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Abstract. One of the most fundamental properties of the field of values of
an operator, is the inclusion of the spectrum within its closure. Obtaining
information on the spectrum of products of operators in terms of this spectral
inclusion region is a demanding issue. Stating general results seems difficult,
however, in some special instances conclusions can be derived. In this paper,
it is shown that the field of values of products of Laurent operators is easily
related with the product of their fields of values, and the same occurs for certain
classes of Laurent operators with matrix symbols. The results also apply to
the class of infinite upper (lower) triangular Toeplitz matrices.

1. Introduction

Let A be a bounded operator on a Hilbert spaceH equipped with inner product
⟨, ⟩. Denote by B(H) the algebra of bounded linear operators over H. In our
discussion we identify H with Cn whenever H has dimension n. The field of
values of A is the set of the complex plane defined as

W (A) = {⟨Af, f⟩/⟨f, f⟩ : f ∈ H, ⟨f, f⟩ ̸= 0}.
This concept is an useful tool in studying linear operators, and it has been

extensively investigated (see e.g. [4] and their references).
The Toeplitz-Hausdorff theorem [4] states that W (A) is a convex set, whose

closure contains the convex hull of the spectrum σ(A) of A:

W (A) ⊇ conv σ(A), (1.1)

where conv stands for convex hull. We recall that

σ(A) = {λ ∈ C : A− λI is not invertible},
with I the identity operator. When A ∈ B(H) is normal, that is, AA∗ = A∗A,

equality holds in (1.1), conv σ(A) = W (A). Proofs of these well known facts may
be found e.g. in [4].

Obtaining information on W (AB) from the fields of values W (A) and W (B)
is a challenging task, but answers in full generality seem difficult. Here, we
investigate particular situations, under which the field of values of a product is
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simply related with the product of the fields of values of the factors. Specifically,
we shall be concerned with the fields of values of products of Laurent and Toeplitz
operators, and we will also focus on W (Ak) for integers k.

This paper is organized as follows. In Section 2, some preliminaries on the
state of the art are presented. In Section 3 we introduce pertinent notation
and background on Laurent operators, and we extend Klein’s theorem for these
operators. As a consequence, inclusion regions for fields of values of products and
powers of Laurent operators are obtained. Triangular Toeplitz operators are also
considered in this framework. Related inequalities for the numerical radius and
the Crawford number are easily derived. In Section 4, Laurent operators with
matrix symbols are studied in the same context.

2. Preliminaries

Some authors investigated connections betweenW (AB) andW (A) andW (B);
see, for example, [2, 3, 4, 5, 10]. For instance, if A and B are n×n normal matrices
and commute, then

W (AB) ⊆ convW (A)W (B).

In multiplicative perturbation theory, the product of operators AB is consid-
ered for B close to the identity, and it is of interest to relate in some way the
spectra of products with the product of spectra (cf. [7, 9]).

The field of values is a spectral inclusion region, in the sense that (1.1) holds.
It can be easily verified that for any A,B ∈ B(H),

σ(A+B) ⊂ W (A+B) ⊂ W (A) +W (B).

Investigating the corresponding multiplicative version of this inclusion chain might
be a demanding goal.

If B is selfadjoint positive definite (SPD) and A ∈ B(H), we have

W (B1/2AB1/2) ⊆ W (A) W (B),

because

W (B1/2AB1/2) =
{
x∗B1/2AB1/2x : x∗x = 1

}
=

{
x∗Ax

x∗B−1x
: 0 ̸= x ∈ Cn

}
,

and so

W (B1/2AB1/2) ⊆ W (A)

W (B−1)
=W (A) W (B).

