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Abstract The numerical range of a linear pencil (A,B) of matrices of size n may
be characterized in terms of a certain algebraic curve of class n, called the bound-
ary generating curve, which is explicitly given by the characteristic polynomial of
the pencil. We shall be specially concerned with the case of one of the matrices
being Hermitian. For n = 2 and n = 3, each possible type of boundary generating
curve can be completely described. For n = 3, the curve type is given by Newton’s
classification of cubic curves. Illustrative examples of the different possibilities are
given.

1 Introduction

Let A,B ∈ Mn, the algebra of n×n complex matrices. The linear pencil (A,B) is the
set of matrices A−λB, where λ is a real or complex parameter. A pencil is said to
be regular if the polynomial det(A−λB) does not identically vanish, otherwise it is
singular. If the matrix B is nonsingular, the spectrum of the regular pencil denoted
by σ(A,B) consists of all the zeros λ of the polynomial det(A−λB). The spectral
theory of pencils is an important issue in pure mathematics as well as in applications
(e.g., see [3, 8, 12, 13] and their references). An informative containment region for
the spectrum of (A,B) is the numerical range.
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The numerical range (also called the field of values) of a linear pencil is defined
and denoted as

W (A,B) = {λ ∈ C : x∗(A−λB)x = 0, for some 0 ̸= x ∈ Cn} (1)

(cf. [10, 13]). If B is singular, then the pencil (A,B) may have an infinite eigen-
value λ , nevertheless (1) does not contain the point at infinity. So, from the above
definition, W (A,B) is not necessarily a spectral inclusion region for the generalized
eigenvalue problem Ax = λBx. Indeed, we consider a slightly modified definition:
if A,B have a common null space, then

W (A,B) = C∪{∞};

otherwise

W (A,B) =
{

x∗Ax
x∗Bx

: 0 ̸= x ∈ Cn
}
, (2)

where 1/0 is understood as the point at infinity. When B is the identity matrix, (2)
reduces to the (classical) field of values of the n×n matrix A,

W (A) = {x∗Ax : x ∈ Cn, ∥x∥= 1},

where ∥x∥ = ⟨x,x⟩1/2 = (x∗x)1/2 is the usual Euclidean norm in Cn. This concept
has been extensively investigated; see, for instance, [7] and references therein.

Throughout, we shall be concerned with regular pencils (A,B) of which either A
or B is Hermitian. Let us assume that B is Hermitian. The characteristic polynomial
of the pencil (A,B) is defined as

f (u,v,w) = det(uH + vK +wB),

where A = H + iK, and

H = (A+A∗)/2, K = (A−A∗)/(2i)

are Hermitian matrices.
The main goal of this article is to investigate connections between the character-

istic polynomial f (u,v,w) and the shape of W (A,B). The paper is organized as fol-
lows. In Section 2 we recall some properties of algebraic curves used subsequently.
In Section 3 we completely characterize the field of values of 2× 2 linear pencils,
distinguishing the cases of B being definite, indefinite and singular. These results al-
low simple direct proofs of the convexity of W (A,B) for B definite or semi-definite
Hermitian. In Section 4, each possible boundary type curve is described for 3× 3
matrices of which one of them is Hermitian. In Section 5 illustrative examples are
given.
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2 The polynomial f (u,v,w) and W (A,B)

As we shall see in the sequel, the characteristic polynomial of (A,B) gives rise to
the boundary generating curve of the numerical range W (A,B). To investigate this
relation and for the sake of completeness, we present some prerequisites concerning
plane algebraic curves.

An ordered pair of complex numbers (x,y) is a (complex) point in nonhomoge-
neous point coordinates. If x and y are real numbers, (x,y) is called a real point. A
point in homogeneous point coordinates is a triple of complex numbers (x,y,z), not
all zero. If r is any non zero complex number, then (x,y,z) and (rx,ry,rz) represent
the same point. We identify the point (x,y,z) in homogeneous coordinates with the
point (x/z,y/z) in nonhomogeneous coordinates. On the other hand, the point (x,y)
becomes (x,y,1) in homogeneous coordinates. Any point with z = 0 is a point at
infinity.

