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Abstract The Equation of Motion Method is used in the spectral analysis of a non
self-adjoint bosonic Hamiltonian acting on an infinite dimensional Hilbert space.
The presented operator has real eigenvalues and can be diagonalized when it is ex-
pressed in terms of pseudo-bosons, which do not behave as ordinary bosons under
the adjoint transformation, but obey the Weil-Heisenberg commutation relations.

1 Introduction

In conventional formulations of non-relativistic quantum mechanics, the Hamilto-
nian operator is self-adjoint. However, certain relativistic extensions of quantum
mechanics lead to the consideration of non self-adjoint Hamiltonian operators with
a real spectrum. This motivated an intense research activity, both on the physical
and mathematical level (see, e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9] and their references).

Throughout, we shall use synonymously the terms Hermitian and self-adjoint.
Let D be a certain domain, dense in a Hilbert space H , endowed with an inner

product 〈,〉. Let a,b,a∗,b∗ : D → D , be bosonic operators. We recall that, conven-
tionally, a,b are said to be annihilation operators, while a∗,b∗ are creation opera-
tors. It is worth noticing that these operators are unbounded. Moreover, a,b and of
their adjoints satisfy the commutation rules (CR’s),

[a,a∗] = [b,b∗] = 1, (1)
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where 1 is the identity operator on H . (This means that aa∗ f − a∗a f = bb∗ f −
b∗b f = f for any f ∈D .) Furthermore,

[a,b∗] = [b,a∗] = [a∗,b∗] = [a,b] = 0. (2)

As it is well-known, the canonical commutation relations (1) and (2) characterize
an algebra of Weil-Heisenberg (W-H). Moreover, the existence of a vector Φ0 ∈D ,
a so-called vacuum state, satisfying,

aΦ0 = bΦ0 = 0,

is postulated. The set of vectors

{Φm,n = a∗mb∗nΦ0 : m,n≥ 0}, (3)

constitutes a basis of H , that is, every vector in H can be uniquely expressed in
terms of this vector system, which is complete, since 0 is the only vector orthogonal
to all its elements.

The main goal of this note is to investigate spectral properties of a certain non
self-adjoint operator which is expressed as a quadratic combination of bosonic op-
erators.

2 Non self-adjoint operator and the EMM

We are concerned with bosonic operators a∗i ,a j, i, j = 1, . . .N, which, as usual,
act on an infinite dimensional Hilbert space H . Ordinary bosons obey the Weil-
Heisenberg commutation relations,

[ai,a∗j ] = δi j1, [a∗i ,a
∗
j ] = 0, [ai,a j] = 0, i, j = 1, . . . ,N,

where δi j denotes the Kronecker symbol (δi j equals 1 for i = j and 0 otherwise).
Let us consider the non self-adjoint Hamiltonian

H =
N

∑
i, j=1

(
Ai ja∗i a j +

1
2

Bi ja∗i a∗j −
1
2

Bi jaia j

)
, (4)

where A = (Ai j), B = (Bi j) are real symmetric matrices of size N×N. In order to
determine the eigenvalues of H, we use the equation of motion method (EMM). We
investigate the condition

[
H,

N

∑
i=1

(Xia∗i −Yiai)

]
= λ

N

∑
i=1

(Xia∗i −Yiai), (5)
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with λ a complex parameter and [X ,Y ] = XY −Y X denoting, as usually, the com-
mutator of X and Y . From (5), we get the block matrix equation

[
A B
B −A

][
X
Y

]
= λ

[
X
Y

]
(6)

where X = (Xi), Y = (Yi) are column matrices with N entries. Since the block matrix

M =
[

A B
B −A

]

is real symmetric, its eigenvalues λ are real. From (6), it follows that
[

A B
B −A

][
Y
−X

]
=−λ

[
Y
−X

]
,

so, if λ is an eigenvalue of (6), so is −λ .Thus, the eigenvalues appear in pairs of
symmetric real numbers. Let us consider a set of orthogonal eigenvectors of (6). Let

[
X (r)

Y (r)

]
and

[
Y (r)

−X (r)

]

be the eigenvectors corresponding to the eigenvalues λr > 0 and −λr, respectively.
Since they are associated to distinct eigenvalues, they are orthogonal. Orthogonality
implies

X (r)T X (s) +Y (r)TY (s) = δrs,

Y (r)T X (s)−X (r)TY (s) = 0.

