
(To be submitted to . . .)

Roadmap to spline-fitting potentials in high dimensions

M. Patŕıcio†, Author†, F. Patŕıcio† and A.J.C. Varandas1?

†CMUC, Departamento de Matemática, Universidade de Coimbra
3004-535 Coimbra, Portugal

?Departamento de Qúımica, Universidade de Coimbra
3004-535 Coimbra, Portugal
(Draft: January , 2010)

Abstract

Use of the theory of splines to approximate the potential energy surface in
molecular dynamics is examined. It is envisaged that such an approximation should
be able to accurately capture the potentials’ behavior and be computationally cost
effective, both for one-dimensional and n-dimensional problems with n arbitrary.

1 Introduction

A key step in reaction dynamics is to obtain the potential energy surface (this stands

generally for potential energy curve or potential energy hypersurface, hereinafter de-

noted by the acronym PES) that governs the motion of the nuclei for any arrangement

of the latter. Despite important progress towards dynamics on-the-fly (the electronic

Schrödinger equation is then solved simultaneously to the corresponding equation for

the nuclei once assumed the Born-Oppenheimer approximation for their separation),

the traditional scheme of modeling the PES prior to starting the dynamics studies re-

mains by far the most used approach especially for small systems (up to 4 atoms or

so). In this approach, the two main streams to the PES consist of modeling it with

a suitable functional form, often and hopefully originated from physically motivated

arguments,?,?,?,? and of using semi-numerical black-box fitting approaches based on

mathematical splines or related interpolation approaches (see later). Although the lat-

ter are unbiased and simple to use, they face the serious problem of dimensionality,
1Corresponding author: e-mail: varandas@qtvs1.qui.uc.pt.

1

so-called X3N−6-explosion (this gives the number of geometries at which the electronic

Schrödinger equation has to be solved if X is the number of points required to spline-fit

a cut of the PES function in one-dimension, 1D, and N the number of atoms involved).

The major motivation of this work is to examine the capabilities of two types of splines

(natural vs shape-preserving) when aiming at high-dimensionality problems.

There have been already some works in this area. A piecewise interpolation method

has been presented in,? where the function and gradient data are reproduced on a mul-

tidimensional rectangular grid using a local reduced piecewise Hermite interpolation.

More recently, a fitting strategy that is based upon an efficient placement of the ab

initio data points is presented in,? where a vast number of references to literature on

interpolation methods can also be found.

Specifically, we examine here the problem of fitting a PES, by comparing the tradi-

tional cubic splines (natural cubic splines) to shape-preserving splines. The theory and

properties of both spline-types will be first dealt with for the 1D case. This will allow a

comparison of the number of operations that are involved, which can give an indication

of the required computational labor. It will be shown that shape-preserving splines

(or simply shape splines), being a local method, are computationally quite demanding,

with the required effort increasing linearly with the number of patches. However, they

behave much less critically than the natural cubic splines with respect to the issue

of dimensionality. Moreover, shape preserving methods yield visually pleasing plots,

as properties found in the discrete data such as monotonicity are maintained in the

approximation, meaning that shape preserving splines are monotonic when the data

is monotonic and present local extrema at the data points that are a local extreme.

Conversely, it is shown that in certain conditions the natural splines offer a greater ac-

curacy than the shape-preserving splines at regions of strong curvature when f ∈ Ck,

2

k ≥ 2.

As noted above, for medium-size molecules (or even relatively modest ones with 4

or more atoms), the modeling of an analytic function can be a mammoth task, with

simplicity calling for strictly numerical techniques to face the problem. This implies in

turn a great computational effort if a high-accuracy is in demand, particularly at regions

of large curvature. As a result, refinements of the grid will be required until a predefined

accuracy is obtained. The use of non-uniform meshes will then be also examined here,

aiming at cost-effective techniques that can be used when high accuracy is at demand.

Bearing this in mind, an algorithm to fit potentials is proposed in section 4.

The paper is organized as follows. In section 2, the notion of shape preserving

spline is generalized to the 2D case. Test cases and computational examples will then be

reported in section 3, namely for the popular Morse curve (1D) and a more complicated

2D numerical potential taken from the literature. Section 4 gathers some conclusions.

2 Functions of one variable

Consider a set of points {xi, i ∈ I}, where I = {0, . . . , n}, and a function z = z(x).

Let hk = xk+1 − xk and h = maxk hk, for k = 0, . . . , n− 1.