If B is Hermitian positive definite (HPD), we clearly have

W (A,B) =W (B−1/2AB−1/2),

and so the numerical range of the pencil reduces to the classical numerical range.
Toeplitz and Hausdorff have proven that the classical field of values is a convex set
[7]. So, assuming that B is positive definite, then W (A,B) is convex.

A supporting line of a convex set S ⊂ C is a line that intersects S at least in one
point and that defines two half-planes, such that one of them does not contain any
point of S. Let B be positive definite and let A be arbitrary. It can be shown, using
similar reasoning to the one in [9, Theorem 10] that

Theorem 1. If ux+vy+w = 0 is the equation of a supporting line of W (A,B), then

f (u,v,w) = det(uH + vK +wB) = 0. (3)

It can be easily proved that the above result holds for B indefinite or semi-definite.
Since f (u,v,w) is a homogeneous polynomial of degree n, (3) may be viewed as the
line equation of an algebraic curve in the complex projective plane PC2. The set of
lines (u : v : w) (with equation ux+ vy+wz = 0) such that f (u,v,w) = 0, may be
regarded as a set of lines in the plane whose envelope is a certain curve. Considering
the dual curve, i.e., the curve in line coordinates,

Γ ∗ = {(u : v : w) ∈ PC2 : f (u,v,w) = 0},

by dualization, we may easily determine:

Γ = {(x : y : z) ∈ PC2 : xu+ yv+ zw = 0 is a tangent of Γ ∗}.

The real affine view of Γ , say

C(A,B) = {(x,y) ∈ R2 : (x : y : 1) ∈ Γ },
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is called the associated curve or boundary generating curve of W (A,B).
For (A,B) ∈ Mn, with B positive definite, it is a simple consequence of a result of

Kippenhahn (see [9]) that the curve C(A,B) generates W (A,B) as its convex hull.
We recall that an usual procedure to find the point equation of the boundary

generating curve C(A,B) is to eliminate one of the indeterminates, say u, from (3)
and ux+vy+w = 0, dehomogenize the result by setting w = 1, and to eliminate the
remaining parameter v from the equations

F(v,x,y) = f (−(1+ vy)x−1,v,1) = 0 and
∂F(v,x,y)

∂v
= 0.

The curve f (u,v,w) = 0 has class n (because the defining polynomial has degree
n), that is, through a general point in the plane there are n lines (may be complex)
tangent to the curve.

A point P, not equal to the circular points at infinity (1 : i : 0) and (1 : −i : 0),
is called a focus of a curve C if the line l1 through P and (1 : i : 0) and the line l2
through P and (1 : −i : 0) are tangent to C at points other than the circular points
at infinity. The coefficients of the polynomial f (u,v,w) are real, as it can be easily
seen. A curve of class n with real coefficients has n real foci, according to proper
multiplicities, and n2 −n foci which are not real [14].

As a consequence of a result, independently obtained by Murnaghan [11] and
Kippenhahn [9], the real foci of the algebraic curve defined by det(uH+vK+wB) =
0, where B is positive definite, are the eigenvalues of the matrix B−1A, with A =
H + iK. The corresponding result for B indefinite is as follows [3].

Theorem 2. Let A,B ∈ Mn, with B indefinite. The n real foci of the algebraic curve
defined by the equation f (u,v,w) = det(uH + vK +wB) = 0 are the eigenvalues of
the pencil (A,B), where A = H + iK with H and K Hermitian.

For details on plane algebraic curves, we refer the interested reader to [5].

3 Linear pencils generated by 2×2 matrices

For matrices A and B of dimension two, the boundary generating curve C(A,B) is
a curve of class two, more concretely, a conic. The three theorems that characterize
the boundary of W (A,B), for B Hermitian, in terms of the invariants of the pencil
(A,B) are stated below. The case 2 by 2 is specially important, since the numerical
range of an n×n pencil may be characterized by compression to the bidimensional
setting [12].

