trees T s

1

and T s
n , and the associate costs for all scenarios were previously computed, RDs

i , i ∈ Nod, s ∈ Sk,
is obtained in O(k) time. The second task concerns the update of Nod and involves differences
and unions of sets with n nodes at most. These operations require an O(n) complexity, when using
indexation by hash sets [2]. The third procedure demands O(1) operations for each scenario in Sk,
and each node i ∈ Nod, since RDs

i was already determined.
In a worst case, the three tasks above are performed k(n − 2) times at most, one per each

scenario s, s ∈ Sk, and each node selected in Nod, with up to n − 2 nodes. Thus, an additional
work of O(kn2+k2n) is added to the second phase of the static version. In conclusion, Algorithm 1
has a time complexity of O(kn2 + k2n) for all types of networks, since log n� n and m < n2.

4 Example

In the following, the dynamic algorithm for finding robust 0-persistent nodes introduced in Sec-
tion 3 is exemplified. In order to better understand the differences introduced in the previous
algorithm with respect to the static preprocessing method presented in [11], the application of the
two approaches is described.
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Figure 1: Network G(V,A, S2)

Let G(V,A, S2) be the network depicted in Figure 1. Figure 2 shows the shortest path trees
from every node to node 7 in G, in scenario 1 – Figure 2.(a) – and in scenario 2 – Figure 2.(b).

Figure 3 shows the shortest path trees from node 1 to any node in G(V,A, S2), in scenario 1 –
Figure 3.(a) – and in scenario 2 – Figure 3.(b).

In what follows the number of scenarios tested is limited to M ∈ {1, 2}. As mentioned in the
previous section, this constraint was not used in [11], it will be applied to both approaches for the
sake of comparing them.

Static approach The variable RCmin is initialized by the minimum robustness cost of the
shortest (1, 7)-paths of G. According to Figure 2, q1 = 〈1, 2, 7〉, with LB1

17 = 2, and q2 = 〈1, 4, 6, 7〉,
with LB2

17 = 7. Given that c2(q1) = 12 and c1(q2) = 8, one has RC(q1) = 5 and RC(q2) = 6.
Hence, q1 is the shortest (1, 7)-path with the least robustness cost and, therefore, RCmin = 5.
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Figure 2: Shortest path trees rooted at node 7 in G(V,A, S2)

1
0

2
2

3
0

4
0

5
3

6
2

7
2

j

LB1
1j

(a) in scenario 1

1
0

2
7

3
4

4
3

5
6

6
5

7
7

j

LB2
1j

(b) in scenario 2

Figure 3: Shortest path trees rooted at node 1 in G(V,A, S2)

This value does not change along the static method and the set of arcs Nod to scan is initialized
by V \V (q1) = {3, 4, 5, 6}.

• M = 1

Starting with node 3, the inequality (6) is not satisfied in scenario 1, given that

RD1
3 = LB1

13 + LB1
37 − LB1

17 = 1 ≤ RCmin.

The same thing happens for nodes 4, 5 and 6, because

RD1
i = LB1

1i + LB1
i7 − LB1

17 = 5 ≤ RCmin , i = 4, 5, 6.

Therefore, no robust 0-persistent nodes are detected when considering only scenario 1, V0 = ∅.

• M = 2

For scenario 2, the nodes 3, 4 and 6 still do not satisfy (6), given that

RD2
3 = LB2

13 + LB2
37 − LB2

17 = 3 ≤ RCmin,
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and
RD2

i = LB2
1i + LB2

i7 − LB2
17 = 0 ≤ RCmin , i = 4, 6.

Nevertheless, (6) holds for node 5 and scenario 2,

RD2
5 = LB2

15 + LB2
57 − LB2

17 = 6 > RCmin,

therefore, node 5 is the only one identified as robust 0-persistent, V0 = {5}.

Dynamic approach According to Algorithm 1, RCmin is initialized with RC(q1) = 5 and
Nod with V \V (q1) = {3, 4, 5, 6}.

• M = 1

Starting by scanning node 3, condition (6) is not satisfied for scenario 1. Then, the robustness
cost of the path q113 � q137 = 〈1, 3, 2, 7〉 is determined, RC(〈1, 3, 2, 7〉) = 3, and this value
improves RCmin. Additionally, by (7), Nod is updated to V \V (〈1, 3, 2, 7〉) = {4, 5, 6}, since
at this point V0 = ∅.

For the updated RCmin = 3, when choosing nodes 4, 5 and 6 to scan, inequality (6) is always
satisfied for scenario 1, given that

RD1
i = 5 > RCmin , i = 4, 5, 6.

Consequently, all the nodes in Nod are identified as robust 0-persistent, i.e., V0 = {4, 5, 6}.

• M = 2

Condition (6) holds for node 3 and scenarios 1 and 2, with the initial RCmin = 5. Then, the
path associated with node 3 for scenarios 1 and 2, qs13 � qs37, s ∈ S2, is given by 〈1, 3, 2, 7〉,
which has a robustness cost of 3. The remaining steps are those presented for M = 1, thus
V0 = {4, 5, 6}.

For this example, Algorithm 1 is more effective than its static version, given that it detects more
robust 0-persistent nodes than the former version.

Computing a robust shortest path after preprocessing The reduced network obtained from
preprocessing is depicted in Figure 4. The arcs in G are represented with a dashed line in Figure 4.
The robust 0-persistent nodes, 4, 5 and 6, are removed from G, as well as all the arcs that start or
end in these nodes.
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3

3, 3

7
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c1ij , c
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ij

j

Figure 4: Reduced network after preprocessing
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There are only two (1, 7)-paths containing arc (2, 7) in the reduced network, q1 = 〈1, 2, 7〉, with
RC(q1) = 5, and q = 〈1, 3, 2, 7〉, with RC(q) = 3. Therefore, q is the robust shortest (1, 7)-path in
G.