2.1 Natural vs shape-preserving splines

The classical natural cubic interpolating spline for the function z = z(x) at the points

{xi, i ∈ I} is a function S that satisfies the conditions

• Si := S|[xi−1,xi]
is a cubic polynomial, for i = 1, . . . , n;

• S(xi) = zi := z(xi), for i ∈ I;

• S ∈ C2[x0, xn];

• S′′(x0) = S′′(xn) = 0.

3

Determining such a function S is equivalent to computing the 4n coefficients of the

polynomials

Si(x) = ai(x− xi−1)3 + bi(x− xi−1)2 + ci(x− xi−1) + di (1)

that satisfy the following set of equations

Si(xi−1) = zi−1; Si(xi) = zi, for i = 1, . . . , n; (2)

S′i(xi) = S′i+1(xi), S′′i (xi) = S′′i+1(xi) for i = 1, . . . , n− 1; (3)

S′′1 (x0) = S′′n(xn) = 0. (4)

In working out this set of equations, it can be shown that only n unknowns remain to

be determined, from the resolution of a system of linear equations with a n×n matrix.

This analysis may turn out to be quite useful when the dimensionality increases or

there is a great number of patches, as it will reduce the computational cost. For the

sake of clarity, we disregard it for now and leave it in the [anexo].

An alternative to natural cubic splines, still to interpolate z, are the shape-preserving

splines P . These are defined by

• Pi := P|[xi−1,xi]
is a cubic polynomial, for i = 1, . . . , n;

• P (xi) = zi := z(xi), for each i ∈ I;

• P ′(xi) = ∆i, for each i ∈ I.

For each value of k = 1, . . . , n − 1, the quantity ∆k is an approximation to the

derivative of z at xk, given by

∆i :=





w1
i + w2

i(
w1

i
δi−1

+ w2
i

δi

) , if δiδi−1 > 0,

0, otherwise

(5)

4

where we define

δi :=
zi+1 − zi

hi
, w1

i = 2hi + hi−1, w2
i = hi + 2hi−1. (6)

The idea of this approximation is to prevent the function values from overshooting the

data by setting the slope of the interpolation spline as the harmonic mean of finite

differences approximations to the derivatives of f . For that purpose, whenever the

forward and backward approximations for the derivative at xk, given respectively by

δk and δk−1, have opposite signs, or one of the approximations is zero, the slope of the

interpolation spline at x = xk is set to be zero. If instead they have the same signs and

in the particular case of hk = hk−1, then the approximation for the derivative expressed

by (5) is the harmonic mean of the discrete slopes:

∆k :=
2

1
δk−1

+ 1
δk

.

The approximations above for the slopes of z are valid for the points xi, with

i = 1, . . . , n− 1. Similar approximation can be employed for the endpoints, cf.? The

shape preserving spline P may then be interpreted as an Hermite interpolating spline

fitting a function with values zi and derivatives ∆i at the points xi. We denote the

spline at the interval [xi, xi+1] by

Pi(x) = ai(x− xi−1)3 + bi(x− xi−1)2 + ci(x− xi−1) + di. (7)

The coefficients of the polynomials may now be determined from the linear system

related to the equations

Si(xi−1) = zi−1, S′i(xi−1) = z′i−1, (8)

Si(xi) = zi, S′i(xi) = z′i, (9)

for i = 1, . . . , n. Again, instead of solving a linear system of order n, it is easy

to see that [remover? the unknowns ci and di may be computed from the equations

5

in (8) independently from the other unknowns ai and bi. The latter may in turn be

determined from the coupled equations expressed by (9). endremover?] Finding the

shape preserving spline P then translates into solving a system of linear equations of

order 2 for each patch where z is to be approximated by a cubic polynomial, see [anexo].

2.2 Error analysis and computational complexity

It is desirable to find estimates for the errors arising in the aproximation of a function

by natural and shape-preserving splines. Upper bounds for the infinity and L2 norms

of the errors of the approximation of a given function f ∈ Cr[a, b], with r ∈ N \ {1} by

polynomial cubic splines can be found in in.? The results refer to cubic polynomials that

only differ from the natural splines we have defined at the end-points, where instead

of having the second derivative equal to zero, the derivatives of the polynomials are

required to equal the derivatives of f . It can be shown that the bounds are still valid

for natural splines. Let S then be the natural interpolating spline for f . The following

results hold.

a) if r ≥ 2, one has

‖f − S‖∞ ≤
√

8‖f ′′‖2 h3/2 and ‖f ′ − S′‖∞ ≤
√

8‖f ′′‖2 h1/2

as well as

‖f − S‖2 ≤ 16‖f ′′‖2 h2 and ‖f ′ − S′‖2 ≤ 4‖f ′′‖2 h

b) if r ≥ 4, one has

‖f − S‖∞ ≤ 16
√

2‖f (4)‖2 h7/2 and ‖f ′ − S′‖∞ ≤ 16
√

2‖f (4)‖2 h5/2.