Theorem 3. (Elliptical Range Theorem) Let A,B be 2× 2 matrices with B positive
definite. Then W (A,B) is a (possibly degenerate) closed elliptical disc, whose foci
are the eigenvalues of B−1A, λ1 and λ2. and the lengths of the major and minor axis
are, respectively,
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M =

√
Tr(A∗B−1AB−1)−2Re

(
λ1λ2

)
,

and
N =

√
Tr(A∗B−1AB−1)−|λ1|2 −|λ2|2.

In the case of degeneracy, W (A,B) may reduce to a line segment whose endpoints
are λ1 and λ2, or to a singleton if and only if λ1 = λ2.

Theorem 4. (Hyperbolical Range Theorem) Let A,B be 2×2 matrices with B indefi-
nite. Then W (A,B) is bounded by a hyperbola with foci at λ1 and λ2, the eigenvalues
of B−1A, and transverse and non-transverse axis of length

M =

√
Tr(B−1A∗B−1A)−2Re(λ1λ̄2)

and
N =

√
|λ1|2 + |λ2|2 −Tr(B−1A∗B−1A).

If Tr(B−1A∗B−1A)−2Re(λ1λ̄2) < 0, the hyperbola degenerates and W (A,B) is
the whole complex plane. In the case of degeneracy of the hyperbola, W (A,B) may
also reduce to two half-lines of the line defined by λ1 and λ2, and with these end-
points.

Now, we consider W (A,B) for A,B ∈ M2, with B positive (negative) semidefinite.
Observing that

W (eiϕ (A+ζ B),kB) =
1
k

eiϕ (W (A,B)+ζ ), k,ϕ ∈ R, ζ ∈ C,

and using the invariance of W (A,B) under unitary similarities, we may take

B = diag(1,0), A =

[
aeiγ ceiγ

d b

]
, c,d ≥ 0, b > 0, a =

cd
b
. (4)

Notice that W (A,B) = C if b = 0.

Theorem 5. (Parabolical Range Theorem) Let A,B be of the form (4). Then W (A,B)
is bounded by the (possibly degenerate) parabola with focus λ0 = 0 and equation

y2

4p2 − x
p
= 1,

where

p =
a2b2 + c4 −2abc2 cosγ

4bc2 .

In the case of degeneracy of the parabola, W (A,B) may reduce to one half-line with
λ0 = 0 as endpoint.
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We remark that for A = (ai j) ∈ M2, with a22 ̸= 0 and B = diag(1,0), the slope
of the axis of the parabolic boundary, relatively to the positive semi real axis, is
equal to θ0 = Arg(a22), and the focus of the parabola is the (finite) eigenvalue of the
pencil (A,B). The vertex of the parabola is the point u∗0Au0/u∗0Bu0, where u0 is an
eigenvector of the Hermitian pencil(

1
2
(Ae−iθ0 +A∗eiθ0),B

)
associated with its single (finite) eigenvalue.

4 Characterization of W (A,B) for A,B ∈ M3 with B Hermitian

4.1 C(A,B) for B positive definite and A arbitrary

Under the present assumptions, W (A,B) is convex, bounded and closed, since it
reduces to W (B−1/2AB−1/2), and so inherits the properties of the classical numerical
range. Following the arguments in [9, Theorem 10], we can prove the following

Theorem 6. The convex hull of C(A,B) is W (A,B) .

Kippenhahn classified the associated curve in this context, considering the factor-
izability of the polynomial f (u,v,w). Adopting this procedure, we easily conclude
that the following possibilities may occur.

1st Case: The polynomial f (u,v,w) factorizes into three linear factors. Each one
of these factors corresponds to an eigenvalue of B−1A.

2nd Case: Suppose that B= diag(b1,b2,b3) and that A∈M3 is a B-decomposable
matrix, i.e., there exists a nonsingular matrix V ∈ M3, such that

V ∗BV = B, V ∗AV =

[
cb1 0
0 A1

]
, (5)

where c ∈ C and A1 ∈ M2. Thus, f (u,v,w) factorizes into a linear and a quadratic
factor, and so C(A,B) consists of the point c and of the boundary of the elliptical
disc W (A1,diag(b2,b3)).