5 Computational experiments

This section is dedicated to the computational comparison of the static (presented in [11]) and the
dynamic (in Algorithm 1) methods for preprocessing robust 0-persistent nodes, and to their impact
on solving the robust shortest path problem when combined with the LA and the HA introduced
in [10]. Additionally, the integer formulation of the robust shortest path problem with discrete
scenarios

min max
s∈Sk

 ∑
(i,j)∈A

csijxij − LBs
1


s. t.

∑
(1,j)∈A

x1j −
∑

(i,1)∈A

xi1 = −1∑
(u,j)∈A

xuj −
∑

(i,u)∈A

xiu = 0, u ∈ V − {1, n}∑
(n,j)∈A

xnj −
∑

(i,n)∈A

xin = 1

xij ∈ {0, 1}, (i, j) ∈ A

(9)

was solved using CPLEX [4], after having been rewritten as a mixed integer linear problem.
Algorithm 1 and its static version were implemented in Matlab 7.12 and the IBM ILOG CPLEX

Optimization Studio, 12.6.2. version, was used to solve the linear formulation obtained from (9).
The tests ran on a computer equipped with an Intel Pentium Dual CPU T2310 1.46GHz processor
and 2GB of RAM. As a preliminary task for all the codes, Dijkstra’s algorithm [1] is used to
solve the single destination shortest path problem for a given scenario. As mentioned earlier, the
preprocessing techniques were combined with the LA and the HA in [10], and with CPLEX. The
robust shortest path problem was solved with and without preprocessing.

5.1 Test problems

The benchmarks used in the experiments are divided into two main classes: randomly generated
directed graphs and Karasan graphs.

The tests performed on random graphs are divided in three groups. The first two include those
with arc costs assigned with integer numbers in U(0, c), c > 0. In this case, networks with n nodes,
density d and k scenarios are denoted by Rk,c

n,d. For the considered instances, n ∈ {500, 7000},
d ∈ {5, 10, 20}, k ∈ {2, 3} and c ∈ {100, 10 000}. In addition, n ∈ {2000, 5000} is used, when LA
and HA are applied for c = 100, given that these instances have already been considered in [9]. The
third group considers networks with two scenarios and negatively correlated costs. Following the
procedure in [8], half of the arc costs in scenario 1 are integers randomly chosen in U(0, c/2) and
the costs in scenario 2 are random integers in U(c/2, c), c > 0. The remaining arc costs are assigned
similarly, but to scenarios 2 and 1. Such networks are denoted by R2,c,NC

n,d . The tests comprised
instances with n ∈ {500, 7000}, d ∈ {5, 10, 20} and c = 100.
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The Karasan graphs have the structure presented in [5], i.e. they are acyclic and layered graphs.
Each arc cost is assigned with a random integer in U(0, c), c > 0. In the following, Karasan networks
with n nodes, width w and k scenarios are denoted by Kk,c

n,w. The source and the destination are
dummy nodes that link to the first and from the last layers, respectively. The tests include instances
with n ∈ {30, 60, 90}, w ∈ {10, 20}, k ∈ {2, 3} and c = 100. The considered widths are bigger than
usual (see, for instance, [5, 6]) because the preprocessing techniques were not effective for networks
with small width compared to the number of nodes.

For each network dimension, ten instances were generated. For each instance, the static and
the dynamic preprocessing algorithms were applied, and (6) was tested for the scenarios 1, . . . ,M ,
with M ∈ {1 . . . k}. The robust shortest path problems were solved by LA, HA and CPLEX,
after preprocessing. Alternatively, these methods solved the same instances from scratch, with no
preprocessing.

5.2 Results

In order to analyze the performance of the static and the dynamic algorithms, the average total
running times (in seconds) are calculated for each network dimension. Let P , NP and AP represent
the average CPU times to preprocess robust 0-persistent nodes, to solve the robust shortest path
problem with no preprocessing, and to do the same after preprocessing, respectively. Let also TP

denote the average overall CPU time for finding a robust shortest path combined with preprocessing,
i.e., TP = P+AP . Additionally, let N represent the average number of detected robust 0-persistent
nodes. The application of the static and the dynamic methods is distinguished by the indices s and
d, respectively.

The least total CPU time to find the robust shortest path with LA, HA and CPLEX is bold
typed, for each type of instances that have been considered.

Random networks First, the results obtained for random networks when costs range in [0, c],
c = 100, are considered. The averages are presented in Tables 1 – 4. The number of detected robust
0-persistent nodes is high for the networks with the lowest densities (d ∈ {5, 10}), particularly for
Algorithm 1 rather than for its static version – Table 1. Moreover, for fixed n, d and M , less nodes
tend to be detected when k increases, since Ns and Nd also decrease. For all the instances, in spite
of the preprocessing work demanded by Algorithm 1 being heavier than the required by the static
version, Ps < Pd, the additional effort of the dynamic version leads to the detection of more robust
0-persistent nodes, Ns < Nd.

