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Abstract. In this note we characterize the set of all possible values attained by the determinant
of the sum of two J -positive matrices with prescribed spectra, under a natural compatibility
condition.

1. Introduction

Let A and C be Hermitian n×n matrices with prescribed eigenvalues, a1 ≥ . . .≥
an and c1 ≥ . . . ≥ cn , respectively. Fiedler [7] proved that det(A+C) lies between
the minimum and the maximum of ∏n

i=1(ai + cσ(i)), where Sn denotes the symmetric
group of degree n .

This result has been generalized in several ways (cf. [3, 5, 8] and the references
therein), and is in the origin of the longstanding conjecture of Marcus-de Oliveira [9,
12] on the determinant of the sum of two normal matrices.

Marcus-de Oliveira Conjecture Let A and C be n×n matrices with prescribed
complex eigenvalues a1, . . . ,an and c1, . . . ,cn , respectively. Let ∆ be the subset of C
given by

∆ = co

{
n

∏
j=1

(a j + cσ( j)) : σ ∈ Sn

}
.

Then,
det(A+C) ∈ ∆.

For details see [3, 1, 6]. The goal of the present note is to obtain bounds for the deter-
minant of the sum of J -Hermitian matrices. Matrices of this type appear in relativistic
quantum mechanics and in quantum physics, and inequalities involving them deserve
the attention of researchers (cf. [2] and therein references).

Next, we recall some useful facts.
Given a selfadjoint involution J ∈ Cn×n, that is, J = J∗,J2 = I, let us consider Cn

endowed with the indefinite inner product [., .] defined by

[x,y] := ⟨Jx,y⟩= y∗Jx, x,y ∈ Cn.
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Assume that (r,n−r) , 0 ≤ r ≤ n, is the inertia of J. The J -adjoint of a complex matrix
A, is defined and denoted as

[A#x,y] := [x,Ay] for all x,y ∈ Cn.

A matrix A is said to be J -selfadjoint or J -Hermitian if A = A# or equivalently
A = JA∗J. If, in addition, [Ax,x] > 0 for any x ∈ Cn, equivalently, A = JP , for some
positive definite matrix P , then A is called J -positive definite. The eigenvalues of a
J -selfadjoint matrix may not be real, nevertheless its spectrum must be closed under
complex conjugation. Note that the eigenvalues of a J -positive matrix are all real, nev-
ertheless, some of them are positive and others are negative, according to the J -norm
of the associated eigenvectors. A matrix U is J -unitary if UJU∗ = J. The J -unitary
matrices form a connected but non-compact group, usually denoted by U(r,n−r) [11].

Throughout this note, we assume that A and C are J -Hermitian matrices with real
eigenvalues a j and c j, j = 1, · · · ,n, respectively.

We define |σ J
+(A)| and |σ J

−(A)| as the positive and negative indices of A , re-
spectively. In the sequel, we shall assume that the eigenvalues of A, C are arranged
according to the J -order,

a1 ≥ . . .≥ ar > 0 > ar+1 ≥ . . .≥ an, c1 ≥ . . .≥ cr > 0 > cr+1 ≥ . . . ,≥ cn (1)

We say that A, C are compatible when their indeces are the same. Compatible J -
Hermitian matrices are J -unitarily diagonalizable, i.e., there exist U,V ∈ U(r,n− r)
such that UAU# = diag(a1, . . . ,an) and VCV # = diag(c1, . . . ,cn) .

Our main aim is to prove the following

THEOREM 1. Let A,C be two compatible J -positive matrices with negative index
p. If p is even, then

det(A+C)≥
n

∏
j=1

(a j + c j).

If p is odd, then the inequality reverses.

2. Proofs

Before proving our main result, some considerations are in order. We are interested
in the characterization of the set

DJ(A,C) = {det(A+UCU#) : U ∈ U (r,n− r)}. (2)

As U ∈U (r,n−r) is connected and DJ(A,C) is the range of the continuous map from
U (r,n− r) to C defined by U → det(A+UCU#) , DJ(A,C) is a connected set in the
complex plane. Since the determinant is J -unitarily invariant, without loss of generality
we may consider A = diag(a1, . . . ,an) and C = diag(c1, . . . ,cn) . Obviously, if either A
or C is scalar, then DJ(A,C) reduces to a singleton. If J is the identity, then A, C are
Hermitian matrices, and the theorem of Fiedler [7] applies.
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As usual, the permutation matrix associated to σ ∈ Sn, is defined by (Pσ )i j =
δσ(i), j (the Kroenecker symbol which equals one if σ(i) = j and zero otherwise). In
the sequel we use the following notation

Sr
n = {σ ∈ Sn : σ( j) = j, j = r+1, . . . ,n}, (3)

Ŝr
n = {σ ∈ Sn : σ( j) = j, j = 1, . . . ,r}. (4)

PROPOSITION 2.1. Let A and C be compatible J -Hermitian matrices. The fol-
lowing occurs:

(i) The set DJ(A,C) is the half-line

DJ(A,C) = {(a1 + c1)(a2 + c2)− s(a1 −a2)(c1 − c2) : s ≥ 0},

for 2×2 matrices.