3rd Case: The matrix A is B-indecomposable, but the polynomial f (u,v,w) fac-
torizes into a linear and a quadratic factor. The linear factor corresponds to an eigen-
value of B−1A. The quadratic factor corresponds to an ellipse. In fact, the conic can
not be neither a parabola, because one of its real foci is a point at infinity and this
contradicts Proposition 2, nor an hyperbola because this curve is unbounded. There-
fore, C(A,B) consists of an ellipse and a point.

4th Case: Finally, suppose that the polynomial f (u,v,w) is irreducible. The num-
ber of real cusps of an (irreducible) class three curve is 1 or 3, and the order of the
boundary generating curve is 4 or 6. By Newton’s classification of cubic curves
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[1] and dual considerations, there are the following possibilities for the associated
curve:

C1. C(A,B) is a sextic, consisting of an oval and a closed tricuspid curve lying in its
interior;

C2. C(A,B) is a quartic, with one cusp and an ordinary double tangent at two of its
points.

There are examples showing that all these types of curves appear as boundary gen-
erating curves of W (A,B).

4.2 C(A,B) for B indefinite and A arbitrary

Theorem 7. Let A be arbitrary and let B be indefinite. Then W (A,B) is pseudo-
convex.

Proof. Let us consider λ1 ̸= λ2 ∈ W (A,B). Then, there exist 0 ̸= v1, 0 ̸= v2 ∈
W (A,B) such that v∗i Avi = λiv∗i Bvi, i = 1,2. Let ṽ1, ṽ2 be orthonormal vectors be-
longing to the subspace H2 spanned by v1, v2. Let Aṽ1,ṽ2 and Bṽ1,ṽ2 be the compres-
sions of A and B, respectively, to H2. Obviously, W (Aṽ1,ṽ2 ,Bṽ1,ṽ2) is either an ellip-
tical, parabolic or hyperbolical domain, depending on Bṽ1,ṽ2 being definite, semidef-
inite or indefinite. If W (Aṽ1,ṽ2 ,Bṽ1,ṽ2) is an elliptical or parabolical disc, it is convex.
In this case, we have that

{λ1 + x(λ2 −λ1) : 0 ≤ x ≤ 1} ⊆W (Aṽ1,ṽ2 ,Bṽ1,ṽ2)⊆W (A,B).

If W (Aṽ1,ṽ2 ,Bṽ1,ṽ2) is hyperbolical, it is pseudo-convex. In this case, either

{λ1 + x(λ2 −λ1) : 0 ≤ x ≤ 1} ⊆W (Aṽ1,ṽ2 ,Bṽ1,ṽ2)⊆W (A,B).

or
{λ1 + x(λ2 −λ1) : x ≤ 0 or x ≥ 1} ⊆W (Aṽ1,ṽ2 ,Bṽ1,ṽ2)⊆W (A,B),

This completes the proof.

For B indefinite, consider Cn endowed with the B-inner product ⟨Bx,y⟩= y∗Bx, and
corresponding B-norm ∥x∥2

B = ⟨Bx,x⟩ [6]. For arbitrary A ∈ M3, W (A,B) has been
characterized in [3], following Kippenhahn’s approach in the classical case.

Let us define

W (A,B) =
{
⟨Au,u⟩
⟨Bu,u⟩

: u ∈ Cn, ⟨Bu,u⟩ ̸= 0
}
.

For convenience, we also consider the sets

W+(A,B) =
{
⟨Au,u⟩
⟨Bu,u⟩

: u ∈ Cn, ⟨Bu,u⟩> 0
}
,
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and

W−(A,B) =
{
⟨Au,u⟩
⟨Bu,u⟩

: u ∈ Cn, ⟨Bu,u⟩< 0
}
.

Obviously,
W (A,B) =W+(A,B)∪W−(A,B).