Tables 2 – 4 show that preprocessing robust 0-persistent nodes can be more effective to solve
the robust shortest path problem by LA, HA or CPLEX, rather than without using preprocessing.
Combining dynamic preprocessing with finding a robust shortest path was the most efficient method
when HA was applied for M = 1 on the biggest networks (n = 2000, d = 5 and k = 3; n = 5000,
except for d = 20 and k = 3, and n = 7000, for d = 10 or for d = 20 and k = 2). The same
happened when LA was applied on most of the networks (except for n = 500 and d = 20). In case
of CPLEX, the dynamic procedure stood out for all the smallest networks, except for d = 10 and
k = 2, and for the biggest networks, for the single cases d = 10 and k = 2.
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M Ps Pd Ns Nd M Ps Pd Ns Nd

R2,100
500,5

1 0.713 0.772 267 491
R2,100

2000,5

1 4.744 4.872 1518 1992
2 0.948 0.986 361 495 2 6.094 6.384 1788 1995

R3,100
500,5

1 1.142 1.083 130 410
R3,100

2000,5

1 5.745 5.977 764 1730
2 1.384 1.308 222 479 2 7.150 7.353 1126 1963
3 1.557 1.527 279 493 3 8.559 8.748 1336 1992

R2,100
500,10

1 0.877 1.060 149 430
R2,100

2000,10

1 4.315 4.632 911 1943
2 0.199 1.238 196 483 2 5.637 5.883 1144 1990

R3,100
500,10

1 1.201 1.318 65 170
R3,100

2000,10

1 6.313 6.846 106 1250
2 1.520 1.584 120 324 2 8.047 8.431 188 1806
3 1.777 1.915 151 389 3 9.474 10.094 264 1925

R2,100
500,20

1 0.856 1.572 19 103
R2,100

2000,20

1 4.823 5.845 8 1662
2 1.127 1.630 34 201 2 6.218 7.203 14 1862

R3,100
500,20

1 1.145 1.328 2 16
R3,100

2000,20

1 7.140 8.809 57 266
2 1.481 1.723 4 44 2 9.802 9.774 138 710
3 1.800 1.939 5 97 3 11.392 11.421 179 963

R2,100
5000,5

1 20.486 20.905 3247 4990
R2,100

7000,5

1 129.504 134.173 4838 6908
2 26.391 26.770 4110 4994 2 142.658 143.929 5667 6995

R3,100
5000,5

1 25.895 25.979 1477 4646
R3,100

7000,5

1 186.513 196.549 4006 6421
2 31.760 32.382 2193 4966 2 205.702 212.144 5037 6925
3 37.897 38.531 2633 4994 3 222.072 223.820 5561 6990

R2,100
5000,10

1 21.449 21.797 1260 4939
R2,100

7000,10

1 132.743 141.608 1606 6598
2 27.264 27.888 1788 4993 2 145.890 152.684 1892 6991

R3,100
5000,10

1 27.601 26.594 353 3782
R3,100

7000,10

1 199.218 212.207 324 5634
2 34.233 33.236 661 4724 2 216.220 228.328 736 6798
3 40.223 39.827 900 4915 3 232.169 246.511 1055 6953

R2,100
5000,20

1 22.396 27.453 119 4404
R2,100

7000,20

1 149.545 160.489 1014 5217
2 29.453 33.095 208 4806 2 164.483 180.172 1412 6681

R3,100
5000,20

1 28.653 42.394 60 1383
R3,100

7000,20

1 213.284 237.520 58 2841
2 34.135 42.061 108 2713 2 232.389 248.409 122 4177
3 41.741 45.958 155 3248 3 244.730 270.563 160 4838

Table 1: Average preprocessing CPU times (in seconds) and number of detected robust 0-persistent
nodes
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The fact that more robust 0-persistent nodes were detected by the dynamic method than by
the static method contributes for a more significant reduction of the network and, consequently, of
the average CPU times when finding a robust shortest path after preprocessing, APs > APd. In
conclusion, the dynamic version outperformed the static version. Besides, preprocessing with the
dynamic search was also a better alternative than solving the problem without any preprocessing,
TPd < NP .

In spite of the previous considerations, HA was the fastest method for the smallest networks
without preprocessing, being replaced by CPLEX for the biggest and densest networks. Still, for the
majority of the tested networks, the results of HA combined with preprocessing were more effective
than the homologous results for LA and CPLEX, except when n = 7000, d = 10 and k = 3, or
n = 7000 and d = 20, for which CPLEX outperformed the remaining algorithms.

LA was never the fastest method, however it was the most sensitive to preprocessing, and showed
the most drastic reductions with respect to NP . This can be explained by the fact that removing
nodes from the network allows to discard a considerable number of labels in LA, making easier the
computation of an optimal solution. For HA, despite the fact that eliminating nodes reduces the
effort on calculating reduced costs, preprocessing does not have so much impact, given that the
search for a robust shortest path is more focused on selecting suitable deviation arcs and that can
be done in few iterations without preprocessing [10]. Another aspect to take into account is that
with the increase of n, the available number of deviation arcs may increase substantially, making
the problem harder to solve with HA, rather than with CPLEX. In fact, CPLEX depended mainly
on the number of arcs of the network, which means that its stability was not greatly affected by the
network structure.

