
Bicriteria path problem minimizing the cost and minimizing the number of

labels

Marta Pascoal(1,2), M. Eugénia Captivo(3), João Cĺımaco(2,4), Ana Laranjeira(1)

marta@mat.uc.pt, mecaptivo@fc.ul.pt, jclimaco@fe.uc.pt, mat0401@mat.uc.pt

(1) Departamento de Matemática da Universidade de Coimbra,

Apartado 3008, 3001-454 Coimbra, Portugal

(2) Instituto de Engenharia de Sistemas e Computadores – Coimbra

Rua Antero de Quental, 199, 3000-033 Coimbra, Portugal

(3) Faculdade de Ciências, Universidade de Lisboa
Centro de Investigação Operacional

Campo Grande, Bloco C6, 1749-016 Lisboa, Portugal

(4) Faculdade de Economia da Universidade de Coimbra

Avenida Dias da Silva, 165, 3004-512 Coimbra, Portugal

Submitted March 2012

Revised December 2012

Abstract: We address a bicriterion path problem where each arc is assigned with a
cost value and a label (such as a color). The first criterion intends to minimize the total
cost of the path (the summation of its arc costs), while the second intends to get the
solution with a minimal number of different labels. Since these criteria, in general, are
conflicting criteria we develop an algorithm to generate the set of non-dominated paths.
Computational experiments are presented and results are discussed.

Keywords: Minimal cost, Minimal number of labels, Bicriteria, Shortest path.

MSC classification: 05C85, 90C27, 90C29

1 Introduction and motivation

The weight or cost is, probably, the most common objective function in network optimization

problems but, besides that, other objective functions are relevant. The number of different colors

(or labels) associated with the arcs in a feasible solution is one of those functions, and was introduced

by Chang and Leu [3] in the context of determining spanning trees. The goal of the minimal label

spanning tree problem (MLSTP) is to find the most uniformly connected spanning subgraph of

a network, assuming each edge is associated with a label. Contrarily to the minimal spanning

tree problem (MSTP), for which several polynomial algorithms are known [9, 13], [3] proved the

NP-hardness of the MLSTP and introduced two heuristic methods, as well as an exponential time

algorithm to solve it. Following up that work other approximate algorithms have been developed

for the MLSTP and related problems. A literature review on these methods can be found in

[7]. Applications of this type of problem include telecommunications, if different labels represent

different technologies or operators, and transportation, for instance if referring to different modes

of transport [16].

1

A bicriteria version of this problem, the minimal cost–minimal number of labels spanning tree

problem (MCLSTP), was studied in [4]. As a first approach to the MCLSTP the computation of

all the efficient spanning trees was proposed, by means of an adaptation of the bicriteria algorithm

introduced by Cĺımaco and Martins [5]. This algorithm aims at solving the bicriteria shortest

path problem and it is based on the ranking of paths by non-decreasing order of cost. In [4] a

similar method was developed that ranks spanning trees and thus computes the efficient spanning

trees with respect to cost and number of labels. However, when applied to spanning trees this

becomes computationally costly for instances with more than ten colors, even for medium size

networks. Therefore, a second approach consists in calculating just one efficient spanning tree for

any non-dominated pair of objective values.

In this work we extend the study presented in [4] and address the determination of shortest

paths with minimal number of labels. The remainder of the paper is organized as follows. In

Section 2 we define the minimal cost – minimal number of labels path problem (MCLPP) and

propose different algorithmic approaches. The method that is first proposed generates a set of paths

one for each non-dominated pair of objective values. Different implementations of this method are

described, and at a second stage reoptimization techniques and cost upper bounds are used in order

to enhance the initial method. Section 3 is devoted to the discussion of computational experiments

split into two parts, the first involving generic random graphs and random square grids, and the

second using random multi-graphs that simulate a transportation network where different means

of transportation are distinguished by different arc labels, as well as on a network inspired by

the transportation network of Coimbra. The last section presents concluding remarks and future

research directions.

2 The minimal cost and minimal number of labels path problem

Let (N ,A) be a directed network, where N denotes the set of n nodes, A denotes the set of m arcs,

and where arc (i, j) is associated with the cost for using it, cij ∈ IR, and with one of the ℓ possible

labels, lij . For convenience each label is represented by an integer in {1, 2, . . . , ℓ}. Let also c and l

be two functions such that c(p) =
∑

(i,j)∈p cij denotes the cost of path p, and l(p) is the number of

different labels in the arcs of path p. Given an initial node, s, and a terminal node, t, P denotes

the set of paths from s to t in (N ,A).

The goal of the shortest path problem is to determine a minimal cost path between nodes s

and t in (N ,A). This problem has been widely studied and, when the network (N ,A) does not

contain cycles with a negative cost, it can be solved in polynomial time, for instance, by a labelling

algorithm [1]. Because the shortest path problem will be seen as a subproblem of the MCLPP,

we assume that the networks satisfy this condition. If the subproblem is to be solved by means of

Dijkstra’s algorithm then the stronger assumption that the costs are non-negative should be made.

When considering l as the objective function we intend to obtain the minimal number of labels

path problem, the goal of which is to find a most homogeneous path between two given nodes of

(N ,A). Wirth [18] proved this problem is NP-hard.

2

The MCLPP consists of determining solutions for the bicriterion problem:

min{c(p) : p ∈ P}
min{l(p) : p ∈ P},

that is, paths from s to t which are good solutions with respect to c and l. In general there is a

conflict between these functions, and thus there is not a solution that is simultaneously optimal with

respect to both. Instead, the literature [15] distinguishes two kinds of solutions, efficient, in the

domain of the decision variables, and non-dominated, in the domain of the objective value vectors,

defined in the following. Our goal will be to determine the set of all non-dominated solutions.

Since the works by Vincke [17] and Hansen [8] several multicriteria path problems, and in

particular bicriteria path problems, have been studied. We mention a few [2, 5, 10], but for a more

complete survey on this subject the reader is referred to [6, 14].

A path p ∈ P is said to be efficient iff there is no p′ ∈ P such that

c(p′) ≤ c(p), l(p′) ≤ l(p)

and at least one of the inequalities is strict. When there is p′ ∈ P such that c(p′) ≤ c(p), l(p′) ≤ l(p)

and at least one of these inequalities is strict we say that (c(p′), l(p′)) dominates (c(p), l(p)), for

some p ∈ P. We intend to compute a minimal complete set of paths for the MCLPP, which is a

minimal set of efficient paths the images of which cover all non-dominated images. In other words,

we look for a set of efficient paths P̄ such that for any two p, p′ ∈ P̄ , p 6= p′, have different images,

and for any non-dominated pair (c̄, ℓ̄) there exists p ∈ P̄ so that (c(p), l(p)) = (c̄, ℓ̄).

