A FIEDLER-TYPE THEOREM FOR THE DETERMINANT OF J-POSITIVE MATRICES

Natália Bebiano, João da Providência

Submitted to Math. Inequal. Appl.

Abstract

In this note we characterize the set of all possible values attained by the determinant of the sum of two J-positive matrices with prescribed spectra, under a natural compatibility condition.

1. Introduction

Let A and C be Hermitian $n \times n$ matrices with prescribed eigenvalues, $a_{1} \geq \ldots \geq$ a_{n} and $c_{1} \geq \ldots \geq c_{n}$, respectively. Fiedler [7] proved that $\operatorname{det}(A+C)$ lies between the minimum and the maximum of $\prod_{i=1}^{n}\left(a_{i}+c_{\sigma(i)}\right)$, where S_{n} denotes the symmetric group of degree n.

This result has been generalized in several ways (cf. [3, 5, 8] and the references therein), and is in the origin of the longstanding conjecture of Marcus-de Oliveira [9, 12] on the determinant of the sum of two normal matrices.

Marcus-de Oliveira Conjecture Let A and C be $n \times n$ matrices with prescribed complex eigenvalues a_{1}, \ldots, a_{n} and c_{1}, \ldots, c_{n}, respectively. Let Δ be the subset of \mathbf{C} given by

$$
\Delta=c o\left\{\prod_{j=1}^{n}\left(a_{j}+c_{\sigma(j)}\right): \sigma \in S_{n}\right\} .
$$

Then,

$$
\operatorname{det}(A+C) \in \Delta
$$

For details see $[3,1,6]$. The goal of the present note is to obtain bounds for the determinant of the sum of J-Hermitian matrices. Matrices of this type appear in relativistic quantum mechanics and in quantum physics, and inequalities involving them deserve the attention of researchers (cf. [2] and therein references).

Next, we recall some useful facts.
Given a selfadjoint involution $J \in \mathbf{C}^{n \times n}$, that is, $J=J^{*}, J^{2}=I$, let us consider \mathbf{C}^{n} endowed with the indefinite inner product [.,.] defined by

$$
[x, y]:=\langle J x, y\rangle=y^{*} J x, \quad x, y \in \mathbf{C}^{n} .
$$

[^0]Assume that $(r, n-r), 0 \leq r \leq n$, is the inertia of J. The J-adjoint of a complex matrix A, is defined and denoted as

$$
\left[A^{\#} x, y\right]:=[x, A y] \text { for all } x, y \in \mathbf{C}^{n} .
$$

A matrix A is said to be J-selfadjoint or J-Hermitian if $A=A^{\#}$ or equivalently $A=J A^{*} J$. If, in addition, $[A x, x]>0$ for any $x \in \mathbf{C}^{n}$, equivalently, $A=J P$, for some positive definite matrix P, then A is called J-positive definite. The eigenvalues of a J-selfadjoint matrix may not be real, nevertheless its spectrum must be closed under complex conjugation. Note that the eigenvalues of a J-positive matrix are all real, nevertheless, some of them are positive and others are negative, according to the J-norm of the associated eigenvectors. A matrix U is J-unitary if $U J U^{*}=J$. The J-unitary matrices form a connected but non-compact group, usually denoted by $U(r, n-r)$ [11].

Throughout this note, we assume that A and C are J-Hermitian matrices with real eigenvalues a_{j} and $c_{j}, j=1, \cdots, n$, respectively.

We define $\left|\sigma_{+}^{J}(A)\right|$ and $\left|\sigma_{-}^{J}(A)\right|$ as the positive and negative indices of A, respectively. In the sequel, we shall assume that the eigenvalues of A, C are arranged according to the J-order,

$$
\begin{equation*}
a_{1} \geq \ldots \geq a_{r}>0>a_{r+1} \geq \ldots \geq a_{n}, c_{1} \geq \ldots \geq c_{r}>0>c_{r+1} \geq \ldots, \geq c_{n} \tag{1}
\end{equation*}
$$

We say that A, C are compatible when their indeces are the same. Compatible J Hermitian matrices are J-unitarily diagonalizable, i.e., there exist $U, V \in U(r, n-r)$ such that $U A U^{\#}=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ and $V C V^{\#}=\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$.