In our analysis, when A and B are both Hermitian, we shall consider the eigenval-
ues of positive and negative type, that is, the eigenvalues with associated eigenvec-
tors with positive and negative B-norm, respectively. We shall denote by σ+(A,B)
(σ−(A,B)) the set of eigenvalues of positive (negative) type.

Let X+ (X−) be a set of points in W+(A,B) (W−(A,B)) and let Ξ+ (Ξ−) be the
convex hull of X+ (X−). Consider the lines defined by points z+, z− with z+ ∈ Ξ+

and z− ∈ Ξ−. The union of all half-lines with z+ as endpoint not containing z− and
the half-lines with z− as endpoint not containing z+, is the so called pseudo-convex
hull of X+and X−.

The curve C(A,B) has branches of a well defined type, either positive or neg-
ative, say C+(A,B) and C−(A,B). The sign is determined by considering for the
corresponding root w of (3), an associated eigenvector ξ , such that

(uH + vK +wB)ξ = 0.

The type of each branch of C(A,B) is characterized by the sign of the B-norm
⟨Bξ ,ξ ⟩.

For pencils of the class N D (see [4, Section 5]) the following holds. The proof
follows analogous steps to those i [9, Theorem 10].

Theorem 8. If the pencil (A,B) is in N D , then the pseudo-convex hull of C+(A,B)
and C−(A,B) is W (A,B).

We classify the associated curve C(A,B), considering the factorizability of the
polynomial f (u,v,w). Without loss of generality, we may assume that B = diag(b1,
b2,−b3), b1,b2,b3 > 0. The following possibilities may occur,

1st Case: The polynomial f (u,v,w) factorizes into three linear factors. Each one
of these factors corresponds to an eigenvalue of B−1A.

2nd Case: Suppose that A∈M3 is B-decomposable, i.e., there exists a nonsingular
matrix V , such that V ∗BV = B = diag(b1,b2,−b3) and

V ∗AV =

[
cb1 0
0 A1

]
, (6)

or

V ∗AV =

[
A1 0
0 −cb3

]
, (7)
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where c ∈ C and A1 ∈ M2.
If A is of the form (6), then C(A1,diag(b2,−b3)) is an hyperbola with one branch

in W+(A,B) and the other one in W−(A,B). We may write

C(A1,diag(b2,−b3)) =C+(A1,diag(b2,−b3))∪C−(A1,diag(b2,−b3)),

where C±(A1,diag(b2,−b3))⊂W±(A,B). Clearly, c ∈W+(A,B). Let X+ = conv(c,
C+(A1,diag(b2,−b3))). The pseudo-convex hull of X+ and C−(A1, diag(b2,−b3))
coincides with W (A,B).

Suppose, now, that A is of the form (7). Notice that c ∈ W−(A,B) and C(A1,
diag(b1,b2)) ⊂ W+(A,B). Then W (A,B) is the pseudo-convex hull of c and an el-
lipse (possibly degenerate): C(A1,diag(b1,b2)).

3rd Case: The matrix A is B-indecomposable, but the polynomial f (u,v,w) fac-
torizes into a linear and a quadratic factor. The quadratic factor corresponds to an
hyperbola or to an ellipse. The conic can not be a parabola, because one of its real
foci is a point at infinity and this contradicts Proposition 2.

Therefore, C(A,B) consists of: 1) one point, produced by vectors with a negative
B-norm, and an ellipse produced by vectors with a positive B-norm, 2) one point,
produced by vectors with a positive B-norm, and an hyperbola, with one branch pro-
duced by vectors with a negative B-norm and the other branch produced by vectors
with a positive B-norm.

In case 1), W (A,B) = C. In case 2), W (A,B) = C, whenever the point lies inside
the hyperbolic disc of negative type, otherwise W (A,B) is a hyperbolical disc.