For each fixed n, d and k, the smaller the number of scenarios for testing (6), the less effort was
required for computing the shortest path trees rooted at node 1. Hence, small values of M implied
small preprocessing times. This is valid for both the static and the dynamic approaches. The latter
is always better than the first in detecting robust 0-persistent nodes, Ns < Nd, when M is fixed –
Table 1. In general, the best value of M to consider in order to ensure that finding a robust shortest
path with preprocessing is faster than solving the problem without preprocessing, must assure that
P < NP and that the number of detected robust 0-persistent nodes is sufficient to reduce the CPU
time which may not exceed NP − P . Tables 2 – 4 show that Algorithm 1 was more effective than
its static version with this respect when M = 1, except if n = 7000, with d = 5 for HA and CPLEX
and with d = 10, k = 3 for CPLEX, and if n = 500, with d = 10, k = 2 for CPLEX and with
d = 20 for LA. When M = 2, 3, the dynamic preprocessing combined with LA or CPLEX was the
most efficient method in very few cases.
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M NP APs APd TPs TPd

R2,100
500,5

1 3.387 2.087 1.960 2.800 2.732
2 1.943 1.800 2.891 2.786

R3,100
500,5

1
4.620

2.365 2.045 3.507 3.128
2 1.950 1.840 3.334 3.148
3 1.945 1.820 3.502 3.347

R2,100
500,10

1 4.685 3.233 2.993 4.110 4.053
2 2.683 2.147 2.882 3.385

R3,100
500,10

1
5.159

3.445 2.600 4.646 3.918
2 2.695 2.475 4.215 4.059
3 2.520 2.305 4.297 4.220

R2,100
500,20

1 5.116 3.540 2.813 4.396 4.385
2 3.463 2.210 4.590 3.840

R3,100
500,20

1
5.472

3.265 2.770 4.410 4.098
2 2.905 2.585 4.386 4.308
3 2.750 2.415 4.550 4.354

R2,100
7000,5

1 140.900 8.307 4.263 137.811 138.436
2 5.227 1.950 147.885 145.879

R3,100
7000,5

1
195.734

8.550 3.435 195.063 199.984
2 5.685 2.420 211.387 214.564
3 4.590 2.315 226.662 226.135

R2,100
7000,10

1 163.533 25.300 6.003 158.043 147.611
2 17.563 2.947 163.453 155.631

R3,100
7000,10

1
215.976

14.335 7.495 213.553 219.702
2 11.060 4.320 227.280 232.648
3 10.195 2.150 242.364 248.661

R2,100
7000,20

1 153.454 20.167 6.647 169.712 167.136
2 19.077 3.683 183.560 183.855

R3,100
7000,20

1
222.188

30.863 18.517 244.147 256.037
2 29.733 12.693 262.122 261.102
3 29.027 7.497 273.757 278.060

Table 4: Average CPU times (in seconds) for CPLEX with and without preprocessing

Tables 5 – 8 summarize the average results obtained when arc costs range between 0 and c =

10 000. A bigger effort is required to preprocess nodes when the arc costs are larger than for the
previous set of benchmarks. This is reflected by the increase of the number of detected robust
0-persistent nodes by both the static and the dynamic approaches – Table 5. With the dynamic
procedure, in particular, this is more expressive for the biggest networks and less significant for the
smallest networks. Nevertheless, this procedure is still better than the static in terms of detected
robust 0-persistent nodes.

In general, the best CPU times to solve the robust shortest path problem (with and without
preprocessing) for c = 10 000 are bigger than the homologous values for c = 100, for all the methods
and the smallest networks. The same happened for the biggest networks, with LA and HA, except
when d = 20, whereas CPLEX was faster when larger costs were involved.

For c = 10 000, the improvement of combining the dynamic procedure for solving the robust
shortest path problem was observed in more cases than for c = 100, rather than combining the
static procedure or determining a solution from scratch. The only exception was the application of
CPLEX for n = 7000, which was faster to solve from scratch. Still for c = 10 000, HA combined
with the dynamic procedure is faster on instances with n = 500 (d ∈ {5, 10} and k = 3), for which
no kind of preprocessing is effective in terms of CPU times for c = 100, and on instances with
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n = 7000, d = 5 and k = 2, for which the static procedure is more efficient when c = 100 – Tables
2 and 6. The latter situation happened for LA when n = 500, d = 20 and k = 2 – Tables 3 and 7 –
and for CPLEX when n = 500, d = 10 and k = 2 – Tables 4 and 8.

M Ps Pd Ns Nd M Ps Pd Ns Nd

R2,10000
500,5

1 1.168 1.249 351 460
R2,10000

7000,5

1 149.159 151.669 3700 6923
2 1.412 1.504 426 495 2 156.563 160.888 4725 6996

R3,10000
500,5

1 2.083 2.060 163 304
R3,10000

7000,5

1 195.342 208.062 4107 6457
2 2.242 2.652 266 441 2 208.873 219.120 5105 6931
3 2.390 2.566 319 479 3 221.730 245.684 5604 6991

R2,10000
500,10

1 1.278 1.449 211 371
R2,10000

7000,10

1 150.612 163.895 361 6800
2 1.453 1.636 284 487 2 167.918 174.420 781 6993

R3,10000
500,10

1 1.964 2.055 72 226
R3,10000

7000,10

1 205.741 220.140 118 5858
2 2.209 2.421 128 350 2 223.808 231.268 284 6845
3 2.481 2.696 152 413 3 228.126 234.946 435 6967

R2,10000
500,20

1 1.382 1.532 108 276
R2,10000

7000,20

1 156.746 177.824 2569 5862
2 1.612 1.847 124 369 2 162.099 180.452 2773 6827

R3,10000
500,20

1 2.281 2.230 22 5
R3,10000

7000,20

1 202.199 214.773 106 2750
2 2.206 2.544 33 38 2 223.909 234.823 220 4699
3 2.484 2.860 50 89 3 240.718 253.720 286 5556

Table 5: Average preprocessing CPU times (in seconds) and number of detected robust 0-persistent
nodes

Average results when arc costs vary between 0 and c = 100 and are negatively in the two
scenarios are shown in Tables 9 – 12. It can be observed that preprocessing is more time demanding
on these instances than with costs in U(0, 100). Besides, the same happened for some instances
with costs in U(0, 10 000), in particular for the smallest networks with the highest densities, namely,
d = 10, M = 2 and d = 20. In terms of the number of identified robust 0-persistent nodes, the
dynamic procedure is still more effective than the static, but globally, fewer robust 0-persistent
nodes are found than when c = 100. In particular, the preprocessing is not effective for the tested
denser networks, where they were rarely detected.