Our main aim is to prove the following
THEOREM 1. Let A, C be two compatible J-positive matrices with negative index p. If p is even, then

$$
\operatorname{det}(A+C) \geq \prod_{j=1}^{n}\left(a_{j}+c_{j}\right)
$$

If p is odd, then the inequality reverses.

2. Proofs

Before proving our main result, some considerations are in order. We are interested in the characterization of the set

$$
\begin{equation*}
D^{J}(A, C)=\left\{\operatorname{det}\left(A+U C U^{\#}\right): U \in \mathscr{U}(r, n-r)\right\} . \tag{2}
\end{equation*}
$$

As $U \in \mathscr{U}(r, n-r)$ is connected and $D^{J}(A, C)$ is the range of the continuous map from $\mathscr{U}(r, n-r)$ to \mathbf{C} defined by $U \rightarrow \operatorname{det}\left(A+U C U^{\#}\right), D^{J}(A, C)$ is a connected set in the complex plane. Since the determinant is J-unitarily invariant, without loss of generality we may consider $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ and $C=\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$. Obviously, if either A or C is scalar, then $D^{J}(A, C)$ reduces to a singleton. If J is the identity, then A, C are Hermitian matrices, and the theorem of Fiedler [7] applies.

As usual, the permutation matrix associated to $\sigma \in S_{n}$, is defined by $\left(P_{\sigma}\right)_{i j}=$ $\delta_{\sigma(i), j}$ (the Kroenecker symbol which equals one if $\sigma(i)=j$ and zero otherwise). In the sequel we use the following notation

$$
\begin{gather*}
S_{n}^{r}=\left\{\sigma \in S_{n}: \sigma(j)=j, j=r+1, \ldots, n\right\}, \tag{3}\\
\hat{S}_{n}^{r}=\left\{\sigma \in S_{n}: \sigma(j)=j, j=1, \ldots, r\right\} \tag{4}
\end{gather*}
$$

Proposition 2.1. Let A and C be compatible J-Hermitian matrices. The following occurs:
(i) The set $D^{J}(A, C)$ is the half-line

$$
D^{J}(A, C)=\left\{\left(a_{1}+c_{1}\right)\left(a_{2}+c_{2}\right)-s\left(a_{1}-a_{2}\right)\left(c_{1}-c_{2}\right): s \geq 0\right\}
$$

for 2×2 matrices.
(ii) The r ! $(n-r)$! points

$$
\begin{equation*}
z_{\sigma}=z_{\xi \tau}=\prod_{j=1}^{r}\left(a_{j}+c_{\xi(j)}\right) \prod_{j=r+1}^{n}\left(a_{j}+c_{\tau(j)}\right), \xi \in S_{n}^{r}, \tau \in \hat{S}_{n}^{r} \tag{5}
\end{equation*}
$$

belong to $D^{J}(A, C)$,
(iii) The line segments defined by two σ-points generated by permutations that differ by a transposition are contained in $D^{J}(A, C)$. On the other hand, the $r!(n-$ $r)!r(n-r)$ half-lines

$$
\begin{aligned}
L_{i, j, \sigma, \tau} & =\left[\left(a_{i}+c_{\sigma(i)}\right)\left(a_{r+j}+c_{\tau(r+j)}\right)-s\left(a_{i}-a_{r+j}\right)\left(c_{\sigma(i)}-c_{\tau(r+j)}\right)\right] \\
& \times \prod_{k \neq i l \neq j}\left(a_{k}+c_{\sigma(k)}\right)\left(a_{r+l}+c_{\tau(r+l)}\right): s \geq 0, \sigma \in S_{n}^{r}, \tau \in \hat{S}_{n}^{r}, 1 \leq i \leq r<j \leq(\mathbf{6})
\end{aligned}
$$

are also contained in $D^{J}(A, C)$.
Proof. (i) Considering in (2) matrices A and B of order 2 and