4th Case: Finally, suppose that the polynomial f (u,v,w) is irreducible. The num-
ber of real cusps of an (irreducible) class three curve is 1 or 3, and the order of the
boundary generating curve is 4 or 6. By Newton’s classification of cubic curves and
dual considerations, there are the following possibilities for the associated curve:

C1. C(A,B) is a sextic, with three real cusps and at least one oval component;
C2. C(A,B) is a quartic, with three real cusps and a real double tangent (at two com-

plex points of the curve);
C3. C(A,B) is a quartic with one real cusp and a real double tangent (at two real

points of the curve);
C4. C(A,B) is a cubic with a real cusp and a real flex;
C5. C(A,B) is a sextic, with three real cusps and not containing neither oval compo-

nents nor double tangents.

There are examples showing that all the above curves may occur as boundary gener-
ating curves [3]. The characterization of W (A,B) requires the determination of the
signs of each branch of C(A,B), in order to obtain the pseudo-convex hull of the
boundary generating curve.



10 Natalia Bebiano, João da Providência and Fatemeh Esmaeili

4.3 C(A,B) for B positive semi-definite and A arbitrary

Theorem 9. Let A be arbitrary and let B be positive semi-definite. Then W (A,B) is
convex.

Proof. Let us consider λ1 ̸= λ2 ∈ W (A,B). Then, there exist 0 ̸= v1, 0 ̸= v2 ∈
W (A,B) such that v∗i Avi = λiv∗i Bvi, i = 1,2. Let ṽ1, ṽ2 be orthonormal vectors be-
longing to the subspace H2 spanned by v1, v2. Let Aṽ1,ṽ2 and Bṽ1,ṽ2 be the com-
pressions of A and B, respectively, to H2. Obviously, W (Aṽ1,ṽ2 ,Bṽ1,ṽ2) is either
a parabolic or elliptical disc, so it is convex. Thus, [λ1,λ2] ∈ W (Aṽ1,ṽ2 ,Bṽ1,ṽ2) ⊆
W (A,B), which completes the proof.

We next characterize W (A,B), for B positive semi-definite and an arbitrary A ∈
M3, using again Kippenhahn’s approach. We classify the associated curve C(A,B),
considering the factorizability of the polynomial f (u,v,w).

Assume that A ∈ M3 and B is positive semi-definite. The following possibilities
for C(A,B) may occur.

1st Case: Suppose that B = diag(b1,b2,0), b1,b2 > 0, and A ∈ M3 is a B-
decomposable matrix, i.e., there exists a nonsingular matrix V such that V ∗BV = B
and V ∗AV is as in (6). Then, W (A,B) is the convex hull of c and C(A1,diag(b2,0)).

2nd Case: Suppose that B = diag(b1,b2,0), b1,b2 > 0, and A is a 3 × 3 B-
decomposable matrix, i.e., there exists a non-singular matrix V , such that V ∗BV = B
and

V ∗AV =

[
A1 0
0 c

]
, (8)

where c ∈ C and A1 is a 2×2 matrix. Thus, W (A,B) is the convex hull of a certain
point at infinity and C(A1,diag(b1,b2)) (cf. Example 5.4).

3rd Case: Suppose that B = diag(b1,b2,0), b1,b2 > 0, and the matrix A is
B-indecomposable, but the polynomial f (u,v,w) factorizes into a linear and a
quadratic factor. The linear factor corresponds to an eigenvalue of the pencil, and
the quadratic factor corresponds to a parabola. Therefore, C(A,B) consists of one
real point and a parabola (cf. Example 5.3), being W (A,B) its convex hull.

4th Case: Suppose that B = diag(b1,b2,0), b1,b2 > 0, and the polynomial
f (u,v,w) is irreducible. By Newton’s classification of cubic curves and dual con-
siderations, there are the following possibilities for the associated curve:

C1. C(A,B) is a sextic, with three real cusps and at least one oval component (cf.
Example 5.1);

C2. C(A,B) is a quartic, with one cusp and an ordinary double tangent at two of its
real points (cf. Example 5.2).

5th Case: Suppose that B = diag(b1,0,0), b1 > 0. There exists a non-singular
matrix V , such that V ∗BV = B and



The characteristic polynomial of linear pencils 11

V ∗AV =

a11 a12 a13
0 a22 a23
0 0 a33

 .

