Climatic signals of tree-ring width and intra-annual density fluctuations in *Pinus pinaster* and *Pinus pinea* along a latitudinal gradient in Portugal

C. Nabais1*, F. Campelo1, J. Vieira1 and P. Cherubini2

1Centro de Ecologia Funcional (CFE), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal
2Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland

*Corresponding author. Tel. +351239855244; E-mail: crnabais@bot.uc.pt

Received 22 October 2013

Tree-ring width integrates the prevailing environmental conditions during the whole growing season (annual resolution). Other wood anatomical traits, like intra-annual density fluctuations (IADFs), imprint environmental conditions within the growing season (sub-annual resolution). IADFs are anatomically characterized by latwood-like cells within earlywood or earlywood-like cells within latwood. Under climate change scenarios, it is increasingly important to understand which traits are more relevant in the adjustment of long-lived species. We established a latitudinal transect along Portugal and compared tree-ring width and the frequency of IADFs in *Pinus pinaster* growing under temperate and Mediterranean climate, and of *P. pinaster* and *P. pinea* growing under Mediterranean climate. *Pinus pinaster* growing under temperate and Mediterranean climate showed similar correlations between climate and tree-ring width, whereas *P. pinaster* and *P. pinea* under Mediterranean climate presented a different pattern of climate–growth correlations. We therefore suggest that the climate–growth response is species dependent. However, the climate–IADFs correlation was driven by site conditions and less related to the species. We propose that the correlations between climate and growth are conserved within the distribution range of a species, whereas IADFs function as a finer morphological adjustment to the environmental conditions during the growing season.

Introduction

Phenotypic plasticity plays an important role in plant fitness (Chuine, 2010) and is especially important in long-lived trees (Lupi et al., 2010; de la Mata and Zas, 2012). Long-lived trees have to cope with climatic fluctuations on a long-term basis, witnessing and recording those fluctuations in variable tree-ring width, a fingerprint of the tree’s adjustment to climate conditions (Fritts, 2001). The variability of wood anatomical traits, like tree-ring width, is dependent on the vascular cambium activity that is ruled by both endogenous (genetic) and exogenous (environmental) conditions (Dufour and Morin, 2010; Hölttä et al., 2010; Rossi et al., 2012). Xylem cells present plastic traits like the lumen area and cell wall width that can be linked to functional traits like hydraulic conductivity (Tyree and Ewers, 1991; Anfodillo et al., 2012), and physical traits like wood density (Rathgeber et al., 2006). Wood density changes from earlywood (less dense) to latewood (denser) but also at finer spatial scales, named intra-annual density fluctuations (IADFs), with latwood-like cells within earlywood or earlywood-like cells within latwood (Fritts, 2001). IADFs are induced by environmental conditions during the growing season that modify cambial activity and therefore can give climatic information with intra-annual resolution (Campelo et al., 2007, 2013; de Micco et al., 2007; Rozas et al., 2011; Novak et al., 2013).

If these anatomical traits change across the geographic and climatic range of a species, then they can be seen as important morphological adjustments to climate change conditions (Mäkinen et al., 2002; Fonti et al., 2010; Huang et al., 2010). Previous studies showed that the frequency of IADFs is dependent on genetics, tree-age, tree-ring width, length of the growing season and environmental conditions (Rigling et al., 2001; Wimmer 2002; Campelo et al., 2007, 2013; Novak et al., 2013), making difficult the comparison among different sites and species. Nonetheless a broader geographical network of IADFs would give valuable information on the variability of climatic conditions within the growing season and the relative contribution of each factor for the formation of IADFs.

Current climatic scenarios predict that by the end of this century, the Mediterranean basin will suffer a decrease of 10–20 per cent in annual precipitation, together with an increase of 3–3.5°C in the mean annual temperature, associated with more frequent and severe drought periods (IPCC, 2007). Within this framework, it is essential to understand how wood anatomical traits change along climatic gradients and/or among different species (Villar-Salvador et al., 1997; Miyamoto et al., 2010).

To understand how climate and/or tree species affect wood traits, we have compared tree-ring width and IADF formation in *Pinus pinaster* under temperate and Mediterranean climate, and...
in *P. pinaster* and *P. pinea* under Mediterranean climate. *Pinus pinaster* and *P. pinea* grow under drought-prone conditions of the Mediterranean basin and can be found on sandy soils, with low water-holding capacity. *Pinus pinaster* has a small geographical range, in the western Mediterranean basin, and it grows under contrasting water availabilities, from oceanic to arid conditions (Correia et al., 2008; Corcuera et al., 2010; de la Mata et al., 2012) being used as a model species to study the molecular response to drought stress (Perdiguero et al., 2013). It is considered a drought-avoiding species showing sensitive stomata and fast osmotic adjustment in response to water stress (Nguyen-Queyrens et al., 2002). *Pinus pinea* shows a wider distribution, all around the Mediterranean basin, and although it presents a low level of genetic diversity (Vendramin et al., 2008), it has a high level of plasticity (Mutke et al., 2005). It is a more thermophilic and xerophytic species and is usually found on poorer soils (Barbero et al., 1998).