$$
U=\left(\begin{array}{cc}
\operatorname{ch} u \mathrm{e}^{i \psi} & \operatorname{sh} u \mathrm{e}^{i \phi} \\
\operatorname{sh} u \mathrm{e}^{-i \phi} & \operatorname{ch} u \mathrm{e}^{-i \psi}
\end{array}\right), u \in \mathbf{R}, \phi, \psi \in[0,2 \pi[
$$

which belongs to $U(1,1)$, by direct computation, we easily find

$$
\left.\left.D^{J}(A, C)=\right]-\infty,\left(a_{1}+c_{1}\right)\left(a_{2}+c_{2}\right)\right]
$$

(ii) The points are produced taking in (2), $U=P_{\sigma} P_{\tau}$.
(iii) The line segments are described considering in (2) the matrix $U=V P_{\sigma} P_{\tau}$, where $\sigma \in S_{n}^{r}, \tau \in \hat{S}_{n}^{r}$ and V is the matrix obtained from the identity replacing the entries $(i, i),(i, j),(j, i)$ and (j, j) by $\cos \theta, \sin \theta, \cos \theta$ and $-\sin \theta$, respectively, for $1 \leq i<j \leq r$ or for $r+1 \leq i<j \leq n$. The half-line $L_{i, j, \sigma, \tau}$ is described considering in
(2) the matrix $U=V P_{\sigma} P_{\tau}$, where $\sigma \in S_{n}^{r}, \tau \in \hat{S}_{n}^{r}$ and V is the matrix obtained from the identity replacing the entries $(i, i),(i, j+r),(j+r, i)$ and $(j+r, j+r)$ by $\operatorname{ch} u, \operatorname{sh} u, \operatorname{ch} u$ and $\operatorname{sh} u$, respectively.

The eigenvalues of A are said to interlace if

$$
a_{1} \geq \ldots \geq a_{r}, \quad a_{r+1} \geq \ldots \geq a_{n}, \quad a_{1} \neq a_{r}, \quad a_{r+1} \neq a_{n}, \quad a_{r} \nsupseteq a_{r+1}, \quad a_{n} \nsupseteq a_{1} .
$$

Proposition 2.2. Let A, C be J-Hermitian compatible matrices. If either the eigenvalues of A interlace and $a_{r} \neq a_{r+1}, a_{r} \neq a_{n}$ or the eigenvalues of C interlace and $c_{r} \neq c_{r+1}, c_{r} \neq c_{n}$, then $D^{J}(A, C)$ is the whole real line.

Proof. Under the assumptions, there will be half-lines $L_{i, j, \sigma, \tau}$ with the same end point, described considering in (2) the matrix $U=V P_{\sigma} P_{\tau}$ (where $\sigma \in S_{n}^{r}, \tau \in \hat{S}_{n}^{r}$ and V is the matrix obtained from the identity replacing the entries $(i, i),(i, j+r),(j+r, i)$ and $(j+r, j+r)$ by $\operatorname{ch} u, \operatorname{sh} u, \operatorname{ch} u$ and $\operatorname{sh} u$, respectively), some of which are directed to the right, and some to the left.

For brevity, the points z_{σ} will be called σ-points.
We remark that the converse of last proposition is not valid, as the following example shows.

Example 1. Let

$$
A_{0}=C_{0}=\operatorname{diag}(3,-1,-2), J_{3}=\operatorname{diag}(1,1,-1)
$$

We investigate the set

$$
D^{J}\left(A_{0}, C_{0}\right)=\left\{\operatorname{det}\left(A_{0}+U C_{0} J_{3} U^{*}\right): U J_{3} U^{*}=J_{3}\right\}
$$

We easily find for $J_{2}=\operatorname{diag}(1,-1)$,

$$
\left\{(-2) \operatorname{det}\left(\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]+V\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right] J_{2} V^{*}\right): V J_{2} V^{*}=J_{2}\right\}=\left\{20 s^{2}: s \in \mathbf{R}\right\}=[0,+\infty[,
$$

and

$$
\left.\left.\left\{6 \operatorname{det}\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]+V\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right] J_{2} V^{*}\right): V J_{2} V^{*}=J_{2}\right\}=\left\{-108 s^{2}: s \in \mathbf{R}\right\}=\right]-\infty, 0\right] .
$$

Thus,

$$
D^{J}\left(A_{0}, C_{0}\right)=\mathbf{R} .
$$

Lemma 1. Let A,C be J-Hermitian matrices under the assumptions of Theorem 1. If all the σ-points do not have the same sign, then $D^{J}(A, C)$ is the whole real line.