The method proposed here computes a minimal complete set of solutions by calculating the

shortest path corresponding to each possible number of labels and checking its dominance. Checking

for alternative efficient solutions is still possible, but it is also computationally costly, and usually

the added information is not very valuable, thus computing one “representative” efficient solution

for each non-dominated pair of objective values is sufficient for most applications.

c

l

l∗
l∗ + 1

...

l̂

c∗ ĉ

◦

•

• ◦

◦

◦◦ ◦

• ◦

•◦

◦

◦

• efficient path images

◦ other path images

Figure 1: MCLPP solutions

Let l∗ (c∗) be the minimal number of labels (cost value) of a path, and l̂ (ĉ) be the maximal

number of labels (cost value) of an efficient path. These values define the region of the non-

dominated objective function images, that lies in [c∗, ĉ]×{l∗, . . . , l̂}, see Figure 1. In fact, there are

3

no solutions such that c(p) < c∗ or l(p) < l∗. Besides, if c(p) ≥ ĉ and l(p) ≥ l∗ with at least one

strict inequality, then (ĉ, l∗) dominates (c(p), l(p)), and, similarly if c(p) ≥ c∗ and l(p) ≥ l̂ with at

least one strict inequality, then (c∗, l̂) dominates (c(p), l(p)).

As mentioned above, we calculate a shortest path corresponding to each number of labels. In

fact it is easier to manipulate the network in order to fix the labels a path can contain than to

add constraints to fix the path cost. Besides, the range of labels is usually smaller than the range

of path costs. For this reason we look for an efficient path with each possible number of labels,

as stated in Proposition 1. Before presenting this result we show that the number of labels of all

paths from s to t in a network is not necessarily a complete sequence. A counter-example is given

in Figure 2, where there are only two paths from s to t in that network,

• p = 〈s, t〉, with l(p) = 1, and

• q = 〈s, 1, 2, t〉, with l(q) = 3,

however none of them has exactly two labels.

.

.

.

.

.

.

.

.

.

.

.

..

.

..
......................

..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
..
..
...
.....
..................

.

..

.

.

.

.

.

.

.

.

.

.

. s .
.
.
.
.
.
.
.
.
.
.
..
.
..
......................

..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
..
..
...
.....
..................

.

..

.

.

.

.

.

.

.

.

.

.

. t

.

.

.

.

.

.

.

.

.

.

.

..

.

..
......................

..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
...
......................

..
..
.
.
.
.
.
.
.
.
.
.
. 1 .

.

.

.

.

.

.

.

.

.

.

..

.

..

......................
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
...
......................

..

..

.

.

.

.

.

.

.

.

.

.

. 2

.

.

.

.

.

.

.

.

.

.

.

..

.

..

......................
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
..
..
...
.....
..................

.

..

.

.

.

.

.

.

.

.

.

.

. i .
.
.
.
.
.
.
.
.
.
.
..
.
..
......................

..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
..
..
...
.....
..................

.

..

.

.

.

.

.

.

.

.

.

.

. j...

.....
...
..
..
..

lij

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

.
.
.

.

1

.
.
.

.

1

Figure 2: Network with labeled arcs

Proposition 1. For any k ∈ {l∗, . . . , l̂}:

• either there is no path with k labels,

• or else there is at least a path p from s to t such that l(p) = k and:

– either p is efficient,

– or there is an efficient path p′ from s to t such that l(p′) < k, which dominates all the

paths with k labels.

For a fixed number of labels the shortest path dominates other paths with a greater cost. Thus,

by Proposition 1 it can be concluded that the set of efficient paths contains the shortest path with

k labels, for some of the possible number of labels k = l∗, . . . , l̂. Moreover, the application of a

single-objective shortest path algorithm with respect to c to (N ,A) provides path p∗, and thus the

value c∗, the cost of p∗, and an upper bound on l̂, given by the number of labels l(p∗). However,

since the minimum label path problem is NP-hard [18], l∗ cannot be known in polynomial time.

Thus, a sequence of constrained shortest path problems in networks with a specified number of

labels, ranging between 1 and l(p∗), are solved.

Some notation is now introduced. Let l(E) = {lij : (i, j) ∈ E}, for any E ⊆ A. Then, for

a fixed k ∈ {1, 2, . . . , ℓ}, (N ,A)k defines the set of all the networks (N , Ak), with Ak ⊆ A and

4

|l(Ak)| = k. We say that p is a path in (N ,A)k if p is a path in at least one of the networks in

(N ,A)k. The number of labels in every set (N ,A)k is bounded, therefore all its paths p satisfy

l(p) ≤ k. Denoting by pk the shortest path from s to t in (N ,A)k, as mentioned before the set

{(c(pk), l(pk)) : k = l∗, . . . , l̂} contains all the non-dominated objective values of the MCLPP. Each

path pk can be computed by examining every subnetwork of (N ,A) in (N ,A)k and, because in

general l∗ is unknown, doing this for k = 1, . . . , l(p∗) provides a set of efficient paths with all the

non-dominated objective values. Moreover, Proposition 2 can be used to reduce the number of this

type of operations.

Proposition 2. If l(pk) = k∗ < k, then pk dominates every path p such that k∗ < l(p) ≤ k.

Proof. Given a path p ∈ P such that l(pk) = k∗ < l(p) ≤ k, both p and pk are paths in (N ,A)k so,

by definition of pk, c(pk) ≤ c(p), which means that pk dominates p.

This result allows to skip the shortest path determination for some of the sets (N ,A)k, when-

ever l(pk) < k, namely for the sets (N ,A)r, l(pk) ≤ r ≤ k. This is particularly useful if k is taken

by decreasing order, considering the sequence {(N ,A)k}
1
k=l(p∗). Algorithm 1, together with Proce-

dure 1, summarize this method for computing a set of paths with all the non-dominated objective

function values.

Algorithm 1. Finding a minimal complete set for the MCLPP
// Input: network (N ,A) with arc costs and labels;

nodes s and t

// Output: P̄, a minimal complete set of paths from s to t with respect to c and l

// P is a set that contains possible efficient paths

01 p∗ ← shortest path from s to t in (N ,A)
02 P ← {p∗}
03 k ← l(p∗)− 1
04 While k ≥ 1 Do

05 pk ← Finding the shortest path from s to t in (N ,A)k, as in Procedure 1
06 If pk exists Then P ← P ∪ {pk}
07 k← min{l(pk), k} − 1
08 EndWhile

09 P̄ ← P after removal of the dominated paths

Note that (N ,A) is the only network in set (N ,A)ℓ, however the number of labels of pℓ, i.e.

p∗, is not necessarily l̂, but rather an upper bound on that value. The value l̂ coincides with the

number of labels of the lexicographically minimal path, therefore either l̂ = l(pℓ), and thus there

are no paths with cost c∗ and less than l̂ labels, or there is another path p̄ such that l(p̄) = l̂ < l(pℓ),

and thus c(p̄) = c∗ (otherwise pℓ dominates p̄). Nevertheless l̂ is obtained after a path with a cost

greater than c∗ is computed or when the algorithm exits the While loop, which means that there

are no more paths to be found. Moreover, instead of filtering the dominated paths that are stored

in P only at the end of the algorithm, these paths can be filtered within the loop. The constrained

problem at line 05 is solved by computing the shortest path problem from s to t in every subnetwork

of (N ,A)k, as outlined in Procedure 1.