(ii) The r!(n− r)! points

zσ = zξ τ =
r

∏
j=1

(a j + cξ ( j))
n

∏
j=r+1

(a j + cτ( j)), ξ ∈ Sr
n, τ ∈ Ŝr

n. (5)

belong to DJ(A,C) ,

(iii) The line segments defined by two σ -points generated by permutations that differ
by a transposition are contained in DJ(A,C) . On the other hand, the r!(n−
r)!r(n− r) half-lines

Li, j,σ ,τ = [(ai + cσ(i))(ar+ j + cτ(r+ j))− s(ai −ar+ j)(cσ(i)− cτ(r+ j))]

×∏
k ̸=i

∏
l ̸= j

(ak + cσ(k))(ar+l + cτ(r+l)) : s ≥ 0, σ ∈ Sr
n,τ ∈ Ŝr

n, 1 ≤ i ≤ r < j ≤ n,(6)

are also contained in DJ(A,C).

Proof. (i) Considering in (2) matrices A and B of order 2 and

U =

(
chueiψ shueiϕ

shue−iϕ chue−iψ

)
, u ∈ R, ϕ ,ψ ∈ [0,2π[ ,

which belongs to U(1,1) , by direct computation, we easily find

DJ(A,C) = ]−∞,(a1 + c1)(a2 + c2)].

(ii) The points are produced taking in (2), U = Pσ Pτ .
(iii) The line segments are described considering in (2) the matrix U = V Pσ Pτ ,

where σ ∈ Sr
n,τ ∈ Ŝr

n and V is the matrix obtained from the identity replacing the
entries (i, i),(i, j),( j, i) and ( j, j) by cos θ ,sin θ ,cos θ and −sin θ , respectively, for
1 ≤ i < j ≤ r or for r+1 ≤ i < j ≤ n. The half-line Li, j,σ ,τ is described considering in
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(2) the matrix U =V Pσ Pτ , where σ ∈ Sr
n,τ ∈ Ŝr

n and V is the matrix obtained from the
identity replacing the entries (i, i),(i, j+ r),( j+ r, i) and ( j+ r, j+ r) by chu,shu,chu
and shu , respectively.

The eigenvalues of A are said to interlace if

a1 ≥ . . .≥ ar, ar+1 ≥ . . .≥ an, a1 ̸= ar, ar+1 ̸= an, ar � ar+1, an � a1.

PROPOSITION 2.2. Let A,C be J -Hermitian compatible matrices. If either the
eigenvalues of A interlace and ar ̸= ar+1 , ar ̸= an or the eigenvalues of C interlace
and cr ̸= cr+1 , cr ̸= cn , then DJ(A,C) is the whole real line.

Proof. Under the assumptions, there will be half-lines Li, j,σ ,τ with the same end
point, described considering in (2) the matrix U = V Pσ Pτ (where σ ∈ Sr

n,τ ∈ Ŝr
n and

V is the matrix obtained from the identity replacing the entries (i, i),(i, j+ r),( j+ r, i)
and ( j+ r, j+ r) by chu,shu,chu and shu , respectively), some of which are directed
to the right, and some to the left.

For brevity, the points zσ will be called σ -points.

We remark that the converse of last proposition is not valid, as the following ex-
ample shows.

EXAMPLE 1. Let

A0 =C0 = diag(3,−1,−2), J3 = diag(1,1,−1).

We investigate the set

DJ(A0,C0) = {det(A0 +UC0J3U∗) : UJ3U∗ = J3} .

We easily find for J2 = diag(1,−1),{
(−2)det

([
3 0
0 −2

]
+V

[
3 0
0 −2

]
J2V ∗

)
: V J2V ∗ = J2

}
= {20s2 : s ∈ R}= [0,+∞[,

and{
6det

([
−1 0
0 −2

]
+V

[
−1 0
0 −2

]
J2V ∗

)
: V J2V ∗ = J2

}
= {−108s2 : s ∈ R}=]−∞,0].

Thus,
DJ(A0,C0) = R.

LEMMA 1. Let A,C be J -Hermitian matrices under the assumptions of Theorem
1. If all the σ -points do not have the same sign, then DJ(A,C) is the whole real line.
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Proof. Assume that some σ -points are positive and some are negative. Accord-
ingly, some of the half-lines Li, j,σ ,τ which are described considering in (2) the matrix
U = V Pσ Pτ (where σ ∈ Sr

n,τ ∈ Ŝr
n and V is the matrix obtained from the identity re-

placing the entries (i, i),(i, j+ r),( j+ r, i) and ( j+ r, j+ r) by chu,shu,chu and shu ,
respectively) are directed to the right, and some to the left, depending on the end-points
being positive or negative. Having in mind that DJ(A,C) is connected, the result fol-
lows.