The specific objectives of the study are to identify and compare the climatic variables that most strongly correlate with (1) tree-ring width and IADFs of *P. pinaster* growing under temperate and Mediterranean climate and (2) with *P. pinaster* and *P. pinea* growing under Mediterranean climate and (3) to determine whether the climatic signal of tree-ring width and IADFs are species-specific and/or related to the climatic conditions.

Materials and methods

Study areas

The study areas are located in Portugal along a latitudinal gradient ranging from Caldas do Gerês (42° N 8° W), Leiria (40° N 8° W), closer to the Atlantic coast of Portugal, and Mértola (38° N 7° W), in the inner part of Portugal (Figure 1). The altitude in Caldas do Gerês is ~1500 m, in Leiria is ~200 m and in Mértola is ~400 m a.s.l.

The monthly average mean air temperature and total precipitation from 1940 to 2006 were obtained from the nearest 0.5° × 0.5° grid point at http://climexp.knmi.nl/. The climate is temperate-like in Caldas do Gerês, with a mean annual temperature of 11°C and 1235 mm of annual precipitation, and Mediterranean-like in Leiria and Mértola, with a mean annual temperature of 15 and 17°C, and 912 and 592 mm of annual precipitation, respectively (Figure 1). The length and intensity of the dry period increases with decreasing latitude, as observed in the climatic diagram (Figure 1). The different climatic conditions were reflected in the type of vegetation, Mediterranean-like in the southern latitude (40 and 38° N), dominated by evergreen trees, and temperate-like vegetation in the northern latitude (42° N), dominated by deciduous trees.

![Figure 1](http://forestry.oxfordjournals.org/) Location of the three sampling sites and the correspondent climatic diagram.
Sampling and chronology construction
The areas at 42 and 40°N were pure stands of P. pinaster under different macroclimatic conditions, temperate and Mediterranean, respectively. Although we have screened for populations of P. pinaster at 38°N, they were too young (<40 years old), making the comparison with northern populations unsuitable. The area at 38°N was a pure stand of P. pinea. In Caldas do Gerês (42°N) and Leiria (40°N), 18 and 22 trees of P. pinaster were cored in 2007 and 2006, respectively, and in Mértola (38°N), 17 trees of P. pinea were cored in 2002. Two cores were taken from each tree, at breast height, with an increment borer (0.5 cm in diameter), in the north–south direction. Afterwards, the cores were air-dried, mounted on a wooden support and sanded with progressive finer sand paper to highlight tree-ring patterns. Tree-rings were visually cross-dated using standard dendrochronological techniques (Stokes and Smiley, 1996). Tree-ring width was measured to the nearest 0.01 mm using a linear table, LINTAB (Frank Rinn S.A., Heidelberg, Germany) and the program TSAP Win (Rinn, 2003). The cross-dating accuracy was then checked using the program COFECHA (Holmes, 1983). None of the trees showed correlations with the master chronology <0.3, thus were all used for further analysis. To remove age-related growth trends and competition, a two-step detrending was applied to each individual series, using the packages ‘dplR’ (Bunn, 2008) and ‘detrendeR’ (Campelo et al., 2012) of the R freeware program (http://www.cran.r-project.org). In the first step, a negative exponential or a straight line with slope ≤0 was fitted to each individual ring-width series. In the second step, a smoothing cubic spline curve with a 50 percent frequency cut-off and response period of 60 years was fitted to the series. In the second step, a smoothing cubic spline curve with a 50 percent frequency cut-off and response period of 60 years was fitted to the series.