5

Procedure 1. Finding the shortest path from s to t in (N ,A)k
// Input: network (N ,A)k with arc costs and labels;

nodes s and t

// Output: pk, a shortest path from s to t in the set (N ,A)k
01 BestCost← +∞
02 For every (N , Ak) subnetwork of (N ,A)k Do

03 p← shortest path from s to t in (N , Ak)
04 If c(p) < BestCost Then

05 BestCost← c(p)
06 pk ← p

07 EndIf

08 EndFor

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
....................

...
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
..
..
.....
.................

..

..

.

.

.

.

.

.

.

.

.

.

.

. 1

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...
...................

...
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
..
..
.....
.................

..
..
.
.
.
.
.
.
.
.
.
.
.
. 2 .

.

.

.

.

.

.

.

.

.

.

.

.

..
...
...................

...
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
..
..
.....
.................

..

..

.

.

.

.

.

.

.

.

.

.

.

. 3

.

.

.

.

.

.

.

.

.

..

.

.

..

..
....................

...
..
..
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
..
..
.....
.................

..
..
.
.
.
.
.
.
.
.
.
.
.
. 4 .

.

.

.

.

.

.

.

.

..

.

.

..
..
....................

...
..
..
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
..
..
.....
.................

..

..

.

.

.

.

.

.

.

.

.

.

.

. 5

.

.

.

.

.

.

.

.

.

.

.

.

.

..
...
...................

...
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
..
..
.....
.................

..

..

.

.

.

.

.

.

.

.

.

.

.

. i .
.
.
.
.
.
.
.
.
.
.
.
.
..
...
...................

...
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
..
..
.....
.................

..

..

.

.

.

.

.

.

.

.

.

.

.

. j...

.....
...
..
..
..

cij , lij

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.1,1

.............

.............

.............

.............

...
..........
..
..
..
.
..
.
..
.

6,2

.............

.....
...
..
..
.

4,2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

4,2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

20,1

.............

.....
...
..
..
.

8,2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

2,3

Figure 3: Network (N ,A)

As an illustration of Algorithm 1 we consider its application to the network represented in

Figure 3 with s = 1 and t = 5, which is split into three steps corresponding to the sets of networks

(N ,A)k, with k = 3, 2, 1. Table 1 shows a scheme of the paths that are calculated throughout the

procedure.

Table 1: Paths calculated by Procedure 1 applied to the network in Figure 3

Step (N ,A)k l(Ak) p (c(p), l(p)) pk P

1 (N ,A)3 {1, 2, 3} 〈1, 2, 3, 5〉 (7, 3) 〈1, 2, 3, 5〉 {〈1, 2, 3, 5〉}
2 (N ,A)2 {1, 2} 〈1, 2, 4, 5〉 (13, 2)

{1, 3} 〈1, 2, 5〉 (21, 1)
{2, 3} 〈1, 4, 5〉 (14, 1) 〈1, 2, 4, 5〉 {〈1, 2, 3, 5〉, 〈1, 2, 4, 5〉}

3 (N ,A)1 {1} 〈1, 2, 5〉 (21, 1)
{2} 〈1, 4, 5〉 (14, 1) 〈1, 4, 5〉
{3} − − {〈1, 2, 3, 5〉, 〈1, 2, 4, 5〉, 〈1, 4, 5〉}

In Procedure 1 it is assumed that for each number of labels k all the subnetworks of (N ,A) with

their set of arcs restricted to contain exactly k labels are considered. One way to implement this

is to enumerate all the k elements combinations of the ℓ labels, and mark all the arcs labeled with

other values as non-available. If done by increasing order of the number of labels, the construction

of these combinations can be aided by a search tree, with a root with no labels associated, and such

that each child node contains a new label that is added to its ancestors’ labels. Figure 4 shows an

example of such a tree, if the arc labels are 1, 2 and 3.

Given a total number of ℓ labels, retrieving all the paths from the root to a level k of the search

tree provides all the combinations of those labels with k elements. If the tree is constructed following

a breadth first search (BFS) policy, each of its levels, for instance k, can support the shortest path

6

.

.

.

.

.

.

.

.

.

.

.

..
....................

..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
...
...................

..

.

.

.

.

.

.

.

.

.

. –

.

.

.

.

.

.

.

.

..

.

.

..

...................
...
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
...
...................

..

.

..

.

.

..

.

.

.

. 1 .
.
.
.
.
.
.
.
..
.
.
..
...................

...
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
...
...................

..
.
..
.
.
..
.
.
.
. 2 .

.

.

.

.

.

.

.

.

.

..

..

..
..
..
...
...................

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..
...................

...
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.3

.

.

.

.

.

.

.

.

.

.

.

..

.....................
..
..
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
...
................

...
..
.
.
.
.
.
.
.
.
.
. 2 .

.

.

.

.

.

.

.

.

.

.

..

.....................
..
..
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
...
................

...
..
.
.
.
.
.
.
.
.
.
. 3 .

.

.

.

.

.

.

.

.

.

.

..
.....................

..
..
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
...
................

...
..
.
.
.
.
.
.
.
.
.
. 3

.

.

.

.

.

.

.

.

.

.

.

.

..

...................
...
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
..
...
...
.................

..

.

..

.

.

.

.

.

.

.

. 3

...
..
..
.
..
.
.
..
.

...
...........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
...........
..
..
..
.
..
.
.
..
.

...
..
..
..
..
..
.
.

...
.....
......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 4: Search tree of a network with the labels 1, 2 and 3.

determination in (N ,A)k. Algorithm 2 shows the pseudo-code of an alternative to Algorithm 1

that considers an increasing sequence of the number of labels provided by a BFS tree, the nodes

of which result from adding the arcs with a certain label to the shortest path associated with its

father. In order to implement the BFS, the set X manages the tree nodes by being manipulated

in a first in first out (FIFO) manner. The nodes in each level correspond to all combinations of k

elements of {1, . . . , ℓ}, as depicted in Figure 4.

Algorithm 2. Finding a minimal complete set for the MCLPP with a BFS tree
// Input: network (N ,A) with arc costs and labels;

nodes s and t

// Output: P̄, a minimal complete set of paths from s to t with respect to c and l

// P is a set that contains possible efficient paths

// C is an auxiliary set manipulated in order to obtain all the label combinations

01 p∗ ← shortest path in (N ,A)
02 X ← {∅}
03 P ← {p∗}
04 x← 0
05 While x ≤ l(p∗) and X 6= ∅ Do
06 C ← first element in X

07 X ← X − {C}
08 x← |C|
09 y ← greatest label in C (or 0 if C = ∅)
10 For k = y + 1, . . . , ℓ Do
11 Insert C ∪ {k} at the end of X
12 A′ ← {arcs in A with a label in C ∪ {k}}
13 p← shortest path in (N , A′)
14 If p exists Then P ← P ∪ {p}
15 EndFor

16 EndWhile

17 P̄ ← P after removal of the dominated paths

The previous methods compute the shortest path in every subnetwork of (N ,A) obtained by

making combinations of the original ℓ labels, which means that the number of operations performed

by these methods is proportional to
∑ℓ

k=1

(

ℓ
k

)

, and thus it increases quickly with ℓ. However, two

aspects can be taken into account when aiming to reduce that number.