Moreover,

W (B−1/2AB−1/2) ⊆ W (A)

W (B)
. (2.1)

Thus, if B is SPD, and commutes with A, then

W (AB) ⊆ W (A) W (B)

(cf. [4, Theorem 2.5 – 1]). However, this inclusion may hold even if A and B do
not commute, as the following example shows.
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Example 2.1. Let A = (ai−j), B = (bi−j) be 10 × 10 tridiagonal and pentadi-
agonal Toeplitz matrices such that

b−9 = . . . = b−2 = 0, b−1 = 1, b0 = 3, b1 = 1, b2 = . . . = b9 = 0,

a−9 . . . = a−2 = 0, a−1 = −1, a0 = a1 = a2 = a3 = 1, a4 = . . . = a9 = 0.

These matrices do not commute. Nevertheless, not only

W (B−1/2AB−1/2) ⊂ W (A)/W (B),

but also the following inclusion occurs:

W (B−1A) ⊂ W (A)/W (B).

The boundaries of these sets are represented in Figure 1. There is no simple
inclusion relation between W (B−1A) and W (B−1/2AB−1/2).
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Figure 1. Boundaries of: W (B−1A) (full line), W (B−1/2AB−1/2)
(dashed line) and W (A)/W (B) (dot-dashed line), for Example 2.1.

Nevertheless, simple examples in the 2× 2 case show that the inclusion

W (AB) ⊆ W (A)W (B)
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does not hold in general. Even W (A2) and W (A)2 are not easily related. For
instance, let A = diag(1, i), so that W (A) = [1, i] and W (A2) = [−1, 1]. A simple
computation shows that W (A)2 = {z1z2 : z1, z2 ∈ W (A)} is the region bounded
by the line segments y = 1 − x, 0 ≤ x ≤ 1, y = 1 + x, −1 ≤ x ≤ 0 and the
arc of parabola y = (1 − x2)/2, −1 ≤ x ≤ 1. Thus, W (A2) * W (A)2. However,
W (A2) ⊂ conv(W (A))2 and so σ(A2) ⊆ W (A)2.

If A,B ∈ B(H), and 0 /∈ W (B), then B is invertible and by (1.1) and (2.1) we
clearly have (cf. [4, Theorem 2.4 – 1])

σ(B−1A) ⊆ W (A)/W (B).

As a consequence, if B is positive definite, then 0 /∈ W (B) and

σ(BA) = σ((B−1)−1A) ⊆ W (B) W (A),

for any A.
When A ∈ B(H) is normal and k is a positive integer, then W (Ak) is the

convex hull of the spectrum of Ak,

W (Ak) = conv(σ(Ak)),

which is a subset of the convex hull of the set

W (A)
k
= {η1 · · · ηk : η1, . . . , ηk ∈ W (A)}.

That is, the following inclusion holds,

W (Ak) ⊆ convW (A)
k
, k ∈ Z+.

This result may not be valid for a non-normal operator even in the 2× 2 case, as
the following example shows.

Example 2.2. Let

A =

[
1 2
0 1

]
.

We find that

∂W (A) = {2 cos(θ)eiθ : 0 ≤ θ < π},
so that

(W (A))2 =
π∪
θ=0

2 cos θeiθW (A).

We are lead to consider the family of circles

{4 cos θ cos θ′ei(θ+θ′), θ, θ′ ∈ [0, π]},

whose envelope is the curve

x2 + y2 − 2x− 2
√
x2 + y2 = 0.

In Figure 2, the boundaries of W (A) and W (A2) are represented, while (W (A))2

is the cardioid. It can be easily confirmed that W (A2) " conv(W (A))2.
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Figure 2. Boundaries of W (A) (full line), W (A2) (dashed line)
and (W (A))2 (thin line), the cardioid, for Example 2.2.

3. Results for Laurent operators

Let ϕ be a bounded measurable function on the unit circle Γ. The multiplication
induced by ϕ on the Lebesgue space L2 (with respect to the normalized Lebesgue
measure),

Lϕf = ϕf, ∀f ∈ L2,

is called the Laurent operator induced by ϕ or the Laurent operator with symbol
ϕ (for further infirmation, see, for example, [5]). The matrix of Lϕ with respect to
the standard orthonormal basis in L2, en(z) = zn, n = 0,±1,±2, . . . , is a Laurent
matrix, that is, a bilaterally infinite matrix [aij]

+∞
−∞, all of whose diagonals parallel

to the main diagonal are constant and

aij = αi−j, i, j = 0,±1,±2, . . . .