Results

Chronologies and general statistics
The length of the chronologies varied from 101 to 131 years (Table 1). Comparing the three chronologies, values of mean sensitivity were higher for P. pinaster at 40°N, although the standard

<table>
<thead>
<tr>
<th>Species</th>
<th>Pinus pinaster</th>
<th>P. pinea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>42°N</td>
<td>40°N</td>
</tr>
<tr>
<td>Chronology length (years)</td>
<td>1907–2007 (101)</td>
<td>1876–2006 (131)</td>
</tr>
<tr>
<td>Number of trees (cores)</td>
<td>18 (36)</td>
<td>22 (44)</td>
</tr>
<tr>
<td>Mean ring width (mm)</td>
<td>2.60</td>
<td>2.17</td>
</tr>
<tr>
<td>Median ring width (mm)</td>
<td>2.39</td>
<td>1.81</td>
</tr>
<tr>
<td>Mean sensitivity</td>
<td>0.27</td>
<td>0.30</td>
</tr>
<tr>
<td>Standard deviation (mm)</td>
<td>1.22</td>
<td>1.54</td>
</tr>
<tr>
<td>First-order autocorrelation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw series</td>
<td>0.70</td>
<td>0.76</td>
</tr>
<tr>
<td>Residual series</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Mean LW/EW</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>Common interval analysis for the period 1940–2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of trees (cores)</td>
<td>18 (36)</td>
<td>22 (44)</td>
</tr>
<tr>
<td>EPS</td>
<td>0.91</td>
<td>0.94</td>
</tr>
<tr>
<td>rbt</td>
<td>0.29</td>
<td>0.31</td>
</tr>
</tbody>
</table>

LW, latewood; EW, earlywood; EPS, expressed population signal; rbt, mean between-trees correlation.
deviation was higher for *P. pinea* at 38°N (Table 1). The first-order autocorrelation of the raw series was higher for *P. pinaster* at 40°N, and the ratio of latewood/earlywood was higher for *P. pinaster* at 42 and 40°N (Table 1). The EPS value for the common interval of analysis to compare the three chronologies was higher than the critical value of 0.85 proposed by Wigley et al. (1984), suggesting a strong common climate signal in the chronologies. The rbt value was higher for *P. pinea* at 38°N (Table 1). The annual variability in ring-width indices of the residual chronologies increased with decreasing latitude (Figure 2).

Tree-ring width and climate

Along the latitudinal gradient, tree-ring width of *P. pinaster* and *P. pinea* showed a common positive correlation with January and February precipitation (Figure 3). Concerning only the species *P. pinaster*, tree-ring width and climate correlations were quite similar at 42 and 40°N (Figure 3). Growth was positively correlated with winter (January and February) and spring (May) precipitation and negatively correlated with spring (April and May) and summer (June and August) temperatures. At 38°N, tree-ring width of *P. pinea* was positively correlated with autumn/winter precipitation (previous November and December, January and February) and temperature (previous October, December and January) (Figure 3). It also showed a positive correlation with the precipitation of October and a negative one with the temperature of November.

Intra-annual density fluctuations and climate

Most of the IADFs found in *P. pinaster* and *P. pinea* were located in the latewood, characterized by earlywood-like cells within...
latewood. IADFs were more frequent at latitude 42°N followed by 38°N and 40°N (Table 2).

IADFs of *P. pinaster* at 42°N showed a positive correlation with the temperature of June and August (Figure 4). IADFs of *P. pinaster* at 40°N showed a negative correlation with the precipitation of January and March, and a positive correlation with precipitation in September and October and with the temperature of November and December (Figure 4). IADFs of *P. pinea* at 38°N showed a strong positive correlation with precipitation in September and October (Figure 4).

Discussion

Our results showed that the climate–growth correlation patterns are species-specific and conserved within a range of climatic conditions. On the contrary, the climate–IADFs correlation patterns are less species-specific and more dependent on the growing conditions. IADFs constitute a plastic response and reveal an anatomical adjustment of tracheids to the prevalent environmental conditions at shorter time-scales. The plasticity of IADFs can be important in the adjustment of trees to climate change conditions in the Mediterranean. Our data contribute to elucidate the main climatic drivers of tree growth for *P. pinaster* and *P. pinea* and the factors determining the formation of IADFs.

Pinus pinaster under temperate and Mediterranean climate

The climate–growth correlations of *P. pinaster* showed a similar pattern along the latitudinal gradient, with a positive correlation with precipitation in January, February and May, and a negative correlation with June and August temperature. Precipitation in winter is important to recharge the soils and aquifers before the onset of the growing season, reinforced afterwards by spring precipitation, during the peak of the growing season. The strong negative correlations with June and August temperatures might be indirectly connected with the closure of stomata to reduce excessive transpiration and the consequent reduction in photosynthetic capacity and growth. This reinforces the idea that *P. pinaster* is a drought-avoiding species (Nguyen-Queyrens et al., 2002).