These orthogonality relations are matricially expressed as

[X (s)T Y (s)T ]
[

X (r)

Y (r)

]
= δrs, [X (s)T Y (s)T ]

[
Y (r)

−X (r)

]
= 0,

[Y (s)T −X (s)T ]
[

X (r)

Y (r)

]
= 0, [Y (s)T −X (s)T ]

[
Y (r)

−X (r)

]
= δrs,

or, compactly, as

[
X −Y
Y X

]T [
X −Y
Y X

]
= I2N ,

where I2N is the 2N×2N identity matrix and

X = [X (1) . . . X (N) ] , Y = [Y (1) . . . Y (N) ] ∈MN ,

the algebra of N×N real matrices. The matrix
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[

X Y
−Y X

]
= exp

[
S T
−T S

]
, S =−ST , T = T T ,

belongs to a certain subgroup of the real orthogonal group and the matrix
[

S T
−T S

]
,

belongs to a certain sub-algebra of the algebra of the real skew-symmetric matrices.
Consider the pseudo-bosons defined as

c‡
r =

N

∑
i=1

(X (r)
i a∗i −Y (r)

i ai), cr =
N

∑
i=1

(Y (r)
i a∗i +X (r)

i ai), r,s = 1, . . . ,N. (7)

Although c‡
r 6= c∗r , pseudo-bosons obey the Weil-Heisenberg commutation relations,

[cr,c‡
s ] = δrs1, [c‡

r ,c
‡
s ] = 0, [cr,cs] = 0, r,s = 1, . . . ,N,

where 1 is the identity on H . The expressions (7) may be inverted, using the or-
thogonality relations, as

a∗i =
N

∑
r=1

(X (r)
i c‡

r +Y (r)
i cr), ai =

N

∑
r=1

(−Y (r)
i c‡

r +X (r)
i cr).

From these expressions, we obtain

H =
N

∑
i=1

N

∑
r=1

λrY
(r)2
i 1+

N

∑
r=1

λrc‡
r cr.

The eigenvectors of H are of the form

Ψn1,...,nN = c‡n1 · · ·c‡nNΨ0,

where Ψ0 is such that
c1Ψ0 = 0, . . . ,cNΨ0 = 0,

and the respective eigenvalues are of the form

En1,...,nN =
N

∑
i=1

N

∑
r=1

λrY
(r)2
i +

N

∑
r=1

nrλr,

so that
HΨn1,...,nN = En1,...,nNΨn1,...,nN .

Similarly, the eigenvectors of
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H∗ =
N

∑
i, j=1

(
Ai ja∗i a j− 1

2
Bi ja∗i a∗j +

1
2

Bi jaia j

)
.

are given by
Ψ ′

n1,...,nN
= c∗n1 · · ·c∗nNΨ ′

0 ,

where Ψ ′
0 is such that

c‡∗
1 Ψ ′

0 = 0, . . . ,c‡∗
N Ψ ′

0 = 0.

The eigenvalues of H and H∗ coincide. The associated eigenvector systems are
biorthogonal:

〈Ψ ′
n1,...,nN

,Ψm1,...,mN 〉= n1! · · ·nN!δn1m1 · · ·δnNmN〈Ψ ′
0 ,Ψ0〉.

Next, the existence of the vacua vectors Ψ0 and Ψ ′
0 is discussed. The real skew-

symmetric matrix
[

S T
−T S

]
,

induces the operator

S =−1
2

N

∑
i, j=1

(
si j(a∗i a j +a ja∗i )+ ti ja∗i a∗j + ti jaia j

)
, (si j) = S, (ti j) = T

which satisfies

eS a∗r e−S = c‡
r =

N

∑
i=1

(X (r)
i a∗i −Y (r)

i ai),

eS are−S = cr =
N

∑
i=1

(Y (r)
i a∗i +X (r)

i ai), r,s = 1, . . . ,N.

By definition, we shall consider

D =

{
∑

n1,...,nN

zn1,...,N a∗ n1 · · ·a∗ nN Φ0 : zn1,...,N ∈ C, ni ≥ 0

}
,

where the sum is finite. Some considerations are in order. We observe that a∗j and a j
map D into D and that S nΦ0 ∈D , 0≤ n ∈ Z, where Φ0 ∈D is the vacuum of the
operators ai, i.e. a vector such that

a1Φ0 = 0, . . . ,aNΦ0 = 0,

whose existence is postulated. It follows that

Ψ0 = eS Φ0, Ψ ′
0 = e−SΦ0.
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Consider the series expansion

∞

∑
n=0

(γS )n

n!
Φ0, γ =±1.

The following question naturally arises: does it converge? Can we ensure that Ψ0
belongs to H ? This point must be investigated on a case by case basis. In the
next section it is considered for a specific example in which these questions are
affirmatively answered.

The following remark is in order. The spectral analysis of a non self-adjoint
Hamiltonian quadratic in bosonic operators should be preceded by the spectral
analysis of its self-adjoint part. Recall that a self-adjoint Hamiltonian quadratic in
bosonic operators may not have a real spectrum, as is the case of the self-adjoint
operator

x2 +
d2

dx2 : D →D ,

which does not have real eigenvalues. Indeed, for instance,
(

x2 +
d2

dx2

)
ei x2/2 = i ei x2/2.

Notice that ei x2/2 /∈H , because 〈ei x2/2,ei x2/2〉= +∞. In general, a non self-adjoint
Hamiltonian may have a real spectrum and a system of eigenvectors only if the
spectrum of its self-adjoint part is real. Only then its system of eigenvectors will be
biorthogonal to the system of eigenvectors of the adjoint Hamiltonian.