Proof. Assume that some σ-points are positive and some are negative. Accordingly, some of the half-lines $L_{i, j, \sigma, \tau}$ which are described considering in (2) the matrix $U=V P_{\sigma} P_{\tau}$ (where $\sigma \in S_{n}^{r}, \tau \in \hat{S}_{n}^{r}$ and V is the matrix obtained from the identity replacing the entries $(i, i),(i, j+r),(j+r, i)$ and $(j+r, j+r)$ by ch $u, \operatorname{sh} u, \operatorname{ch} u$ and $\operatorname{sh} u$, respectively) are directed to the right, and some to the left, depending on the end-points being positive or negative. Having in mind that $D^{J}(A, C)$ is connected, the result follows.

The following question arises. Let A, C be compatible J-Hermitian matrices. If all the σ-points have the same sign, is $D^{J}(A, C)$ the whole real line, or a half-line? A partial answer is given in the proof of Theorem 1, namely, if p is even (odd), then $D^{J}(A, C)$ is half-line to the left (right).

Proof of Theorem 1

Since A, C are J-positive, so is $A+C$. Thus, $\operatorname{det}(J(A+C))=(-1)^{n-r} \operatorname{det}(A+$ $C)>0$, so that $\operatorname{det}(A+C)>0$ if p is even and $\operatorname{det}(A+C)<0$ if p is odd. Moreover, $a_{r}>0>a_{r+1}$ and $c_{r}>0>c_{r+1}$. According to the hypothesis, the matrix A is J-unitarily similar to $A_{0}=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ and C is J-unitarily similar to $C_{0}=$ $\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$.

Clearly, $\operatorname{det}(A+C)=\operatorname{det}\left(A_{0}+V C_{0} V^{\#}\right)$ for some J-unitary matrix V. Assume p is even, so that $\operatorname{det}(A+C)>0$. Then, the closure of $D^{J}(A ; C)$ is a half-ray with its end-point. There exists a J-unitary matrix V_{0} such that

$$
\operatorname{det}\left(A_{0}+V_{0} C_{0} V_{0}^{\#}\right)=\inf _{V \in U(r, n-r)} \operatorname{det}\left(A_{0}+V C_{0} V^{\#}\right)
$$

We claim that

$$
\left[A_{0}, V C_{0} V^{\#}\right]=0
$$

where $[X, Y]=X Y-Y X$. Let $C_{0}^{\prime}=V C_{0} V^{\#}$ so that $\operatorname{det}\left(A_{0}+C_{0}^{\prime}\right)$ is an extremal point of $D^{J}(A, C)$. For simplicity, assume that $a_{1}>\cdots>a_{n}$. Let $H \in \mathbf{C}^{n \times n}$ be J-Hermitian. For any real t, the matrix $\mathrm{e}^{i t H}=I+i t H-1 / 2 t^{2} H^{2}+\cdots$ is J-unitary. Consider the one-parameter curve in $D(A, C)$

$$
t \rightarrow \operatorname{det}\left(A_{0}+\mathrm{e}^{-i t H} C_{0}^{\prime} \mathrm{e}^{\mathrm{itH}}\right)=\operatorname{det}\left(A_{0}+C_{0}^{\prime}\right)\left[1+i t \operatorname{Tr}\left(A_{0}+C_{0}^{\prime}\right)^{-1}\left[H, C_{0}^{\prime}\right]\right]+\Theta\left(t^{2}\right) .
$$