The similar climate–growth correlation pattern under different macroclimatic conditions (temperate and Mediterranean) suggests a species-specific response to climate. Rigling et al. (2001) also observed similar climate–growth correlation patterns of *P. sylvestris* under different climatic zones and soil substrates. This is consistent with large-scale-spatial studies of tree species within their natural distribution (Cook and Cole, 1991; Frank and Esper, 2005). Nonetheless, the climatic differences between the temperate and Mediterranean sites might not be big enough to induce a distinct climate–growth response in *P. pinaster* (Alia et al., 1997; Correia et al., 2008; Corcuera et al., 2010). Thus, a broader geographical database including more populations of *P. pinaster* under contrasting climatic conditions is needed to reveal if the growth responses to climate is species-specific.

<table>
<thead>
<tr>
<th>Species</th>
<th>P. pinaster</th>
<th>40°N</th>
<th>38°N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latewood IADFs (%)</td>
<td>Tree</td>
<td>Both cores</td>
<td>Tree</td>
</tr>
<tr>
<td>42°N</td>
<td>50.4</td>
<td>34.2</td>
<td>27.8</td>
</tr>
<tr>
<td>40°N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38°N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Stabilized latewood IADF frequency of *Pinus pinaster* and *P. pinea* along a latitudinal gradient from 42 to 38°N in Portugal.
Most of the IADFs found in *P. pinaster* were located in latewood. IADFs are anatomically characterized by changes in the wall/lumen ratio of the tracheids and are the result of changes in environmental conditions (Wimber et al., 2000; Rigling et al., 2002). Differences in the morphology of the xylem cells are ultimately dependent on cambial activity, which in turn is highly dependent on the tree water status during the growing season (Larson, 1994; Rozenberg et al., 2002). The shift from early- to latewood is closely related to the availability of soil moisture and triggered by drought stress (Domec and Gartner, 2002). Latewood formation involves a limited radial expansion and an increase in wall thickening of the cambial derivatives (Uggla et al., 2001). An increase in soil moisture later in the season promotes radial expansion of tracheids and a decrease in cell wall deposition resulting in the formation of earlywood-like cells within latewood (Denne, 1974; Uggla et al., 2001).

The correlation pattern of IADFs and climate was different for *P. pinaster* growing under temperate or Mediterranean climate. Latewood IADFs of *P. pinaster* growing under temperate climate were positively correlated with summer temperature, whereas under Mediterranean climate, latewood IADFs were positively correlated with autumn precipitation and autumn/summer temperature. Experiments performed on several conifers to test the effect of temperature on tracheid development showed that tracheid cell wall thickness decreased and tracheid lumen area increased with increasing temperature (Denne, 1971). However, if high temperatures are associated with low soil moisture, latewood-like cells are produced (Domec and Gartner, 2002). This could explain the different triggering climatic factors in the formation of latewood IADFs of *P. pinaster* under temperate and Mediterranean climate. Under temperate climate, there is no prominent dry season and thus the high summer temperatures have the effect of decreasing tracheid cell wall thickness and increasing tracheid lumen area, as described in the literature (e.g. Vaganov et al., 2006). However, under Mediterranean climate, latewood IADFs are only produced if autumn precipitation is enough to alleviate water deficit after the summer drought (de Luis et al., 2011; Novak et al., 2013), reinforced afterwards by the effect of above average autumn/winter temperatures on tracheid development.

Pinus pinaster and *P. pinea* under Mediterranean climate

Pinus pinaster and *P. pinea* presented a different pattern of climate–growth correlations under similar macroclimatic conditions suggesting that the climate–growth response is influenced by the species. A similar result was obtained by de Luis et al. (2009) who studied *P. halepensis* and *P. pinea* growing under Mediterranean climate. However, we must take into account that in our study, *P. pinaster* and *P. pinea* were not growing exactly under the same climatic conditions, which limits the interpretation on the relative contribution of genetics and environment on tree-growth response.

Tree-ring growth of *P. pinea* and *P. pinaster* showed a common positive correlation with winter precipitation, and *P. pinaster* growth was also correlated with spring precipitation. *Pinus pinea* showed a strong positive correlation with winter temperature and we hypothesize that *P. pinea* in the southernmost latitude starts the growing season earlier. A study with poplar showed that cumulative high temperatures from late winter to early spring induced an early start of cambial cell division, xylem differentiation and an extended growth period (Begum, 2008).

Tree-ring width of *P. pinaster* under Mediterranean climate showed a negative correlation with summer temperatures whereas there were no correlations for *P. pinea*. These results suggest that *P. pinaster* can grow during summer whereas *P. pinea* enters a quiescent stage. Probably, in the southernmost latitude, the summer is too dry to maintain cambial activity and xylem cells differentiation (Campelo et al., 2007, 2009).