3 Example

As a simple illustrative example of application of the EMM developed in the previ-
ous section, we consider the Hamiltonian in (4) for case N even and with

A =
N/2⊕

i=1

Ai, B =
N/2⊕

i=1

Bi,

where

Ai =
[

αi 0
0 αi

]
, Bi =

[
0 βi
βi 0

]
, αi,βi > 0.

The EMM condition [H,Z] = λZ, for

Z = X1a∗1 +X2a∗2−Y1a1−Y2a2 + . . .+XN−1a∗N−1 +XNa∗N −YN−1aN−1−YNaN ,

by this order, leads to the real symmetric matrix
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M =
N/2⊕

i=1




αi 0 0 βi
0 αi βi 0
0 βi −αi 0
βi 0 0 −αi


 , (8)

whose positive eigenvalues are as follows

λ1 = λ2 =
√

α2
1 +β 2

1 , λ3 = λ4 =
√

α2
2 +β 2

2 , . . . , λN−1 = λN =
√

α2
N/2 +β 2

N/2.

Notice that αi and ±βi are the eigenvalues of the blocks Ai and Bi, respectively. In
terms of pseudo-bosonic operators, which are determined by the eigenvectors of (8)
associated to positive and negative eigenvalues, H is given by

H =
N/2

∑
r=1

(√
α2

r +β 2
r −αr +

√
α2

r +β 2
r

(
c‡

2r−1c2r−1 + c‡
2rc2r

))
.

For

S = θ1(a∗1a∗2 +a1a2)+θ2(a∗3a∗4 +a3a4)+ . . .+θN/2(a
∗
N−1a∗N +aN−1aN),

where −π/2≤ θi ≤ π/2, i = 1, . . . ,N/2, we obtain

eS

(√
α2

1 +β 2
1 (a∗1a1 +a2a∗2)+ . . .+

√
α2

N/2 +β 2
N/2(a

∗
N−1aN−1 +aNa∗N)

)
e−S

=
√

α2
1 +β 2

1 cos2θ1(a∗1a1 +a2a∗2)+ . . .+
√

α2
N/2 +β 2

N/2 cos2θN/2(a
∗
N−1aN−1 +aNa∗N)

+
√

α2
1 +β 2

1 sin2θ1(a1a2−a∗1a∗2)+ . . .+
√

α2
N/2 +β 2

N/2 sin2θN/2(aN−1aN −a∗N−1a∗N)

Taking

tan2θ1 =−β2

α2
, . . . , tan2θN/2 =−βN/2

αN/2
,

we find

eS

(√
α2

1 +β 2
1 (a∗1a1 +a2a∗2)+ . . .+

√
α2

N/2 +β 2
N/2(a

∗
N−1aN−1 +aNa∗N)

)
e−S

= α1(a∗1a1 +a2a∗2)+β1(a∗1a∗2−a1a2)+ . . .

+αN/2(a
∗
N−1aN−1 +aNa∗N)+βN/2(a

∗
N−1a∗N −aN−1aN).

We have shown that the desired transformation is given by eS .
Recall that Φ0 ∈ D is the vacuum of the operators ai, i = 1 . . . ,N. Next we

prove that 〈eS Φ0,eS Φ0〉< ∞, so that the groundstate eigenvector of H is eS Φ0 ∈
span D = H . Indeed, it may be checked that the vector eS Φ0 and the vector

Ξ0 = exp(tanθ1 a∗1a∗2 + . . .+ tanθN/2 a∗N−1a∗N)Φ0
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=
∞

∑
n1=1

. . .
∞

∑
nN/2=1

tann1 θ1

n1!
· · · tannN/2 θN/2

nN/2!
a∗n1

1 a∗n1
2 · · ·a∗nN/2

N−1 a
∗nN/2
N Φ0

may differ only by a numerical factor. Notice that

ci eS Φ0 = ci Ξ0 = 0, i = 1, . . . ,N.

Actually, eS Φ0 reduces to Ξ0 by a convenient rearrangement of the series. Now,

tanθi = αi/βi−
√

1+(αi/βi)2,

so that tan2 θi < 1, and

〈Ξ0,Ξ0〉=
N/2

∏
i=1

∞

∑
n=0

tan2n θi =
N/2

∏
i=1

(1− tan2 θi)−1 < ∞.

It follows that Ξ0 ∈H . We observe that the geometric series ∑∞
n=0 tan2n θi with ratio

tan2 θi < 1, converges in the interior of the unitary disc.

4 Discussion

In Section 2, a non self-adjoint Hamiltonian, which is expressed as a quadratic com-
bination of bosonic operators, is investigated. Its eigenvalues and eigenvectors have
been determined with the help of a real symmetric matrix M of size 2N×2N, where
N is the number of bosonic states, that is determined by the EMM. The investi-
gated Hamiltonian has a system of eigenvectors expressed in terms of the creation
and annihilation operators of pseudo-bosons, which is biorthogonal to the system
of eigenvectors of the adjoint Hamiltonian, constructed in terms of pseudo-bosonic
operators acting on the associated vacuum state.
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