Further, ϕ =
∑+∞

n=−∞ αnen is the Fourier expansion of ϕ.
The product of two Laurent operators, Lϕ, Lψ, with symbols ϕ, ψ, is still

a Laurent operator with symbol ϕψ, denoted by Lϕψ. Thus, Laurent operators
always commute. The Laurent operator compressed to H2 (the Hardy subspace
of L2) is the Toeplitz operator with symbol ϕ,

Tϕf = P (ϕf), ∀f ∈ H2,

where P is the projection operator from L2 onto H2. The linear map ϕ → Tϕ of

functions such that the nth Fourier coefficient f̂(n) = 0, for every n < 0, is not in
general multiplicative. The Brown-Halmos Theorem [5] states that TfTg = Tfg
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if and only if f ∗ (or g) is in H∞, or, equivalently, the matrix of Tg (Tf ) in the
standard orthonormal basis is an infinite lower (upper) triangular matrix.

The field of values of a Toeplitz operator Tϕ was characterized in [6]. Namely,
it was shown thatW (Tϕ) is the relative interior of the convex hull of σ(Tϕ) (for an
extension of this result, see [1]). On the other hand, by Brown-Halmos theorem
the latter set coincides with the convex hull of the essential range R(ϕ) of ϕ,
which consists of every z such that the pre-image of any neighborhood of z under
ϕ has a positive measure.

As shown in the following result, W (Lϕ) cannot be completely characterized
in terms of R(ϕ), but its closure still can. The proof is inspired on the one of
Klein’s Theorem.

Theorem 3.1. Let Lϕ be a Laurent operator. The closure of the set W (Lϕ)
coincides with conv σ(Lϕ) and with the convex hull of

R(ϕ). (3.1)

Proof. For Lϕ, Lψ Laurent operators, we observe that Lϕ + Lψ is also a Laurent
operator. For any Φ ∈ C, it is clear that Lϕ − ΦI = L(ϕ−Φ). It follows that
Lϕ − ΦI is not invertible if and only if Φ ∈ R(ϕ), i.e., σ(Lϕ) = R(ϕ). Next, we
compare the closure of W (Lϕ) with the convex hull of (3.1). Any point of W (Lϕ)
is, by definition, of the form ∫

Γ

x∗(t)ϕ(t)x(t) dt, (3.2)

where x is a unit vector in L2. Approximating x and ϕ by functions with finitely
many values and keeping the values Φj of the approximation of ϕ in the essential
range of ϕ, we conclude that this approximation is a convex combination of Φj.
Since

Φj ∈ R(ϕ),

their convex combinations are in the convex hull ofR(ϕ). Considering that convex
hulls of compact sets in R are compact, the integral (3.2) itself lies there. Thus,

W (Lϕ) ⊆ conv {R(ϕ)} .
To prove the converse inclusion, we just need to show that any Φ ∈ R(ϕ), lies in
the closure of W (Lϕ), since the latter is convex. To this end, let

xs(t) =

{
1 if |Φ− ϕ(t)| < s,

0 otherwise.

Normalizing this function in L2 (due to the definition of the essential range we
can do so, because it differs from zero on a set with positive measure for any
s > 0), and letting s → 0, we conclude that the corresponding points in W (Lϕ)
converge to Φ. �

If Lϕ is selfadjoint, it is a direct consequence of Theorem 3.1 that W (Lϕ) is a
line segment, whose endpoints are

supR(ϕ) = sup{z : z ∈ R(ϕ)}
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and
infR(ϕ) = inf{z : z ∈ R(ϕ)}.

Further, W (Lϕ) = convσ(Lϕ).