Tree-ring width of *P. pinea* showed a positive correlation with precipitation in October suggesting a second growth period after the summer pause (Campelo et al., 2007), a signal not present in *P. pinaster*. *Pinus halepensis* growing in Spain under Mediterranean climate showed two major growth phases, one in spring and another in autumn, with low or no cambial activity during summer (de Luis et al., 2007; Camarero et al., 2009; Novak et al., 2013). This was also observed in other Mediterranean species like *Arbutus unedo* (Battaglia et al., 2010) and *Erica arborea* (Battaglia et al., 2014). Precipitation after the summer drought can resume cambial activity with the formation of new cells and/or cambial derivatives that did not complete their differentiation before the summer can now become more turgid, increasing the tree-ring width (Vieira et al., 2013).

The strong negative correlation of tree-ring width of *P. pinea* and temperature in November is not so straightforward to explain. High temperatures increase plant respiration, and if this is associated with a lower photosynthetic capacity due to a reduction of the day-length in late autumn, the available carbohydrates for growth diminish (Denne, 1974; Dodd and Fox, 1990) reducing tree-ring width.

Latewood IADFs of both *P. pinea* and *P. pinaster* growing under Mediterranean climate were positively correlated with autumn precipitation. High precipitation in autumn can increase the turgor pressure of tracheids that are still under differentiation, increasing their radial expansion and producing earlywood-like cells (Campelo et al., 2007; Vieira et al., 2010, 2013).

Under Mediterranean climate, there was a negative correlation between *P. pinaster* latewood IADFs and the precipitation from previous winter and current spring, a signal neither present in *P. pinaster* under temperate climate nor in *P. pinea* under Mediterranean climate. Low precipitation in winter and spring can affect photosynthesis and the production of new cells by the vascular cambium, ultimately translated in a reduction of tree growth (Körner, 2003). Additionally, cell wall thickening of latewood cells is an expensive and long-lasting process of carbon deposition (Deslauriers et al., 2003). However, it is a lower priority carbon sink, in relation to respiration, root growth and storage (Oribé et al., 2003; Polak et al., 2006; Deslauriers et al., 2009). We suggest that if low precipitation in winter and spring can significantly reduce carbon acquisition, cell wall deposition in latewood tracheids might not be completed, resembling earlywood-like cells.

Species vs. climate: some final remarks

Our results indicate that the tree-ring growth responses to climate are species-specific. Thus, within the geographical distribution range of a species, which encompasses a certain range of climatic conditions, the correlations between climate and growth are conserved. On the contrary, the climatic parameters that control the formation of IADFs are site-dependent, and not so much dependent on the species. In this sense, IADFs represent an important plastic trait of the adjustment of trees to the variability of environmental conditions within the growing season. In our
sites, most of the IADFs were located in the latewood for both species, indicating good environmental conditions after the summer drought (Rigling et al., 2001; Campelo et al., 2007). Earlywood-IADFs indicate stressful conditions during the spring growth (Battipaglia et al., 2010) but were quite rare in our samples. In regions with a long growing season, like the Mediterranean, a broader geographical network of IADFs chronologies would give valuable information to reconstruct the variability of climatic conditions within the growing season.

Under the scope of climate change, it is foreseen an increase in temperature and frequency of extreme events for Portugal (Ramos et al., 2011). According to our results, a higher temperature in winter might induce an earlier start of the growing season benefitting P. pinea. Higher temperatures in spring and summer can increase evapotranspiration and thus water stress with a negative effect in P. pinaster. IADFs can be in the forefront of the adjustment of trees to climatic changes. If spring becomes more stressful in the Mediterranean, then an increase in the frequency of earlywood-IADFs would be expected. More studies are necessary to quantify the adaptive value of IADFs, namely their effect on the hydraulic adjustment of trees to the availability of water (De Micco et al., 2007, 2012; Battipaglia et al., 2014).

Funding

This study was supported by the Fundação para a Ciência e a Tecnologia (FCT), Ministério da Educação e Ciência co-financed by Compete, through the project POCI/CLI/58680/2004 and the project PTDC/AMB-AMB/111675/2009. J.V. and F.C. were supported by a PhD Grant (SFRH/BD/48089/2008) and a postdoctoral research grant (SFRH/BPD/47822/2008), respectively, both grants from FCT with funds from POPH (Portuguese Operational Human Potential Program) and QREN Portugal (Portuguese National Strategic Reference Framework). This research is linked to activities conducted within the COST FP1106 ‘STReESS’ network.

Conflict of interest statement

None declared.

References

Fritts, H.C. 2001 Tree rings and climate. 2nd Edn. Blackburn Press.

IPCC. 2007 Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC.