Reoptimization of paths Many of the shortest path problems that have to be solved are similar,

only the set of arcs may change by including or excluding arcs with a certain label at a time. The

use of this information depends on the algorithm implementation. Although this is not clear for

7

Algorithm 1, it is easy to see that, when using Algorithm 2, the problem, and the path, associated

with a node in the search tree differs from its ancestor because the arcs with a new label can be

used and become part of the solution. This allows to replace many of the shortest path problems

with the reoptimization of a shortest path after the inclusion of a set of new arcs in the network.

The resulting method is summarized in Algorithm 3.

Algorithm 3. Finding a minimal complete set for the MCLPP with a BFS tree and path reopti-

mization
// Input: network (N ,A) with arc costs and labels;

nodes s and t

// Output: P̄, a minimal complete set of paths from s to t with respect to c and l

// P is a set that contains possible efficient paths

// C is an auxiliary set manipulated in order to obtain all the label combinations

01 p∗ ← shortest path in (N ,A)
02 X ← {∅}
03 P ← {p∗}
04 x← 0
05 While x ≤ l(p∗) and X 6= ∅ Do
06 C ← first element in X

07 X ← X − {C}
08 x← |C|
09 y ← greatest label in C (or 0 if C = ∅)
10 A′ ← {arcs in A with a label in C}
11 q ← shortest path in (N , A′)
12 For k = y + 1, . . . , ℓ Do
13 Insert C ∪ {k} at the end of X
14 p← shortest path obtained from inserting in q the arcs in A′ with the label k // Procedure 2

15 If p exists Then P ← P ∪ {p}
16 EndFor

17 EndWhile

18 P̄ ← P after removal of the dominated paths

Algorithm 3 uses Procedure 2 as the reoptimization method. This is based on a label correcting

approach – see [1] – and assumes that a shortest path tree rooted at s is already known as the

solution to a previous subproblem. The procedure then works in two phases. First the arcs labeled

with the new inserted color are analyzed, and if they allow the improvement of the label of a node

this node is inserted back to the list of temporary node labels. Second the labelling procedure

proceeds as usual, trying to improve the current paths and using the new color as well as the

previous till all node labels are definite.

Procedure 2. Shortest path obtained from the insertion of a set of arcs with label k in a path p
// Input: network (N , A′);

set of arcs A;
shortest path from s to any node i ∈ N, defined by πi, its cost, and ξi,

the node that precedes i in that path;
new arc label k

// Output: shortest path after the insertion of the arcs with label k in p

01 L← ∅
02 For any i ∈ N such that lij = k Do

03 For every (i, j) ∈ A such that lij = k Do

04 If πi + cij < πj Then

8

05 πj ← πi + cij
06 ξj ← i

07 L← L ∪ {j}
08 EndIf

09 EndFor

10 EndFor

11 While L 6= ∅ Do
12 i← node in L

13 L← L− {i}
14 For every (i, j) ∈ A such that (i, j) ∈ A′ or lij = k Do

15 If πi + cij < πj Then

16 πj ← πi + cij
17 ξj ← i

18 L← L ∪ {j}
19 EndIf

20 EndFor

21 EndWhile

2.1 Enhancing paths computation

In the shortest path problems that are solved, many repeated paths may be obtained. For instance,

in the example above the path 〈1, 4, 5〉 is calculated twice, first as the shortest path in one of the

networks in (N ,A)2, and second in one of the networks in (N ,A)1. However, because that path is

not optimal for (N ,A)2 it is only stored the second time it is computed. Proposition 3 is a simple

result which shows that this information can be managed in order to limit the labels produced in

intermediate shortest path problems. According to this result the cost of any path computed at a

certain step of the algorithm can be used as a cost upper bound of forthcoming permanent labels.

In the case above, in step 2 the objective values of 〈1, 4, 5〉 are calculated (14, 1), therefore in step 3

the path 〈1, 2, 5〉, with image (21, 1), does not have to be computed till the end.

Proposition 3. Let p ∈ P, then c(p) is an upper bound on the cost of the efficient paths with k

labels, for any k ≥ l(p).

Proof. Let q be an efficient path with l(q) = k ≥ l(p) and assume, by contradiction, that c(q) > c(p).

Then p dominates q, and q cannot be efficient.

Corollary 1. Let p∗ denote the shortest path in (N ,A), and pk denote the shortest path in (N ,A)k,

that is, a path such that c(pk) ≤ c(p) for any p which satisfies l(p) ≤ k, k = l(p∗), . . . , 1. Then

{(c(pk), l(pk)) : k = l(p∗), . . . , 1} contains all the non-dominated pairs of objective values.

Proof. Let p̄ be an efficient path and assume (l(p̄), c(p̄)) 6∈ {(c(pk), l(pk)) : k = l(p∗), . . . , 1}. Two

cases should be considered,

1. l(p̄) = l(pk) for some k = l(p∗), . . . , 1,

2. l(p̄) 6= l(pk) for any k = l(p∗), . . . , 1.

In case 1. c(p̄) ≥ c(pk), because by definition pk is the shortest path in (N ,A)k, and l(p̄) = l(pk).

This means that pk dominates p̄ and thus p̄ is not efficient.

9

In case 2. take k = l(p̄). Then pk is such that c(pk) ≤ c(p̄) and l(pk) ≤ l(p̄), with (c(pk), l(pk)) 6=

(c(p̄), l(p̄)), therefore pk dominates p̄ and, again, p̄ is not efficient.

These results can be incorporated in the algorithm by storing the best cost of the computed

paths with k labels, k = l(p∗), . . . , 1. If the shortest path problems are solved by means of a labelling

algorithm [1], the stored upper bounds can be used to prevent the creation of labels with a cost

that exceeds the upper bound values. In order to make use of this result, the previous algorithms

can store an upper bound of the cost for any number of labels by including an l(p∗)-components

array, CostUB, initialized with CostUBk = +∞, k = 1, . . . , l(p∗). Whenever a new path, p, is

computed in a set of networks with k labels, CostUB is updated as

CostUBr ← min{CostUBr, c(p)}, r = l(p), . . . , k.

Such values can be used to restrict the node labels when computing the shortest path in a network

(N , Ak), k ∈ {1, . . . , l̂}.