Corollary 3.2. For Lϕ, Lψ, Laurent operators,

convσ(LϕLψ) = W (LϕLψ) ⊆ convW (Lϕ) W (Lψ).

Proof. We have

convσ(LϕLψ) = convσ(Lϕψ) = convR(ϕψ).

Clearly
R(ϕψ) ⊆ R(ϕ)R(ψ).

Moreover,
R(ϕ) ⊆ W (Lϕ), R(ψ) ⊆ W (Lψ),

so that
R(ϕψ) ⊆ convW (Lϕ) W (Lψ).

�
Corollary 3.3. For Lϕ, Lψ, both selfadjoint Laurent operators,

conv σ(LϕLψ)=W (LϕLψ) ⊆ W (Lϕ) W (Lψ).

Proof. Since for S ⊆ R and T ⊆ R convex sets, ST is clearly convex, the result
follows from Corollary 3.2, due to the convexity of the field of values. �

The next corollary is related to [7, Proposition 2.1]. Its proof requires the
following lemma.

Lemma 3.4. Let S ⊆ R+ and T be convex sets. Then ST is convex.

Proof. For xS, yS ∈ S, and xT , yT ∈ T, we show that rxSxT + (1 − r)ySyT ∈
ST, 0 ≤ r ≤ 1. Indeed, let q = rxS/(rxS + (1 − r)yS), and so (1 − q) =
(1 − r)yS/(rxS + (1 − r)yS). Clearly, ((rxS + (1 − r)yS))(qxT + (1 − q)yT ) =
rxSxT + (1− r)xSyT ∈ ST. �
Corollary 3.5. For Lϕ, Lψ, Laurent operators, with Lϕ positive definite,

conv σ(LϕLψ)=W (LϕLψ) ⊆ W (Lϕ) W (Lψ).

Proof. The result follows from Theorem 3.1 and Lemma 3.4. �
The following example illustrates Corollary 3.5.

Example 3.6. Consider the bilaterally infinite matrices A = [aij]
+∞
−∞ and B =

[bij]
+∞
−∞, such that aij = ai−j, bij = bi−j, with

. . . = b−3 = b−2 = 0, b−1 = 1, b0 = 3, b1 = 1, b2 = b3 = . . . = 0,

. . . = a−3 = a−2 = 0, a−1 = −1, a0 = a1 = a2 = a3 = 1, a4 = a5 = . . . = 0.

These matrices represent Laurent operators in the standard orthonormal basis in
L2. The symbols of A and B are

ϕA(e
iθ) = 1 + 2i sin θ + e5iθ/2(2 cos(θ/2)), ϕB(e

iθ) = 3 + 2 cos θ, 0 ≤ θ ≤ 2π
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-0.5 0.5 1 1.5 2 2.5 3

-3

-2

-1

1

2

3

Figure 3. The ranges of the symbols of B−1A (full line) and of A
(dashed line) (Example 3.6).

In Figure 3, the ranges of the symbols of B−1A (full line) and of A (dashed
line) are represented. Since W (B−1) = [1/5, 1], and, in this case, W (B−1) ⊂
W (A), we have W (B−1)W (A) = W (A). Thus, convσ(B−1A) = W (B−1A) ⊂
W (B−1)W (A) = W (A).

Corollary 3.5 may not hold if Lϕ is not positive definite selfadjoint. Consider,
as an example, the Laurent operator such that for t ∈ Γ, ϕ(t) = (1 + i)/2 + (1−
i)(t+ t)/4, so that R (ϕ) = W (Lϕ) = [1, i]. We have, R (ϕ2) = {x+ i(1− x2)/2 :
−1 ≤ x ≤ 1}, and so

W (L2
ϕ) = W (Lϕ2) = conv{x+ i(1− x2)/2 : −1 ≤ x ≤ 1}.