Since we are assuming that $\operatorname{det}\left(A_{0}+C_{0}^{\prime}\right)$ is an extremal point,

$$
0=\operatorname{Tr}\left(A_{0}+C_{0}^{\prime}\right)^{-1}\left[H, C_{0}^{\prime}\right]=\operatorname{Tr} H\left[\left(A_{0}+C_{0}^{\prime}\right)^{-1}, C_{0}^{\prime}\right]
$$

for all J-Hermitian H. Henceforth,

$$
\left[C_{0}^{\prime},\left(A_{0}+C_{0}^{\prime}\right)^{-1}\right]=C_{0}^{\prime}\left(A_{0}+C_{0}^{\prime}\right)^{-1}-\left(A_{0}+C_{0}^{\prime}\right)^{-1} C_{0}^{\prime}=0 .
$$

Consequently, $\left(A_{0}+C_{0}^{\prime}\right) C_{0}^{\prime}-C_{0}^{\prime}\left(A_{0}+C_{0}^{\prime}\right)=0$ and the claim follows. Since A_{0} is in diagonal form, $V C_{0} V^{\#}$ is also in diagonal form. Thus, $\operatorname{det}\left(A_{0}+C_{0}^{\prime}\right)$ is a σ-point, and so, the minimum is attained and belongs to $D^{J}(A, C)$. We drop the assumption that the eigenvalues of A are distinct by a continuity argument.

Let p be even. It is clear that the origin does not belong to $D^{J}(A, C)$. According to the hypothesis, the points in (5) and the half-lines in (6), are in the positive real line.

Having in mind that $D^{J}(A, C)$ is a connected set, it follows that it is a half-line whose endpoint is a σ-point by the first part of the proof. Since for $i<j$ and $i^{\prime}<j^{\prime}$

$$
\left(a_{i}+c_{i^{\prime}}\right)\left(a_{j}+c_{j^{\prime}}\right)-\left(a_{i}+c_{j^{\prime}}\right)\left(a_{j}+c_{i^{\prime}}\right)=-\left(a_{i}-a_{j}\right)\left(c_{i^{\prime}}-c_{j^{\prime}}\right)<0
$$

and recalling that every permutation can be expressed as a product of transpositions, it is clear that

$$
\min _{\sigma \in S_{n}^{r}, \tau \in \hat{S}_{n}^{r}} \prod_{j=1}^{r}\left(a_{j}+c_{\sigma(j)}\right) \prod_{j=r+1}^{n}\left(a_{j}+c_{\tau(j)}\right)=\prod_{j=1}^{n}\left(a_{j}+c_{j}\right) .
$$

Let p be odd. By similar arguments, it is easy to conclude that

$$
\max _{\sigma \in S_{n}^{r}, \tau \in \hat{S}_{n}^{r}} \prod_{j=1}^{r}\left(a_{j}+c_{\sigma(j)}\right) \prod_{j=r+1}^{n}\left(a_{j}+c_{\tau(j)}\right)=\prod_{j=1}^{n}\left(a_{j}+c_{j}\right) .
$$

3. Other determinantal inequalities

For A and C are $n \times n J$-positive matrices, as $J A$ and $J C$ are positive definite matrices, the following inequalities hold [10]

$$
\begin{aligned}
& \operatorname{det}(J(A+C)) \geq \operatorname{det}(J A)+\operatorname{det}(J C) \\
& (\operatorname{det}(J(A+C)))^{1 / n} \geq(\operatorname{det}(J A))^{1 / n}+(\operatorname{det}(J C))^{1 / n} \\
& \operatorname{det}(\lambda J A+(1-\lambda) J C) \geq(\operatorname{det}(J A))^{\lambda}+(\operatorname{det}(J C))^{1-\lambda}, 0 \leq \lambda \leq 1,
\end{aligned}
$$

As consequence the following inequalities are valid.
Proposition 3.1. If A, C are J-positive matrices for $J=I_{r} \oplus-I_{n-r}$, then

$$
\operatorname{det}(A+C) \geq \operatorname{det}(A)+\operatorname{det}(C)
$$

if $n-r$ is even, and

$$
\operatorname{det}(A+C) \leq \operatorname{det}(A)+\operatorname{det}(C)
$$

if $n-r$ is odd.
Proposition 3.2. If A, C are $n \times n J$-positive matrices for $J=I_{r} \oplus-I_{n-r}$, then

$$
(\operatorname{det}(A+C))^{1 / n} \geq(\operatorname{det}(A))^{1 / n}+(\operatorname{det}(C))^{1 / n},
$$

if $n-r$ is even, and

$$
(\operatorname{det}(A+C))^{1 / n} \leq-|\operatorname{det}(A)|^{1 / n}-|\operatorname{det}(C)|^{1 / n},
$$

if $n-r$ is odd.