Reducing the number of path labels in the original approach reduces the number of calculated

paths as well. In particular, considering a fixed number of labels it is less likely that the computation

of high cost shortest paths is completed. For instance, the application of Algorithm 1 modified by

including the array CostUB as described results in the steps in Table 2. After obtaining the path

Table 2: Paths calculated by Algorithm 1 using the array CostUB applied to the network in
Figure 3

Step CostUB (N ,A)k l(Ak) p (c(p), l(p)) pk P

1 [∞,∞, 7] (N ,A)3 {1, 2, 3} 〈1, 2, 3, 5〉 (7, 3) 〈1, 2, 3, 5〉 {〈1, 2, 3, 5〉}
2 [∞, 13, 7] (N ,A)2 {1, 2} 〈1, 2, 4, 5〉 (13, 2) 〈1, 2, 4, 5〉 {〈1, 2, 3, 5〉, 〈1, 2, 4, 5〉
3 [21, 13, 7] (N ,A)1 {1} 〈1, 2, 5〉 (21, 1)

[14, 13, 7] (N ,A)2 {2} 〈1, 4, 5〉 (14, 1) 〈1, 4, 5〉
{3} − − {〈1, 2, 3, 5〉, 〈1, 2, 4, 5〉, 〈1, 4, 5〉}

p = 〈1, 2, 4, 5〉 such that c(p) = 13 and l(p) = 2 for (N ,A)2, the paths 〈1, 2, 5〉 and 〈1, 4, 5〉 are

no longer generated in step 2. However, because they have only one label they are still generated

along step 3. Generally speaking, after a path p∗ is obtained in (N ,A)k no other path q in the

same set of networks and such that c(q) ≥ c(p∗) is considered, regardless of its number of labels.

However, such a path q can be efficient if l(q) < l(p∗), and thus q is still eligible for some set of

networks (N ,A)r, with l(q) ≤ r < l(p∗).

In terms of implementation let us assume a labelling algorithm is used to solve each shortest

path problem, and let πi denote the cost of a path from s to i throughout that algorithm, for any

i ∈ N . In a regular run of a labelling algorithm the label of a node j is updated if there is a node

i such that (i, j) ∈ A and πi + cij < πj. When considering a network in (N ,A)k, k = 1, . . . , l̂, and

taking the upper bound on the paths cost into account the value πj is only updated if

πi + cij < πj and πi + cij ≤ CostUBk

10

is satisfied. When applying Procedure 1 several paths p are determined until pk is known, so their

costs can be used to update CostUBl(p) if c(p) < CostUBl(p). In that case the path p should be

stored, besides paths pk.

Tightening upper bounds The above path costs can still be strengthened if combined with

information about the cost of the best paths from intermediate nodes to t. Let us assume that the

shortest path from any node i ∈ N to t in (N ,A) is obtained at an early stage of the algorithm

(which can be done by means of a labelling method [1]). Let Tt denote the tree, rooted at t,

containing all those paths, and πt
i denote the cost of the path from i to t in that tree. Tt provides

lower bounds for the cost of paths, which can be used to prevent useless node labels by restricting

some node j’s labelling to the cases which satisfy

πi + cij < πj and πi + cij + πt
j ≤ CostUBk,

on some network in (N ,A)k, k = 1, . . . , l̂. In order to be able to use this cost lower bounds and

to discard some node labels without penalizing too much the number of performed operations, we

propose Tt is calculated only once, prior to the While-Do loop in Algorithm 3, with respect to the

original network (N ,A).

3 Computational experiments

Empirical experiments were made in order to evaluate some implementations of the presented

methods. The tests ran on a Dual Core AMD Opteron at 2 GHz, with 4 Gb of RAM. The

following codes, written in C language and compiled with the option -O3, were implemented:

• V1: a version of Algorithm 1. V1 constructs iteratively all the combinations with k elements

of the ℓ labels, for given values of ℓ and k;

• V2: an improved version of V1 enhanced with comparing the computed path costs to the

previously determined;

• V3: an improved version of V2 enhanced with the information on the minimum cost of a path

from any node to t, computed once at the beginning of the algorithm;

• BFS1: a version of Algorithm 2, using a BFS tree. The combinations with k elements of ℓ

labels are obtained by adding one label at a time to a previous combination with less elements;

• BFS2: a variant of BFS1, reoptimizing shortest paths in every level of the search tree, as in

Algorithm 3.

The single-objective shortest path problems were solved by a label correcting algorithm with the

set of temporary labels managed as a FIFO list.

11

Random graphs In a first set of tests we considered thirty randomly generated graph instances

of each dimension, with n = 100, 200, . . . , 1000, m = 5n, 10n, 20n, and ℓ = 5, 10, 20. The source and

the destination nodes, s and t, were chosen randomly, the arc costs and arc labels were uniformly

generated in {1, 2, . . . , 100} and in {1, . . . , ℓ}, respectively. It was assumed that there are no parallel

arcs nor self-loops.

Table 3: Mean value of |P̄ | in random graphs

m n× 5 n× 10 n× 20

ℓ 5 10 20 5 10 20 5 10 20

n = 100 2.667 2.933 3.000 2.733 2.867 2.800 3.067 3.600 3.667
n = 200 2.333 2.667 2.467 3.200 3.533 3.933 3.200 3.667 3.333
n = 300 2.800 3.133 2.733 3.400 3.600 3.600 3.267 4.067 3.733
n = 400 2.267 2.600 2.533 3.600 4.000 4.200 3.733 4.933 4.667
n = 500 2.733 2.867 2.867 3.467 3.667 4.067 3.133 3.867 4.467
n = 600 2.933 3.933 3.933 3.667 4.467 4.933 3.400 4.333 4.133
n = 700 2.333 3.133 2.867 4.067 4.400 4.933 3.667 4.867 4.667
n = 800 2.733 3.000 2.467 3.267 3.533 3.733 3.733 4.733 4.867
n = 900 3.067 3.400 3.133 3.400 3.467 4.067 3.800 5.200 5.333
n = 1000 2.867 3.467 3.067 3.800 3.867 4.200 3.400 4.400 4.467

Let |P̄ | denote the cardinality of the minimal complete set of paths for the MCLPP. Table 3

summarizes the mean values of |P̄ | obtained for those instances. That number depends on the

number of arc labels, ℓ, which is the maximum value for the cardinality of the minimal complete

set for the MCLPP. According to Table 3 the mean cardinality of the minimal complete set for the

MCLPP ranged between 2.2 and 5.3, moreover this number usually grows with the average node

degree of the graphs.

Table 4 presents running times, in seconds, on this set of tests, whereas Figure 6 shows the

ratios with respect to code V1. As expected, the highest increase in the execution times is due to

the increase on the number of different labels in the graphs, the times vary from some milliseconds

for instances with five labels to tens of seconds for instances with twenty labels. The programs

also become slower when the number of nodes or the average node degree is larger, although this

performance is not always stable.

The graphics show that, almost always the versions using the search tree (BFS1 and BFS2) are

worse than V2 and V3, and that the gap is bigger when ℓ is bigger too. Moreover, the worst of

the codes based on the search tree, BFS1, is only better than V1 for small and sparse instances

with m = 5n, 10n and ℓ = 5. BFS2 behaves better than BFS1, it always outperforms V1 and it also

outperforms V2 and V3 for small problems with few nodes and ℓ = 5.