Since (W (Lϕ))
2 is the region bounded by the line segments y = 1−x, 0 ≤ x ≤ 1,

y = 1 + x, −1 ≤ x ≤ 0, and the arc of parabola y = (1− x2)/2, −1 ≤ x ≤ 1, it

follows that W (L2
ϕ) * (W (Lϕ))

2. Nevertheless, W (L2
ϕ) ⊆ conv (W (Lϕ))

2, and
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this inclusion occurs in general, as stated below.

Corollary 3.7. For Lϕ a Laurent operator,

W (Lkϕ) = conv σ(Lkϕ) = conv R(ϕk) ⊆ convW (Lϕ)
k
, k ∈ Z+. (3.3)

Proof. It is a simple consequence of Corollary 3.2. �

Corollary 3.8. If Lϕ is a positive definite selfadjoint operator, then W (L−1
ϕ ) =

W (Lϕ)
−1

= conv{z−1 : z ∈ W (Lϕ)}.

Proof. If ϕ is a bounded measurable function on Γ, then so is ϕ−1 and, henceforth,
L−1
ϕ = Lϕ−1 . Now, the result easily follows from Theorem 3.1. �

We observe that, if Lϕ is not positive definite, the equalityW (L−1
ϕ ) = W (Lϕ)

−1

may not hold. As an example, consider the Laurent operator such that R(ϕ) =

[−1, 1]. Then, W (L−1
ϕ ) = [−1, 1], while W (Lϕ)

−1
=]−∞,−1] ∪ [1,+∞[ .

Suppose 0 /∈ R(ϕ), so that Lϕ is invertible. Since W (Lϕ) = convR(ϕ), then

W (L−1
ϕ ) = conv R(ϕ−1) = conv σ(Lϕ−1).

Thus, Corollary 3.7 holds for negative integers k as well.

We recall that the numerical radius of an operator A is defined by

w(A) = sup{|z| : z ∈ W (A)}.
The famous power inequality for the numerical radius states that w(Am) ≤

w(A)m, for any positive integer m (an elementary proof of this result is given in
[8]). For Laurent operators we have:

Corollary 3.9. The numerical radius of a Laurent operator Lϕ coincides with
sup |ϕ| = (sup |ϕ|2)1/2 = (sup{z : z ∈ R(|ϕ|2)})1/2. Further, w(Lmϕ ) = w(Lϕ)

m,
for any positive integer m.

Proof. The first part of the corollary is a direct consequence of Theorem 3.1. The
second part is a trivial consequence of the fact that |ϕm| = |ϕ|m, m ∈ Z+. �

Suppose Lϕ is invertible and p is a positive integer. The following inequality
clearly holds

w(L−1
ϕ ) ≥ (w(Lϕ))

−1,

and so

w(L−p
ϕ ) ≥ w(Lϕ)

−p.

Equality occurs if Lϕ is a non-zero multiple of a unitary operator, and con-
versely (cf.[3, Theorem 3.9]).

Corollary 3.10. If Lϕ is a unitary Laurent operator, then w(Lϕ) = w(L−1
ϕ ) = 1

and conversely.
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The Crawford number of a Laurent operator Lϕ such that 0 /∈ conv R(ϕ), is,
by definition,

c(Lϕ) = inf{|z| : z ∈ convR(ϕ)}
Suppose Lϕ is invertible, 0 /∈ conv R(ϕ), and so c(Lϕ) ≤ inf{z : z ∈ R(|ϕ|)}. The
following question arises: does the following inequality hold

c(L−1
ϕ ) ≤ (c(Lϕ))

−1 ?

In the case of an affirmative answer and for p a positive integer, then

c(L−p
ϕ ) ≤ c(Lϕ)

−p.

Remark 3.11. As previously mentioned, a necessary and sufficient condition for
the product TfTg of two Toeplitz operators being a Toeplitz operator is that both
operators are represented in the standard orthonormal basis by infinite upper (or
lower) triangular Toeplitz matrices. Further, under this condition, TfTg = Tfg
[5, p. 138] and Corollaries 3.3, 3.2, 3.7, 3.9 are easily seen to be valid for the
operators of this class.