To enable a comparison between approximating f with a natural cubic spline S and

a shape-preserving spline P , it is important to also find upper bounds for the error of

the aproximation of f with shape-preserving splines. The result is established in the

6

following theorem.

Theorem: Let f ∈ C2[a, b] and P be the corresponding shape-preserving interpolating

spline. Then

‖f − P‖∞ ≤ 1
8
‖f ′′‖∞h2 + 4h max

i
|∆i − z′i|.

Sketch of proof: Let H be the Hermite cubic spline that satisfies

H(xi) = zi; H ′(xi) = z′i, i = 0, . . . , n.

Then one has

‖f −H‖∞ ≤ 1
8
‖f ′′‖∞h2.

Moreover, it is easy to show that

|H(x)− P (x)|[xi,xi+1] ≤ (x− xi)(z′i −∆i) + (x− xi)2/h(z′i −∆i) +

(x− xi)2(x− xi+1)/h2(z′i −∆i + z′i+1 −∆i+1).

We then conclude that

‖H − P‖∞ ≤ 4h max
i
|∆i − z′i|.

The result then follows from Theorem 1, together with the inequality

‖f − P‖∞ ≤ ‖f −H‖∞ + ‖H − P‖∞.

From Theorems 1 and 2, one concludes that for both natural and shape preserving

splines, when the curvature of f is large, the upper bound for the error is also large.

Note that as long as f ∈ Cr, with r ≥ 2, the upper bound of the error for the shape-

preserving splines is of order O(h2), since ∆ is an order of h approximation to the

derivatives at the node points. For f ∈ C2, the upper bound for the error for the

7

natural splines is only of order O(h1.5). However, for f ∈ Cr, with r ≥ 4, the upper

bound for the error with these splines is already of order O(h7/2). This seems to imply

that natural splines are better choices, in terms of accuracy, when the function we wish

to approximate has its derivatives of order greater or equal to 4 continuous, whilst

for f ∈ C2 the shape-preserving splines offer a better order approximation. In the

examples we will include [Morse], a C∞ potential is considered, for which we should

expect the natural spline to offer more accuracy.

It is also important to note that the computational complexity of interpolating

functions of one variable, employing either natural or shape-preserving splines, increases

with the number of interpolation points. Such a complexity can be measured by the

number of multiplications performed to invert the matrices in the related systems of

linear equations, see Table 1. The other operations involved in the inversion of the

matrices are disregarded in the present analysis.

Table 1: Matrices arising in the interpolation.

Spline number of patches

1 2 3 4 p

matrices 1 1 1 1 1
Natural

order 4 8 12 16 4p

matrices 1 2 3 4 p
Shape-preserving

order 4 4 4 4 4

Recall that solving a linear system of equations via Gauss elimination with back sub-

stitution, involves a n× n matrix, thus implying the need to perform n3/3 + n2 − n/3

multiplications or divisions.?Figure 1 shows that the computational complexity associated to natural spline has a

cubic growth, while shape-preserving spline displays a linear growth. The latter are

therefore more adequate to deal with a large number of patches. Moreover, a parallel

8

Figure 1: Comparison of number of operations.

computation approach is straightforward.

3 Functions of two variables

In this section the concept of natural and shape-preserving splines to 2D functions is

extended.

3.1 Natural vs shape preserving bicubic splines

We now aim to find splines that interpolate a given function z = z(x, y) at the set of

points {(xi, yj), i ∈ I, j ∈ J}, where I = {0, . . . , nx} and j ∈ J = {0, . . . , ny}.

The natural bicubic spline is a function S such that

• Sij := S|[xi−1,xi]×[yj−1,yj]
is a bicubic polynomial, for each (i, j) ∈ I × J ;

• S(xi, yj) = zij := z(xi, yj), for each (i, j) ∈ I × J ;

• S ∈ C2([x0, xnx]× [y0, yny]);

• ∂2

∂x2 S(x0, yj) = ∂2

∂x2 S(xnx , yj) = 0 for j ∈ J \ {0};

• ∂2

∂y2 S(xi, y0) = ∂2

∂y2 S(xi, yny) = 0 for i ∈ I \ {0};

• ∂2

∂x∂yS(xi, yj) = ∂2

∂x∂yS(xi, yj) = 0 for i = 1, nx and j = 1, ny;

We denote

Sij(x, y) =
∑

r,s=0,1,2,3

ars(x− xi−1)r(y − yi−1)s, (10)

where ars = ars(i, j) are the local coefficients of the spline. The 16 unknowns can be

determined from the resolution of a linear system of equations of order 16.