In order to avoid the existence of vectors ξ ̸= 0 such that ξ ∗Aξ = ξ ∗Bξ = 0, we
assume that a22a33 ̸= 0. We also assume that {a12,a13} ̸= {0,0}, so that A is not
B-decomposable. Notice that

W1 =W
([

a11 a12
0 a22

]
,

[
b1 0
0 0

])
is a parabola with focus a11/b1 and axis with slope equal to Arg(a22), while

W2 =W
([

a11 a13
0 a33

]
,

[
b1 0
0 0

])
is a parabola with focus a11/b1 and axis with slope equal to Arg(a33). Considering
Co(W1,W2), we conclude the following.

If |Arg(a22/a33)| ≥ π/2, then W (A,B) is the whole complex plane (cf. Example
5.6). If |Arg(a22/a33)|< π/2 , then W (A,B) is a proper subset of the complex plane
bounded by a certain algebraic curve, which is a quartic, if the characteristic poly-
nomial is irreducible (cf. Example 5.5), and a conic if the characteristic polynomial
is factorizable (cf. Example 5.6).

0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

Fig. 1 Boundary generating curve of W (A,B) (Example 5.1).
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4.4 C(A,B) for B indefinite singular and A arbitrary

Let A be arbitrary, B = diag(b1,−b2,0), with b1,b2 > 0. We say that θ ∈ [0,2π[
is an admissible direction if the Hermitian pencil (H(e−iθ A),B) has real eigenval-
ues with associated non-isotropic eigenvectors, and for σ+(H(e−iθ A),B) = {αθ},
σ−(H(e−iθ A),B) = {βθ}, we have (αθ −βθ ) u∗Au > 0, where u = (0,0,1)T . The
condition (αθ −βθ ) u∗Au > 0, ensures that W (H(e−iθ A),B) ̸= R. If admissible di-
rections do not exist, W (A,B) = C.

Proposition 4.1 Let (A,B) be a 3×3 self-adjoint pencil with B = diag(b1,−b2,0),
b1,b2 > 0, such that W (A,B) ̸= C. Let u = (0,0,1)T , σ+(A,B) = {α}, σ−(A,B) =
{β}.

i) If (α −β ) u∗Au > 0, then W (A,B) =]−∞,min(α,β )]∪ [max(α ,β ),+∞[ .
ii) If (α −β ) u∗Au < 0, then W (A,B) = R.

For A ∈ M3 and B semi-indefinite, the different possibilities that may occur for
C(A,B) can be identified according with the procedures in the previous sections
(cf.Example 5.8).

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

-2

-1

0

1

2

Fig. 2 Boundary generating curve of W (A4,B) (Example 5.2).
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5 Examples

The figures presented in this section have been produced with Mathematica 5.1, also
used to determine the point equation of C(A,B). The associated curve is represented
in the figures. The boundaries of W (A,B) are represented by thick lines.

Example 5.1 Let

A =

1 1 4/5
0 1 4/5
0 0 1

 , B = diag(1,1,0).

The characteristic polynomial of the pencil is

f (u,v,w) =
1

100
(71u3 −29uv2 +192u2w−8v2w+100uw2).

The Cartesian equation of the boundary generating curve of W (A,B) is

−1731619+6115752x−6709556x2 +3123808x3 −655104x4 +51200x5

−1891452y2 +7557408xy2 −17370208x2y2 +9142400x3y2 −160000x4y2

−15865104y4 +51091200xy4 −21320000x2y4 −21160000y6 = 0.

The boundary of W (A,B) is represented in Fig. 1 by the outer curve.

ææ

0.8 1.0 1.2 1.4 1.6 1.8 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

Fig. 3 Boundary of W (A1,B) (Example 5.3).

Example 5.2 Let

A4 =

1 1/2 1
0 1 1
0 0 1

 , B = diag(1,1,0)

The characteristic polynomial of the pencil (A4,B) is
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f (u,v,w) =
1
16

(9u3 −7uv2 +24u2w−8v2w+16uw2).