In general, all the smallest CPU times for finding the robust shortest path are bigger than those
obtained by all the methods when costs range in U(0, 100) and even in U(0, 10 000) for most of the
cases. In terms of running time, the preprocessing was not effective for HA, given that the problem
was much easier to solve from scratch – Table 10. For LA and CPLEX, fewer situations tend to
be improved with the combination of the dynamic procedure to solve the problem, when compared
with the experiments for costs in U(0, 100). Namely, for LA, when n = 7000 and d = 20 – Tables 3
and 11, which was outperformed by the combination with the static procedure. The same situation
happened for CPLEX, when n = 500 and d = 20, and, additionally, when n = 7000 and d = 10,
which was outperformed by solving the problem with no preprocessing – Tables 4 and 12.

Karasan networks Now the results obtained for Karasan networks are presented. The averages
are shown in Tables 13 – 16.

Like for random networks, for this new class of graphs the dynamic algorithm outperformed
the static in terms of the number of preprocessed nodes (Nd > Ns). Besides, it can be observed
that the wider the Karasan graph, the easier it is to identify robust 0-persistent nodes – Table 13.
When the graph width increases, there exist more arcs between layers, which can lead to bigger
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M NP APs APd TPs TPd

R2,10000
500,5

1 1.153 0.073 0.007 1.241 1.256
2 0.046 0.002 1.458 1.506

R3,10000
500,5

1
2.205

0.219 0.047 2.302 2.107
2 0.119 0.005 2.361 2.657
3 0.087 0.003 2.477 2.569

R2,10000
500,10

1 1.283 0.157 0.032 1.435 1.481
2 0.103 0.002 1.556 1.638

R3,10000
500,10

1
2.198

0.319 0.095 2.283 2.150
2 0.283 0.018 2.492 2.439
3 0.250 0.007 2.731 2.703

R2,10000
500,20

1 1.357 0.256 0.067 1.638 1.599
2 0.246 0.018 1.858 1.865

R3,10000
500,20

1
2.311

0.468 0.221 2.749 2.451
2 0.429 0.094 2.635 2.638
3 0.417 0.073 2.901 2.933

R2,10000
7000,5

1 174.960 15.111 0.055 164.270 151.724
2 7.520 0.001 164.083 160.889

R3,10000
7000,5

1
216.540

8.870 0.270 204.212 208.332
2 8.659 0.010 217.532 219.130
3 21.035 0.006 242.765 245.690

R2,10000
7000,10

1 184.114 42.287 0.184 192.899 164.079
2 39.346 0.063 207.264 174.483

R3,10000
7000,10

1
252.671

66.776 1.140 272.517 221.280
2 31.455 0.045 255.263 231.313
3 29.198 0.012 257.324 234.958

R2,10000
7000,20

1 182.971 23.473 1.230 180.219 179.054
2 22.954 0.052 185.053 180.504

R3,10000
7000,20

1
224.993

36.775 16.417 238.974 231.190
2 35.700 3.877 259.609 238.700
3 36.281 1.348 276.999 255.068

Table 6: Average CPU time (in seconds) for HA with and without preprocessing

path deviation costs, thus increasing the possibilities of satisfying condition (6). For the considered
Karasan instances, no type of preprocessing was effective for the biggest networks (n ∈ {60, 90})
with the smallest width, given that no robust 0-persistent nodes were found with the static or the
dynamic procedures. For the biggest width, more robust 0-persistent nodes were detected by the
dynamic strategy, except for n = 90 and k = 3.

In terms of the CPU times to solve the robust shortest path problem, of the three methods used,
the combination with the dynamic procedure was the most effective for CPLEX. That is shown on
Table 16, for almost all the instances, expect the biggest with k = 3. Other exceptions were observed
for the LA and HA cases – Tables 14 and 15. However, for the latter instances, the combination
with the dynamic preprocessing resulted better, but with worse CPU times, than CPLEX without
preprocessing.

In general, for the widest Karasan networks, except n = 90, k = 3, HA was the fastest method
to find a robust shortest path. More concretely, without preprocessing for the smallest networks
and with preprocessing for the remaining. Instead, for the Karasan networks with the smallest
width, LA combined with the static procedure was the fastest method for the smallest networks,
and CPLEX combined with the dynamic preprocessing was the fastest for the biggest networks.
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M NP APs APd TPs TPd

R2,10000
500,5

1 1.859 0.310 0.033 1.478 1.282
2 0.118 0.009 1.530 1.513

R3,10000
500,5

1
2.981

1.074 0.361 3.157 2.421
2 0.629 0.045 2.871 2.697
3 0.444 0.012 2.834 2.578

R2,10000
500,10

1 2.238 0.946 0.358 2.224 1.807
2 0.613 0.008 2.066 1.644

R3,10000
500,10

1
4.125

1.636 0.798 3.600 2.853
2 1.331 0.292 3.540 2.713
3 1.227 0.126 3.708 2.822

R2,10000
500,20

1 3.028 1.628 0.793 3.010 2.325
2 1.514 0.347 3.126 2.194

R3,10000
500,20

1
4.787

2.005 2.082 4.286 4.312
2 1.889 1.848 4.095 4.392
3 1.818 1.508 4.302 4.368

R2,10000
7000,5

1 251.859 122.866 0.937 272.025 152.606
2 75.886 0.334 232.449 161.222

R3,10000
7000,5

1
338.993

112.566 3.616 307.908 211.678
2 62.828 0.897 271.701 220.017
3 42.721 0.662 264.451 246.346