Among the variants of Algorithm 1, V1, V2 and V3, the latter is generally the most efficient

and the first the least efficient. The gap is bigger when ℓ is bigger too. Both the comparison of

the path costs to previous solution costs and the inclusion of upper bounds to limit the number of

labels produced during the shortest path computation have a big impact on the program running

times, and V2 and V3 CPU times varied from some milliseconds only to 1.100 seconds and 0.331

seconds, respectively. Similarly to what was observed for V1, the performance of V2 and V3 is highly

dependent on the number of labels and, in general, it is better for sparser than for denser graphs.

12

However, these two variants presented a performance less steady than V1’s.

Grid graphs The second set of test instances contains square grid graphs of the form [1, q] ×

[1, q], where q = 10, 20, 30, 40, 50. The nodes in the graph correspond to the intersection between

horizontal and vertical lines along the grid. The horizontal and vertical lines, together with the

diagonal, represent arcs that link each node to all its neighbours in the grid. Such a grid, depicted

in Figure 5, has n = q2 nodes and m = 4(2q−1)(q−1) arcs. The source node is the bottom border

vertex of the grid, whereas the top border is the destination. Like in the case of random instances,

arc costs were uniformly generated in {1, 2, . . . , 100} and arc labels in {1, . . . , ℓ}.

...
...

...
...

· · ·

· · ·

· · ·

· · ·

s 1

q2 t

Figure 5: Grid graph

For these instances the mean value of |P̄ | is greater than for the random. The mean value varies

between 2.1 and 15.7. Therefore, the CPU times are greater for grid graphs too, between a few

milliseconds and 2430.503 seconds with the slowest code, BFS1, and between a few milliseconds and

172.201 seconds with the fastest, V3. For this set of tests the performance of V2, V3, BFS1 and BFS2

compared to V1 was worse than for the random set of graphs. Although the relative behavior of the

codes is similar, now the versions based on a search tree are worse or equivalent to V1, whereas V2

is slightly faster. The advantage of V3 is always clear, although it seems to become smaller when

ℓ increases.

13

Table 4: Mean CPU times (secs) in random graphs

m n× 5 n× 10 n× 20

ℓ 5 10 20 5 10 20 5 10 20

n = 100 0.000 0.001 0.175 0.000 0.003 0.148 0.000 0.006 0.174
n = 200 0.000 0.002 0.264 0.001 0.010 2.280 0.002 0.019 1.267
n = 300 0.000 0.005 0.583 0.002 0.016 1.485 0.003 0.044 4.226
n = 400 0.001 0.008 0.524 0.002 0.036 3.420 0.005 0.083 11.366

V1 n = 500 0.001 0.015 1.228 0.003 0.049 3.897 0.006 0.069 8.006
n = 600 0.002 0.023 2.208 0.004 0.070 9.434 0.007 0.101 7.441
n = 700 0.002 0.016 1.805 0.005 0.080 16.313 0.009 0.136 19.176
n = 800 0.002 0.024 1.076 0.005 0.063 8.856 0.009 0.167 25.548
n = 900 0.002 0.028 4.371 0.006 0.068 12.575 0.011 0.220 40.890
n = 1000 0.002 0.039 3.300 0.006 0.087 14.646 0.010 0.189 28.727

n = 100 0.000 0.000 0.039 0.000 0.000 0.021 0.000 0.001 0.007
n = 200 0.000 0.001 0.051 0.000 0.002 0.221 0.001 0.002 0.038
n = 300 0.000 0.001 0.146 0.007 0.002 0.045 0.001 0.004 0.443
n = 400 0.001 0.001 0.053 0.001 0.003 0.169 0.001 0.009 0.802

V2 n = 500 0.001 0.002 0.118 0.001 0.003 0.169 0.002 0.003 0.177
n = 600 0.001 0.003 0.283 0.001 0.006 0.304 0.002 0.007 0.129
n = 700 0.001 0.002 0.188 0.001 0.009 0.479 0.002 0.016 0.711
n = 800 0.001 0.003 0.101 0.001 0.007 0.994 0.003 0.013 0.422
n = 900 0.001 0.005 0.312 0.002 0.005 0.380 0.003 0.016 1.100
n = 1000 0.001 0.006 0.360 0.002 0.012 0.770 0.003 0.015 0.427

n = 100 0.000 0.000 0.018 0.000 0.000 0.004 0.000 0.000 0.005
n = 200 0.000 0.000 0.023 0.000 0.001 0.073 0.001 0.001 0.018
n = 300 0.000 0.000 0.050 0.001 0.001 0.023 0.001 0.002 0.067
n = 400 0.000 0.001 0.035 0.001 0.001 0.072 0.001 0.004 0.149

V3 n = 500 0.001 0.001 0.069 0.001 0.001 0.086 0.001 0.002 0.075
n = 600 0.000 0.001 0.119 0.001 0.002 0.137 0.002 0.002 0.061
n = 700 0.001 0.001 0.093 0.001 0.003 0.193 0.002 0.008 0.262
n = 800 0.001 0.001 0.064 0.001 0.003 0.197 0.002 0.004 0.142
n = 900 0.001 0.003 0.176 0.002 0.003 0.162 0.003 0.007 0.331
n = 1000 0.001 0.002 0.147 0.002 0.004 0.235 0.003 0.008 0.220

n = 100 0.000 0.002 0.304 0.000 0.005 0.212 0.001 0.009 0.214
n = 200 0.000 0.006 0.566 0.001 0.023 3.518 0.002 0.039 1.953
n = 300 0.000 0.013 1.486 0.002 0.032 1.710 0.004 0.074 7.473
n = 400 0.001 0.013 0.893 0.003 0.061 6.010 0.007 0.144 22.661

BFS1 n = 500 0.001 0.021 1.890 0.004 0.061 5.613 0.008 0.094 10.678
n = 600 0.003 0.044 5.128 0.006 0.121 14.209 0.012 0.171 11.224
n = 700 0.003 0.031 3.799 0.008 0.150 21.520 0.017 0.280 39.780
n = 800 0.003 0.039 1.711 0.007 0.108 26.397 0.018 0.288 28.694
n = 900 0.003 0.062 8.240 0.008 0.111 15.311 0.021 0.391 70.836
n = 1000 0.003 0.070 7.093 0.012 0.213 30.315 0.022 0.342 39.229

n = 100 0.000 0.000 0.061 0.000 0.000 0.030 0.000 0.001 0.017
n = 200 0.000 0.001 0.097 0.000 0.004 0.386 0.000 0.003 0.065
n = 300 0.000 0.002 0.241 0.001 0.003 0.076 0.001 0.008 0.693
n = 400 0.000 0.002 0.078 0.001 0.005 0.262 0.002 0.014 1.307

BFS2 n = 500 0.000 0.002 0.162 0.001 0.005 0.291 0.002 0.006 0.398
n = 600 0.001 0.004 0.461 0.001 0.010 0.550 0.003 0.010 0.224
n = 700 0.001 0.003 0.296 0.002 0.014 0.694 0.004 0.022 1.505
n = 800 0.001 0.004 0.137 0.002 0.010 1.797 0.005 0.021 0.773
n = 900 0.001 0.009 0.465 0.003 0.009 0.992 0.006 0.027 1.564
n = 1000 0.001 0.009 0.720 0.003 0.018 1.389 0.006 0.021 0.522