Proposition 3.3. For $0 \leq \lambda \leq 1, A, C J$-positive matrices and $J=I_{r} \oplus-I_{n-r}$, then

$$
\operatorname{det}(\lambda A+(1-\lambda) C) \geq(\operatorname{det}(A))^{\lambda}+(\operatorname{det}(C))^{1-\lambda}
$$

if $n-r$ is even, and

$$
\operatorname{det}(\lambda A+(1-\lambda) C) \leq-|\operatorname{det}(A)|^{\lambda}-|\operatorname{det}(C)|^{1-\lambda},
$$

if $n-r$ is odd.
We remark that the estimates for the determinant of the sum of J-positive matrices A, C in Theorem 1 are the best possible in terms of the eigenvalues of A and C.

4. Acknowledgments

The authors are grateful to the Referee for valuable comments.

REFERENCES

[1] N. Bebiano, A. Kovacec and J. da Providência, The validity of Marcus-de Oliveira Conjecture for essentially Hermitian matrices, Linear Algebra Appl. 197 (1994) 411-427.
[2] N. Bebiano, R. Lemos, J. da Providência and G. Soares, Further developments of Furuta inequality of indefinite type, Mathematical Inequalities and Applications, 13 (2010) 523-535.
[3] N. Bebiano, J. K. Merikoski, and J. da Providência, On a conjecture of G. N. de Oliveira, Linear Multilinear Algebra, 20 (1987), 167-170.
[4] J.Bognar, Indefinite inner product spaces, Springer, 1974.
[5] S.W. Drury and B. Cload, On the determinantal conjecture of Marcus and de Oliveira, Linear Algebra Appl. 177: 105-109 (1992)
[6] S.W. Drury, Essentially Hermitian matrices revisited, Electronic Journal of Linear Algebra, 15 (2006) 285-296.
[7] M. Fiedler, The determinant of the sum of Hermitian matrices, Proc. Amer. Math. Soc. 30 27-31 (1971)
[8] C.-K. Li, Y.-T. Poon and N.-S. Sze, Ranks and determinants of the sum of matrices from unitary orbits, Linear and Multilinear Algebra 56 108-130 (2008).
[9] M. Marcus, Plucker relations and the numerical range, Indiana Univ. Math. J. 22:1137-1149, (1973)
[10] M.L. Mehta, Matrix Theory, Sected Topics and Useful Results, Industan Publishing Corporation, New Delhi, 1971.
[11] H. Nakazato, N. Bebiano and J. da Providência, J-orthostochastic matrices of size 3×3 and numerical ranges of Krein space operators, Linear Algebra Appl. 407 211-232 (2005).
[12] G.N. de Oliveira, Linear and Multilinear Algebra 12 153-154 (1982).
[13] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 9th printing, Washington, 1970.
[14] W. Burnside, A rapidly convergent series for $\log N$!, Messenger Math., 46, 1 (1917), 157-159.

Natália Bebiano, CMUC, Department of Mathematics, Universidade de Coimbra, 3001-454 Coimbra, Portugal
e-mail: bebiano@mat.uc.pt
João da Providência, CFisUC, Departamento de Física, Universidade de Coimbra, 3001-454 Coimbra, Portugal,
e-mail: providencia@teor.fis.uc.pt
Corresponding Author: Natália Bebiano

[^0]: Mathematics subject classification (2010): 46C20, 47A12.
 Keywords and phrases: J-selfadjoint matrix, indefinite norm, determinant.
 This work was partially supported by the Centre for Mathematics of the University of Coimbra UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC.