R2,10000
7000,10

1 399.071 359.487 2.888 510.099 166.783
2 323.788 0.632 491.706 175.052

R3,10000
7000,10

1
486.093

384.061 18.511 589.802 238.651
2 366.564 5.469 590.372 236.737
3 348.150 0.662 576.276 235.608

R2,10000
7000,20

1 378.675 235.617 22.316 392.363 200.140
2 234.804 1.662 396.903 182.114

R3,10000
7000,20

1
488.825

384.548 180.010 586.747 394.783
2 371.658 58.189 595.567 293.012
3 364.307 24.839 605.025 278.559

Table 7: Average CPU time (in seconds) for LA with and without preprocessing

6 Conclusions

In this work, a new technique was developed to identify robust 0-persistent nodes of a network.
This technique is a dynamic version of the preprocessing strategy presented in [11], because the
involved tests are updated as new paths are computed. The dynamic technique was exemplified
and its improvement towards the former version was empirically tested. The experiments comprised
random instances with different methods for generating costs, namely: (1) costs in U(0, 100), (2)
costs in U(0, 10 000) and (3) negatively correlated costs between scenarios, as well as (4) Karasan
instances with costs in U(0, 100),

The experiments showed that both methods were more effective for the first two sets of instances
than for the last two. In particular, for the random networks it was easier to detect robust 0-
persistent nodes for the smallest densities. On the contrary, for the Karasan networks that task was
easier for the widest instances. Nevertheless, the dynamic preprocessing was almost always able to
detect more robust 0-persistent nodes than the former static version. For these cases, the increase
of the number of these nodes found by the dynamic method ranged between: (1) 11% and 20 675%,
(2) 25% and 4864%, (3) 71% and 62 033%, and (4) 14% and 1100%. For some of the instances,
the dynamic preprocessing was faster than the static, however, for most of them it was more time
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M NP APs APd TPs TPd

R2,10000
500,5

1 3.180 1.915 1.665 3.083 2.914
2 1.820 1.585 3.232 3.089

R3,10000
500,5

1
3.705

2.175 1.910 4.258 3.970
2 1.935 1.835 4.177 4.487
3 1.905 1.785 4.295 4.351

R2,10000
500,10

1 4.087 2.705 2.205 3.983 3.654
2 2.360 1.840 3.813 3.476

R3,10000
500,10

1
4.161

2.490 1.920 4.454 3.975
2 2.450 1.845 4.659 4.266
3 2.390 1.825 4.871 4.521

R2,10000
500,20

1 4.342 3.200 2.135 4.582 3.667
2 3.140 1.830 4.752 3.677

R3,10000
500,20

1
5.156

2.780 2.680 5.061 4.910
2 2.710 2.597 4.916 5.141
3 2.675 1.985 5.159 4.845

R2,10000
7000,5

1 136.069 8.135 5.775 157.294 157.444
2 7.345 2.150 163.908 163.038

R3,10000
7000,5

1
201.303

8.480 3.505 203.822 211.567
2 6.460 2.070 215.333 221.190
3 5.290 1.885 227.020 247.569

R2,10000
7000,10

1 142.025 13.055 4.200 163.667 168.095
2 10.375 2.460 178.293 176.880

R3,10000
7000,10

1
207.203

20.900 6.340 226.641 226.480
2 17.665 5.115 241.473 236.383
3 11.675 2.730 239.801 237.676

R2,10000
7000,20

1 149.038 16.940 4.515 173.686 182.339
2 15.285 2.675 177.384 183.127

R3,10000
7000,20

1
213.566

25.740 16.360 227.939 231.133
2 24.720 6.575 248.629 241.398
3 22.250 4.470 262.968 258.190

Table 8: Average CPU time (in seconds) for CPLEX with and without preprocessing

demanding. For the latter cases, the increase in the running times was at most: (1) 522%, (2) 18%,
(3) 20%, and (4) 35%.

The computational experiments also evaluated the performance of methods to find the robust
shortest path before and after the application of the dynamic or the static preprocessing techniques.
These tests involved the HA and the LA introduced in [10], as well as CPLEX for solving a linear
version of the robust shortest path problem formulation given in (9).

The results obtained by each algorithm were similar for (1) and (2). In general, the LA and
the HA after dynamic preprocessing outperformed their combination with the static version for
almost all the cases. Besides, the LA was always more efficient with preprocessing than with no
preprocessing at all. The same only happened with the HA for networks with a large number of
nodes using the dynamic preprocessing when considering just M = 1 testing scenario, even for the
cases for which the static approach was not efficient.