14

Table 5: Mean value of |P̄ | in grid graphs

ℓ 5 10 20

10× 10 2.100 4.633 5.400
20× 20 2.133 6.400 6.233
30× 30 3.000 7.933 10.367
40× 40 3.000 8.000 13.200
50× 50 4.000 8.000 15.700

Table 6: Mean CPU times (secs) in grid graphs

V1

ℓ 5 10 20

10× 10 0.000 0.007 5.255
20× 20 0.002 0.078 29.655
30× 30 0.008 0.269 170.995
40× 40 0.020 0.647 550.173
50× 50 0.040 1.338 1312.755

V2

5 10 20

0.000 0.006 2.670
0.003 0.052 36.257
0.007 0.220 164.273
0.020 0.571 451.215
0.041 1.223 1029.820

V3

5 10 20

0.000 0.000 0.277
0.001 0.010 3.009
0.004 0.053 17.537
0.011 0.161 59.621
0.024 0.400 172.201

BFS1

ℓ 5 10 20

10× 10 0.000 0.019 10.451
20× 20 0.003 0.147 135.872
30× 30 0.016 0.530 480.474
40× 40 0.042 1.312 1163.854
50× 50 0.084 2.686 2430.503

BFS2

5 10 20

0.000 0.008 3.346
0.003 0.069 40.493
0.012 0.293 179.125
0.033 0.807 486.944
0.064 1.781 1106.517

15

V1/V2 V1/V3◦ V1/BSF1 V1/BSF2

◦ ◦ ◦
◦ ◦

◦

◦
◦ ◦ ◦

200 400 600 800 1000

2.5

5.0

7.5

10.0

12.5

15.0

n

ℓ = 5, m = 5n

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

200 400 600 800 1000

4

8

12

16

20

24

n

ℓ = 10, m = 5n

◦
◦ ◦

◦

◦ ◦
◦
◦

◦
◦

200 400 600 800 1000

4

8

12

16

20

24

n

ℓ = 20, m = 5n

◦
◦

◦

◦
◦

◦

◦

◦
◦ ◦

200 400 600 800 1000

1.1

2.2

3.3

4.4

5.5

6.6

n

ℓ = 5, m = 10n ◦

◦

◦

◦ ◦
◦ ◦ ◦

◦

◦

200 400 600 800 1000

6

12

18

24

30

36

n

ℓ = 10, m = 10n

◦ ◦

◦

◦ ◦

◦

◦

◦

◦

◦

200 400 600 800 1000

14

28

42

56

70

84

n

ℓ = 20, m = 10n

◦

◦ ◦

◦

◦
◦

◦ ◦
◦
◦

200 400 600 800 1000

0.9

1.8

2.7

3.6

4.5

5.4

n

ℓ = 5, m = 20n

◦
◦ ◦

◦

◦

◦

◦

◦

◦

◦

200 400 600 800 1000

8

16

24

32

40

48

n

ℓ = 10, m = 20n

◦

◦
◦
◦

◦
◦

◦

◦

◦ ◦

200 400 600 800 1000

30

60

90

120

150

180

n

ℓ = 20, m = 20n

Figure 6: Mean CPU times ratio for random graphs with respect to V1

16

V1/V2 V1/V3◦ V1/BSF1 V1/BSF2

◦

◦

◦

◦

◦

10 20 30 40 50

3.5

7.0

10.5

14.0

17.5

21.0

q

ℓ = 5
◦

◦

◦

◦

◦

10 20 30 40 50

1.5

3.0

4.5

6.0

7.5

9.0

q

ℓ = 10

◦

◦

◦

◦

◦

10 20 30 40 50

1.5

3.0

4.5

6.0

7.5

9.0

q

ℓ = 20

Figure 7: Mean CPU times ratio for grid networks q × q with respect to V1

17

Multi-modal graphs Another set of tests ran on thirty random instances with multi-graphs

simulating networks with several means of transportation. The parallel arcs in the graph are iden-

tified with different indexes, whereas the transportation modes are distinguished by different labels.

The multi-graphs result from overlapping graphs, each corresponding to a mean of transportation.

First, instances with three types of transportation (ℓ = 3) were considered, and second that number

was increased to five (ℓ = 5).

In the case ℓ = 3 it is intended to simulate the following different subnetworks,

• The taxi network, generated as a connected network, (N ,A), with n = 100, . . . , 1000 and

m = 5n, 10n, 20n. The costs are integers uniformly obtained in {1, 2, . . . , 120}. This structure

is the most complete of the three and the one that reaches more locations in the network,

since it is assumed that taxis are the most flexible transportation.

• The bus network is composed of several routes, of linear or circular format, that is designed

by selecting a random number of nodes in N . The number of circuits of each type was twenty,

sixty and ninety, whereas the arc costs were obtained as before.

• The subway network is a subtree of (N ,A), containing a random number of nodes. The costs

were uniformly generated in {1, 2, . . . , 50}.

Besides the transportation modes already mentioned for the case ℓ = 3, the case ℓ = 5 also

included,

• A cycle-way network, similar to the subway network but with a different number of nodes,

and costs in {1, 2, . . . , 20}.

• A minibus, similar to a linear bus route but with a different number of nodes.

The source and the destination nodes are randomly selected.

Table 7: Mean value of |P̄ | and CPU time (secs) of V1, ℓ = 3

n 100 200 300 400 500 600 700 800 900 1000

µ 0.001 0.002 0.003 0.004 0.005 0.007 0.008 0.009 0.011 0.013
n̄d 1.437 1.415 1.427 1.442 1.428 1.467 1.486 1.457 1.474 1.454

m̄ 8681 14 610 21 807 28 968 32 571 40 291 48 829 54 248 59 120 66 304 75 178 91 046

µ 0.001 0.002 0.003 0.004 0.004 0.006 0.007 0.010 0.011 0.012 0.014 0.016
σ 0.000 0.000 0.001 0.000 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.003

Legend. µ: Mean CPU times; n̄d: Mean value of |P̄ |; m̄: Mean number of arcs; σ: Standard deviation of the CPU

times.

The results of these tests are summarized in Tables 7 and 8 for the set of instances with ℓ = 3

and ℓ = 5, respectively. The first part of these tables lists mean values of the running times and

of the number of computed solutions for each number of nodes. The values are in accordance

with those observed above for instances with 5 labels, the times are very close and the number of

solutions is slightly smaller for ℓ = 3 than for ℓ = 5.

18

In this set of tests the number of nodes, n, and the number of arcs, m, in the graphs simulating

the taxis network are fixed. However, the sizes of the bus and of the subway networks, as well as the

cycle-way and minibus networks (when ℓ = 5), vary, so the results are organized into two ways. In

the first set of results on Tables 7 and 8 the values obtained are grouped for instances with the same

n. Then, because the results in terms of CPU times were similar for instances with approximately

the same total number of arcs, such values are presented in the second group. The figures reported

for the first case are means for the CPU times, µ, and for the number of efficient output solutions,

n̄d. For the second case the mean running times are calculated over instances with similar numbers

of arcs. The standard deviation of the running times in each sample, σ, is also provided. These

standard deviations values are negligible, which confirms the similarity between the running times

in instances with approximately the same number of arcs. The mean times increase with m̄ and

are smaller for the instances with less means of transportation. According to such classification,

on average the problems could be solved in less than 16 milliseconds and less than 29 milliseconds,

for instances with 3 and 5 means of transportation, respectively.