The Cartesian equation of the boundary generating curve of W (A4,B) is

−343+1176x−1344x2 +512x3 −592y2 +1024xy2 −256x2y2 −256y4 = 0.

W (A4,B) is the convex hull of C(A4,B), represented in Fig. 2, and has a flat portion
on the boundary parallel to the imaginary axis.

0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

Fig. 4 Boundary of W (A,B) (Example 5.4).

Example 5.3 Let

A1 =

1 1 1
0 1 1
0 0 1

 , B = diag(1,1,0).

The characteristic polynomial of the pencil (A1,B) is

f (u,v,w) =
1
2
(u+w)(u2 − v2 +2uw).

The Cartesian equation of the boundary generating curve of W (A1,B) is

(y2 −2x+1)((x−1)2 + y2) = 0.

Cf. Fig. 3.



The characteristic polynomial of linear pencils 15

Example 5.4 Let

A =

1 1 0
0 1 0
0 0 1

 , B = diag(1,1,0)

The characteristic polynomial of (A,B) is

f (u,v,w) =
1
4

u(3u2 − v2 +8uw+4w2).

The Cartesian equation of C(A,B) is (x−1)2 + y2 = 1
4 and is represented in Fig. 4.

Example 5.5 Let B = diag(1,0,0) and A = A1 in Example 5.3. The characteristic
polynomial of the pencil is f (u,v,w) = (2u3−2uv2+3u2w−v2w)/4. The Cartesian
equation of the boundary of W (A,B) is

16−48x+48x2 −20x3 +3x4 +36y2 −36xy2 −18x2y2 +27y4 = 0

and is represented in Fig. 5.

1.5 2 2.5 3

-3

-2

-1

1

2

3

Fig. 5 Boundary of W (A,B) (Example 5.5).

Example 5.6 Let B = diag(1,0,0) and

A =

1 1 1
0 1 1
0 0 −1

 .

The characteristic polynomial of (A,B) is f (u,v,w) = 1/4(−4u3 − 5u2w− v2w).
The Cartesian equation of C(A,B) is the deltoid

−4x3 +5x4 +108y2 −180xy2 +50x2y2 +125y4 = 0.
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Since f (u,v,w) has complex roots in w for all u,v, it follows that W (A,B) =C.

Example 5.7 Let B = diag(1,0,0), and

A =

1 1 1
0 1 0
0 0 1

 .

The characteristic polynomial of (A,B) is given by f (u,v,w) = 1/2u(u2−v2+2uw).
The boundary of W (A,B) is parabolic and its Cartesian equation is

y2 −2x+1 = 0.

Example 5.8 Let B = diag(1,−1,0), and

A =

2 2 1
0 2 2
0 0 1

 .

The characteristic polynomial of (A,B) is given by

f (u,v,w) =
1
2

3u3 − 1
2

5uv2 − 1
4

3u2w− 1
4

3v2w−uw2.

The boundary generating curve C(A,B) is represented in Fig. 6, it has Cartesian

-3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

Fig. 6 C(A,B) for Example 5.8.
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equation

6000−2400x−5080x2+4248x3−1161x4+108x5+2808y2+1752xy2+1678x2y2

−2184x3y2 +36x4y2 +2007y4 +2316xy4 −568x2y4 +420y6 = 0

and is constituted of 2 branches, C+(A,B) for x ≤ (3−
√

105)/8 and C−(A,B) for
x ≥ (3+

√
105)/8. The pseudoconvex hull of C+(A,B) and C−(A,B) is W (A,B).

6 Final Remarks

We presented the classification of the boundary generating curves of W (A,B) for
2 × 2 and 3 × 3 matrices A,B, following Kipenhann’s approach for the classical
numerical range of a matrix. We have considered linear pencils generated by a pair
(A,B) of which at least one of the matrices is Hermitian. It would be challenging to
drop this constraint. The systematic investigation of the existence of flat portions on
the boundary, as well as its implications on the matrix structure, are open problems
deserving the attention of researchers.
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