For (3), the number of robust 0-persistent nodes found statically and dynamically was small.
Therefore, applying preprocessing in these cases, be it static or dynamic, was not advantageous in
terms of the total running time. Preprocessing might, however, be useful in these cases, if the robust
shortest path computation can be independent from the initial reduction of the network, given that
APd < APs. The results were similar for (4) when the graph width is small in comparison with the
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M Ps Pd Ns Nd M Ps Pd Ns Nd

R2,100,NC
500,5

1 1.148 1.225 217 372
R2,100,NC

7000,5

1 127.238 142.450 951 5406
2 1.336 1.433 260 477 2 146.496 149.616 2132 6777

R2,100,NC
500,10

1 1.225 1.384 10 58
R2,100,NC

7000,10

1 148.747 159.104 3 1864
2 1.463 1.756 17 140 2 164.714 174.971 16 3977

R2,100,NC
500,20

1 1.461 1.572 0 1
R2,100,NC

7000,20

1 142.003 146.625 0 0
2 1.627 1.905 1 1 2 159.410 162.777 0 0

Table 9: Average preprocessing CPU times (in seconds) and number of detected robust 0-persistent
nodes

M NP APs APd TPs TPd

R2,100,NC
500,5

1 1.103 0.118 0.016 1.266 1.241
2 0.098 0.003 1.434 1.436

R2,100,NC
500,10

1 1.292 0.263 0.126 1.488 1.510
2 0.263 0.053 1.726 1.809

R2,100,NC
500,20

1 1.952 0.616 0.526 2.077 2.098
2 0.492 0.456 2.119 2.361

R2,100,NC
7000,5

1 140.581 22.621 1.870 149.859 144.320
2 20.574 0.056 167.070 149.672

R2,100,NC
7000,10

1 162.279 59.872 29.073 208.619 188.177
2 49.033 5.264 213.747 180.235

R2,100,NC
7000,20

1 179.833 39.471 38.982 181.744 185.607
2 39.059 37.243 198.469 200.020

Table 10: Average CPU time (in seconds) for HA with and without preprocessing

number of nodes. Yet, the number of detected robust 0-persistent nodes was much higher for graphs
that are wider than longer. Again, in these cases, the dynamic method behaved better than the
static with respect to the number of nodes found, as well as in terms of running times in general.
Like before, when applying CPLEX, the total times for solving the problems did not always decrease
when preprocessing was used.

When solving the problem with CPLEX, the reduction of the network was not enough to pay
off the running times increase, for the biggest instances. In fact, in general, CPLEX was the least
sensitive method to the application of preprocessing techniques, and also the most stable with

M NP APs APd TPs TPd

R2,100,NC
500,5

1 2.093 1.009 0.287 2.157 1.512
2 0.924 0.014 2.260 1.447

R2,100,NC
500,10

1 2.954 1.968 1.633 3.193 3.017
2 1.914 1.056 3.377 2.812

R2,100,NC
500,20

1 3.599 2.193 2.124 3.654 3.696
2 1.084 1.080 2.711 2.985

R2,100,NC
7000,5

1 294.481 287.377 24.298 414.615 166.748
2 212.268 1.469 358.764 151.085

R2,100,NC
7000,10

1 591.997 415.733 222.316 564.480 381.420
2 411.210 77.898 575.924 252.869

R2,100,NC
7000,20

1 609.060 405.509 403.522 547.512 550.147
2 404.279 401.172 563.689 563.949

Table 11: Average CPU time (in seconds) for LA with and without preprocessing
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M NP APs APd TPs TPd

R2,100,NC
500,5

1 3.348 1.985 1.860 3.133 3.085
2 1.860 1.690 3.196 3.123

R2,100,NC
500,10

1 3.544 2.540 2.265 3.765 3.649
2 2.470 2.170 3.933 3.926

R2,100,NC
500,20

1 5.137 3.710 3.560 5.171 5.132
2 2.610 2.600 4.237 4.505

R2,100,NC
7000,5

1 130.742 7.335 3.865 134.573 146.315
2 4.970 2.280 151.466 151.896

R2,100,NC
7000,10

1 150.769 15.540 11.355 164.287 170.459
2 14.002 5.255 178.716 180.226

R2,100,NC
7000,20

1 161.366 32.995 31.025 174.998 177.650
2 32.310 29.970 191.800 192.747

Table 12: Average CPU time (in seconds) for CPLEX with and without preprocessing

w = 10 M Ps Pd Ns Nd w = 20 M Ps Pd Ns Nd

K2,100
30,10

1 0.057 0.066 8 14
K2,100

30,20

1 0.077 0.055 14 16
2 0.067 0.078 9 18 2 0.082 0.071 20 23

K3,100
30,10

1 0.074 0.090 1 1
K3,100

30,20

1 0.068 0.092 4 4
2 0.093 0.110 1 12 2 0.093 0.096 6 21
3 0.109 0.130 2 14 3 0.103 0.106 8 24

K2,100
60,10

1 0.108 0.134 0 0
K2,100

60,20

1 0.103 0.127 3 9
2 0.133 0.171 0 1 2 0.134 0.158 6 30

K3,100
60,10

1 0.153 0.168 0 0
K3,100

60,20

1 0.127 0.158 0 1
2 0.171 0.212 0 0 2 0.159 0.182 0 14
3 0.203 0.234 0 0 3 0.182 0.212 0 18

K2,100
90,10

1 0.185 0.203 0 0
K2,100

90,20

1 0.164 0.212 0 3
2 0.192 0.248 0 0 2 0.219 0.251 0 10

K3,100
90,10

1 0.216 0.277 0 0
K3,100

90,20

1 0.217 0.258 0 0
2 0.287 0.346 0 0 2 0.238 0.317 0 0
3 0.292 0.410 0 0 3 0.301 0.367 0 0

Table 13: Average preprocessing CPU times (in seconds) and number of detected robust 0-persistent
nodes

respect to the structure of the network. This was specially clear for Karasan instances, which were
difficult to solve by the LA and HA, even though these are small size problems, but solved very
quickly by CPLEX.