Table 8: Mean value of |P̄ | and CPU time (secs) of V1, ℓ = 5

n 100 200 300 400 500 600 700 800 900 1000

µ 0.001 0.003 0.004 0.006 0.008 0.007 0.008 0.009 0.011 0.013
n̄d 1.437 1.585 1.600 1.667 1.709 1.726 1.684 1.728 1.751 1.751

m̄ 8649 12 006 19 308 26 285 30 152 38 212 42 221 56 520 61 641 68 813 77 873 93 842

µ 0.001 0.003 0.004 0.006 0.007 0.009 0.010 0.010 0.018 0.019 0.023 0.029
σ 0.000 0.001 0.001 0.001 0.002 0.002 0.002 0.004 0.004 0.005 0.005 0.004

Legend. µ: Mean CPU times; n̄d: Mean value of |P̄ |; m̄: Mean number of arcs; σ: Standard deviation of the CPU

times.

The proposed method was also evaluated by tests over data based on part of the city of Coimbra,

kindly provided by the INESC-Coimbra research group on urban transportation. This network

has 1686 nodes and 8128 directed arcs, and comprises the following ℓ = 4 transportation types:

pedestrian, car (taxi), light rail and buses. A travel time is associated with each arc, given by the

product of its length and a standard urban speed value for each transportation type. Namely, 4

km/h for walking, 15 km/h for buses, 17 km/h for the light rail, and 30 km/h for cars. Applied

to this instance the algorithm minimizes the travel time and the number of transportation means,

and was tested for ten different origin-destination pairs. The average running time obtained for

these problems was 0.002 seconds, to compute an average of 1.100 efficient paths between each

origin-destination pair.

4 Concluding remarks

Two approaches were proposed for the MCLPP:

• One that relies on the calculation of the shortest path on the set of networks (N ,A)k with

k = l̂, . . . , 2, 1, together with checking the solutions’ dominance.

19

• Another that uses BFS to find the shortest path on networks with k = 1, 2, . . . , l̂, together

with reoptimization to derive new paths.

The number of subproblems and operations was reduced by using the data from intermediate

subproblems and the pre-computation of Tt.

In general the first approach outperformed the one using BFS. The best variant included the

use of intermediate computations. Instances with n = 1000 and ℓ = 20 were solved in less than

0.4 secs. In multi-graphs modelling networks with ℓ = 3, 5 transportation modes the efficient paths

were computed in less than 0.03 secs. In 50× 50 grid networks the best version CPU times did not

exceed 172.3 seconds for ℓ = 20.

Within certain application problems it is desirable to have the least possible number of transi-

tions, namely if switching labels carries some sort of penalization of the solution. For instance, if

a passenger wants to travel from a source to a destination and has two options with the same cost

and the same number of labels, as depicted in Figure 8, then path p, with a single transshipment, is

more user convenient than path q, with two. This would imply an additional function to minimize

the number of transitions. In the near future we intend to study this case.

• • • •.............

r(p) = 1
• • • •.............

r(q) = 2

Figure 8: Two paths with the same number of labels

Acknowledgments This work was partially supported by the FCT Portuguese Foundation of

Science and Technology (Fundação para a Ciência e a Tecnologia) under projects PEst-C/EEI/UI0308/2011,

PEst-OE/MAT/UI0152 and PTDC/EEA-TEL/101884/2008. The authors deeply acknowledge the

INESC-Coimbra research group on urban transportation, led by João Coutinho Rodrigues, for

providing data about the metropolitan area of Coimbra.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms and

Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] C. Bornstein, N. Maculan, M. Pascoal and L. Pinto. Multiobjective combinatorial optimization

problems with a cost and several bottleneck objective functions: an algorithm with reoptimiza-

tion. Computers & Operations Research, 39:1969-1976, 2012.

[3] R. Chang and S.-J. Leu. The minimum labeling spanning trees. Information Processing Letters,

63(5):277–282, 1997.

[4] J. Cĺımaco, M. E. Captivo, and M. Pascoal. On the bicriterion – minimal cost/minimal label

– spanning tree problem. European Journal of Operational Research, 204:199–205, 2010.

[5] J. Cĺımaco and E. Martins. A bicriterion shortest path algorithm. European Journal of

Operational Research, 11:399–404, 1982.

20

[6] J. Cĺımaco and M. Pascoal. Multicriteria path and tree problems: discussion on exact algo-

rithms and applications. International Transactions in Operational Research, 19:63-98, 2012.

[7] S. Consoli, J. A. Moreno, N. Mladenović, and K. Darby-Dowman. Constructive

heuristics for the minimum labelling spanning tree problem: a preliminary comparison.

Technical Report DEIOC-4, Universidad de La Laguna, La Laguna, September 2006.

(http://hdl.handle.net/2438/504).

[8] P. Hansen. Bicriterion path problems. In Multiple Criteria Decision Making: Theory and

Applications, editors: G. Fandel and T. Gal, Lectures Notes in Economics and Mathematical

Systems, 1980.

[9] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.

Proceedings of the American Mathematical Society, 7:48–50, 1956.

[10] M. Iori, S. Martello, and D. Pretolani, An aggregate label setting policy for the multi-objective

shortest path problem. European Journal of Operational Research, 207:1489–1496, 2010.

[11] E. Q. V. Martins, M. M. B. Pascoal, and J. L. E. Santos. Deviation algorithms for ranking

shortest paths. The International Journal of Foundations of Computer Science, 10(3):247–263,

1999.

[12] M. Pascoal. Implementations and empirical comparison for K shortest loopless path algo-

rithms. In Online Proc. of The Ninth DIMACS Implementation Challenge: The Shortest Path

Problem. DIMACS, USA, November 2006.

[13] R. Prim. Shortest connection networks and some generalizations. Bell System Technical

Journal, 36:1389–1401, 1957.

[14] A. Raith, and M. Ehrgott. A comparison of solution strategies for biobjective shortest path

problems. Computers & Operations Research, 36:1299–1331, 2009.

[15] R. Steuer. Multiple Criteria Optimization. Theory, Computation and Application. John Wiley,

New York, 1986.

[16] R. Van-Nes. Design of multimodal transport networks: A hierarchical approach. Delft Uni-

versity Press, 2002.

[17] P. Vincke. Problèmes multicritères. Cahiers du Centre d’Études de Recherche Opérationelle,

16:425–439, 1974.

[18] H.-C. Wirth. Multicriteria Approximation of Network Design and Network Upgrade Problems.

PhD thesis, University of Würzburg, 2001.

[19] J. Y. Yen. Finding the K shortest loopless paths in a network. Management Science, 17:712–

716, 1971.

21