The following question arises. Let A,C be compatible J -Hermitian matrices. If
all the σ -points have the same sign, is DJ(A,C) the whole real line, or a half-line?
A partial answer is given in the proof of Theorem 1, namely, if p is even (odd), then
DJ(A,C) is half-line to the left (right).
Proof of Theorem 1

Since A,C are J -positive, so is A+C . Thus, det(J(A+C)) = (−1)n−r det(A+
C) > 0, so that det(A+C) > 0 if p is even and det(A+C) < 0 if p is odd. More-
over, ar > 0 > ar+1 and cr > 0 > cr+1 . According to the hypothesis, the matrix A
is J -unitarily similar to A0 = diag(a1, . . . ,an) and C is J -unitarily similar to C0 =
diag(c1, . . . ,cn).

Clearly, det(A+C) = det(A0 +VC0V #) for some J -unitary matrix V. Assume p
is even, so that det(A+C) > 0. Then, the closure of DJ(A;C) is a half-ray with its
end-point. There exists a J -unitary matrix V0 such that

det(A0 +V0C0V #
0 ) = inf

V∈U(r,n−r)
det(A0 +VC0V #).

We claim that
[A0,VC0V #] = 0,

where [X ,Y ] = XY −Y X . Let C′
0 =VC0V # so that det(A0+C′

0) is an extremal point of
DJ(A,C) . For simplicity, assume that a1 > · · · > an . Let H ∈ Cn×n be J -Hermitian.
For any real t, the matrix eitH = I + itH − 1/2t2H2 + · · · is J -unitary. Consider the
one-parameter curve in D(A,C)

t → det(A0 + e−itHC′
0eitH) = det(A0 +C′

0)
[
1+ itTr(A0 +C′

0)
−1[H,C′

0]
]
+Θ(t2).

Since we are assuming that det(A0 +C′
0) is an extremal point,

0 = Tr(A0 +C′
0)

−1[H,C′
0] = TrH[(A0 +C′

0)
−1,C′

0]

for all J -Hermitian H . Henceforth,

[C′
0,(A0 +C′

0)
−1] =C′

0(A0 +C′
0)

−1 − (A0 +C′
0)

−1C′
0 = 0.

Consequently, (A0 +C′
0)C

′
0 −C′

0(A0 +C′
0) = 0 and the claim follows. Since A0 is in

diagonal form, VC0V # is also in diagonal form. Thus, det(A0 +C′
0) is a σ -point, and

so, the minimum is attained and belongs to DJ(A,C) . We drop the assumption that the
eigenvalues of A are distinct by a continuity argument.

Let p be even. It is clear that the origin does not belong to DJ(A,C). According
to the hypothesis, the points in (5) and the half-lines in (6), are in the positive real line.
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Having in mind that DJ(A,C) is a connected set, it follows that it is a half-line whose
endpoint is a σ -point by the first part of the proof. Since for i < j and i′ < j′

(ai + ci′)(a j + c j′)− (ai + c j′)(a j + ci′) =−(ai −a j)(ci′ − c j′)< 0

and recalling that every permutation can be expressed as a product of transpositions, it
is clear that

min
σ∈Sr

n,τ∈Ŝr
n

r

∏
j=1

(a j + cσ( j))
n

∏
j=r+1

(a j + cτ( j)) =
n

∏
j=1

(a j + c j).

Let p be odd. By similar arguments, it is easy to conclude that

max
σ∈Sr

n,τ∈Ŝr
n

r

∏
j=1

(a j + cσ( j))
n

∏
j=r+1

(a j + cτ( j)) =
n

∏
j=1

(a j + c j).

�

3. Other determinantal inequalities

For A and C are n× n J -positive matrices, as JA and JC are positive definite
matrices, the following inequalities hold [10]

det(J(A+C))≥ det(JA)+det(JC),

(det(J(A+C)))1/n ≥ (det(JA))1/n +(det(JC))1/n,

det(λJA+(1−λ )JC)≥ (det(JA))λ +(det(JC))1−λ , 0 ≤ λ ≤ 1,

As consequence the following inequalities are valid.

PROPOSITION 3.1. If A,C are J -positive matrices for J = Ir ⊕−In−r , then

det(A+C)≥ det(A)+det(C),

if n− r is even, and
det(A+C)≤ det(A)+det(C),

if n− r is odd.

PROPOSITION 3.2. If A,C are n×n J -positive matrices for J = Ir ⊕−In−r , then

(det(A+C))1/n ≥ (det(A))1/n +(det(C))1/n,

if n− r is even, and

(det(A+C))1/n ≤−|det(A)|1/n −|det(C)|1/n,

if n− r is odd.
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PROPOSITION 3.3. For 0 ≤ λ ≤ 1 , A,C J -positive matrices and J = Ir ⊕−In−r ,
then

det(λA+(1−λ )C)≥ (det(A))λ +(det(C))1−λ ,

if n− r is even, and

det(λA+(1−λ )C)≤−|det(A)|λ −|det(C)|1−λ ,

if n− r is odd.

We remark that the estimates for the determinant of the sum of J -positive matrices
A,C in Theorem 1 are the best possible in terms of the eigenvalues of A and C .
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