The biggest problems, in networks with 7000 nodes, 140 000 arcs and three scenarios, were
solved in less than 16 seconds by the HA, 180 seconds by the LA, and 19 seconds by CPLEX, after
preprocessing. In average, finding the robust shortest path in Karasan instances after dynamic
preprocessing took up to 280 seconds with the HA, 86 seconds with the LA, and 3 seconds with
CPLEX.
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w = 10 M NP APs APd TPs TPd

K2,100
30,10

1 0.082 0.017 0.011 0.074 0.077
2 0.015 0.007 0.082 0.085

K3,100
30,10

1
0.153

0.031 0.027 0.105 0.117
2 0.028 0.010 0.121 0.120
3 0.025 0.008 0.134 0.138

K2,100
60,10

1 0.295 0.257 0.113 0.365 0.247
2 0.235 0.109 0.368 0.280

K3,100
60,10

1
4.322

4.217 4.212 4.370 4.380
2 4.202 4.127 4.373 4.339
3 4.178 4.084 4.381 4.318

K2,100
90,10

1 10.358 10.209 10.164 10.394 10.367
2 10.188 9.924 10.380 10.172

K3,100
90,10

1
281.696

280.593 280.053 280.809 280.330
2 280.026 279.156 280.313 279.502
3 279.532 278.433 279.824 278.843

w = 20 M NP APs APd TPs TPd

K2,100
30,20

1 0.053 0.009 0.004 0.086 0.059
2 0.007 0.004 0.089 0.075

K3,100
30,20

1
0.072

0.014 0.008 0.082 0.100
2 0.014 0.005 0.107 0.101
3 0.013 0.003 0.116 0.109

K2,100
60,20

1 0.132 0.039 0.026 0.142 0.153
2 0.030 0.013 0.164 0.171

K3,100
60,20

1
0.217

0.076 0.063 0.203 0.221
2 0.072 0.047 0.231 0.229
3 0.069 0.023 0.251 0.235

K2,100
90,20

1 0.336 0.242 0.210 0.406 0.422
2 0.226 0.066 0.445 0.317

K3,100
90,20

1
3.743

3.722 3.560 3.939 3.818
2 3.608 3.114 3.846 3.431
3 3.593 2.939 3.894 3.306

Table 14: Average CPU time (in seconds) for algorithm HA with and without preprocessing
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w = 10 M NP APs APd TPs TPd

K2,100
30,10

1 0.161 0.009 0.004 0.066 0.070
2 0.007 0.003 0.074 0.081

K3,100
30,10

1
0.136

0.012 0.012 0.086 0.117
2 0.010 0.005 0.103 0.115
3 0.008 0.004 0.198 0.134

K2,100
60,10

1 1.239 1.037 1.033 1.145 1.167
2 1.037 1.026 1.170 1.197

K3,100
60,10

1
13.702

13.038 13.037 13.191 13.205
2 13.038 12.996 13.209 13.208
3 13.040 12.838 13.243 13.072

K2,100
90,10

1 8.886 8.095 8.096 8.280 8.299
2 8.077 8.073 8.269 8.321

K3,100
90,10

1
87.015

86.340 86.102 86.556 86.379
2 86.112 85.998 86.399 86.344
3 86.095 85.746 86.387 86.156

w = 20 M NP APs APd TPs TPd

K2,100
30,20
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w = 10 M NP APs APd TPs TPd

K2,100
30,10

1 1.909 1.820 1.703 1.877 1.769
2 1.803 1.687 1.870 1.765

K3,100
30,10

1
1.984

1.843 1.730 1.917 1.820
2 1.750 1.697 1.843 1.807
3 1.747 1.660 1.856 1.790

K2,100
60,10

1 2.025 1.940 1.785 2.048 1.919
2 1.940 1.750 2.073 1.921

K3,100
60,10

1
2.263

2.140 2.120 2.293 2.288
2 2.120 2.100 2.291 2.312
3 2.120 2.010 2.323 2.244

K2,100
90,10

1 2.389 2.040 2.010 2.225 2.213
2 2.030 1.990 2.222 2.238

K3,100
90,10

1
2.475

2.390 2.280 2.535 2.557
2 2.285 2.200 2.572 2.546
3 2.240 2.110 2.532 2.520

w = 20 M NP APs APd TPs TPd

K2,100
30,20

1 2.016 1.740 1.685 1.817 1.740
2 1.680 1.635 1.762 1.706

K3,100
30,20

1
2.077

1.690 1.705 1.758 1.797
2 1.650 1.625 1.743 1.721
3 1.635 1.605 1.738 1.711

K2,100
60,20

1 2.207 2.050 1.910 2.153 2.037
2 2.020 1.705 2.154 1.863

K3,100
60,20

1
2.213

1.960 1.845 2.087 2.003
2 1.945 1.805 2.104 1.987
3 1.910 1.745 2.092 1.957

K2,100
90,20

1 2.233 2.105 2.055 2.269 2.267
2 2.080 1.830 2.299 2.081

K3,100
90,20

1
2.481

2.380 2.345 2.597 2.603
2 2.360 2.225 2.598 2.542
3 2.210 2.210 2.511 2.577

Table 16: Average CPU time (in seconds) for CPLEX with and without preprocessing

[11] M. Pascoal and M. Resende. Reducing the minmax regret robust shortest path problem with
finite multi-scenarios. In P. Bourguignon, R. Jeltsch, A. Pinto, and M. Viana, editors, CIM Se-
ries in Mathematical Sciences: Dynamics, Games and Science III. Springer-Verlag, to appear,
2014.

[12] G. Yu and J. Yang. On the robust shortest path problem. Computers Operations Research,
25:457–468, 1998.

24