Example 3.12. Let Lϕ be the Laurent operator with symbol ϕ such that

R(ϕ) = {1 + eiθ : 0 ≤ θ ≤ 2π}. (3.4)

Then σ(L2
ϕ) is the region whose boundary is the cardioid,

x2 + y2 − 2x− 2
√
x2 + y2 = 0.

Moreover, the convex hull of the cardioid is also the boundary of W (Lϕ)
2
. Thus,

W (L2
ϕ) = convW (Lϕ)

2
.

The Toeplitz operator with symbol (3.4) behaves precisely in the same way.

4. Laurent operators with matrix symbol

In this section we shall be concerned with Laurent operators with matrix sym-
bol. For this purpose, we introduce some additional notation. We denote by L2

n

the linear space of column vectors f of length n −f = (fj(e
it))n1− for

fj : Γ → C,
∫ 2π

0

|fj(eit)|2dt =
+∞∑

k=−∞

|fjk|2 <∞,

being

fjk =
1

2π

∫ 2π

0

fj(e
it)e−iktdt.

We also consider the usual Hardy space H2
n of all functions f ∈ L2

n whose
Fourier transform vanishes on the negative integers

H2
n = {f ∈ L2

n : (fjk)
n
1 = 0, k ∈ Z−}.

Let L∞
n×n be the algebra of the n × n matrices whose entries are measurable

and essentially bounded functions on Γ. If n = 1, this set is simply denoted by
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L∞. Let us consider the matrix function a

a = (ajk(t))
n
j,k=1 ∈ L∞

n×n, ajk : Γ → L∞, t→ ajk(t) =
l=+∞∑
l=−∞

eilta
(l)
jk ,

where

a
(l)
jk :=

1

2π

∫ 2π

0

ajk(t)e
−iltdt.

The multiplication operator by a on L2
n is given by

M(a) : L2
n → L2

n, (fk)
n
k=1 → (

n∑
j=1

akjfj)
n
k=1,

By definition, the Laurent operator with matrix symbol a coincides with M(a),

La :=M(a).

Denote by P the projection operator on the space L2
n defined as

P : L2
n → H2

n, P (
+∞∑

k=−∞

gke
ikt) =

+∞∑
k=0

gke
ikt,

and by Ta the respective Toeplitz operator on H2
n

Ta : H
2
n → H2

n, Ta := PM(a)P.

In [1], the following result has been proved.

Theorem 4.1. The closure of the sets W (La) and convσ(La) are the same and
coincide with the convex hull of

{W (A) : A ∈ R(a)}.

We notice that in Theorem 4.1, A and La are operators acting on different
Hilbert spaces, respectively, Cn and Ln. As an illustrative example, we consider
n = 2, so that

a =

[
a11(t) a12(t)
a21(t) a22(t)

]
, 0 ≤ t < 2π,

and so

W (La) = conv
2π∪
t=0

W

([
a11(t) a12(t)
a21(t) a22(t)

])
.

We say that the symbol a is normal if [a(eit), (a(eit))∗] = 0, for any eit ∈ Γ and
we say that the symbols a, b commute if [a(eit), b(eit)] = 0, for any eit ∈ Γ. As
a consequence of Theorem 4.1, it can be easily seen that the results in Section 2
are valid for Laurent operators with matrix symbols. Corollaries 3.2 and 3.9 are
easily adapted in terms of the following formulations

Corollary 4.2. Let La and Lb be Laurent operators with matrix symbols a and b
which are normal and commute. Then

W (LaLb) ⊆ convW (La) W (Lb).
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Corollary 4.3. Let La be a Laurent operator with matrix symbol a which is nor-
mal. Then the numerical radius of La coincides with sup{|z| : z ∈ σ(a(eit)), eit ∈
Γ}.

Corollary 4.4. Let La and Lb be Laurent operators such that the matrix symbol
a is normal and commutes with b. Then

w(LaLb) ≤ w(La)w(Lb).
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