In turn, the shape preserving spline P that interpolates z is defined by

9

• Pij := S|[xi−1,xi]×[yj−1,yj]
is a bicubic polynomial, for each (i, j) ∈ I × J ;

• P (xi, yj) = zij := z(xi, yj), for each (i, j) ∈ I × J ;

• ∂P
∂x (xi, yj) = zx

ij , for each (i, j) ∈ I × J ;

• ∂P
∂y (xi, yj) = zy

ij , for each (i, j) ∈ I × J ;

• ∂2P
∂x∂y (xi, yj) = zxy

ij , for each (i, j) ∈ I × J ;

The quantities zx
i , zy

i and zxy
i must be computed a priori, using harmonic means of

finite differences approximations of the respective derivatives, as was done in the 1D

case.

Table 2: Coefficients.

a33 a23 a13 a03 y3

a32 a22 a12 a02 y2

a31 a21 a11 a01 y

a30 a20 a10 a00 1

x3 x2 x 1

Denoting the shape-preserving spline at the ith-jth patch by

Pij(x, y) =
∑

r,s=0,1,2,3

ars(x− xi−1)r(y − yi−1)s (11)

one has 16 coefficients ars = ars(i, j) for each patch [xi, xi+1] × [yj , yj+1]. For both

the natural and shape preserving splines, the equations may be worked out in order to

reduce the number of unknowns, see [anexo].

3.2 Computational analysis

To enable a comparison between the shape-preserving and natural splines in higher

dimensions, we look as in the 1D case into the number of multiplications needed to

invert the matrices related to each of these approximations.

10

Table 3: Number of operations.

dimension d number of patches

1d 2d 3d 4d 5d

S 36 232 716 1616 3060
d=1

P 36 72 108 144 180

S 1616 9.1E4 1.0E6 5.7E6 2.1E7
d=2

P 1116 6464 1.5E4 2.6E4 4.0E5

S 9.1E4 4.5E7 1.7e9 2.3e9 1.7E11
d=3

P 9.1E4 7.3E5 2.5E6 5.9E6 1.1E7

S 5.7E6 2.3E10 3.0E12 9.4E13 1.4E15
d=4

P 5.7E6 9.1E7 4.6E8 1.4E9 3.5E9

S 3.6E8 1.2E13 5.1E15 3.9E17 1.1E19
d=5

P 3.6E8 1.1E10 8.7E10 3.7E11 1.1E12

S 2.3E10 6.0E15 8.8E18 1.6E21 8.7E22
d=6

P 2.3E10 1.5E12 1.7E13 9.4E13 3.6E14

Clearly, the comparison of computational complexity for the S and P splines shows

that it is quite computationally expensive to adopt the former in high dimensional

cases. If the PES is a function of d dimensions and the number of patches is p, Table 3

shows that natural splines involve (4dp)3/3 + (4dp)2 − (4dp)/3 multiplications, while

shape-preserving splines require p((4d)3/3+(4d)2− (4d)/3) such operations. Moreover,

the dimension of the matrices than one has to invert when utilizing shape-preserving

splines is much smaller that one using natural splines, making it a far more feasible

method.

As noted above in the paper, the computation of an accurate energy point from

electronic structure methods can be a rather expensive process. As a result, the number

of points where the value of the potential is required should be optimized, especially

11

when working in many dimensions. A question that arises naturally is then whether

the location of the interpolation points can be chosen a priori so that more accurate

approximations are obtained with an equal number of interpolation points.

From the previous analysis, we conclude that it is important to reduce the number

of patches without compromising the accuracy of the approximation. Bearing this in

mind, we have established the algorithm included bellow. The idea is to start from two

coarse uniform meshes X1 = (x1(j))j and X2 = (x2(j))j , with mesh widths respectively

h and h/2. A refined mesh X3 = (x3(j))j is then generated at each iteration. The spline

P3 related to this refined mesh is then compared to the spline P2 related to X2. For

the patches where such a difference exceeds a certain tolerance, Tol, more points are

added.

Algorithm 1

Given: Tol, X1, X2.

1. Compute P1, P2 and e := ‖P2 − P1‖∞.

2. If e < Tol, go to step 5. Else, go to step 3.

3. Let X3 = X2 and x2(j) the jth node of the mesh X2. For each value of j from 1 up

to |X2|−1, where |X2| is the cardinal of X2, compute ε = ‖P2−P1‖|[x2(j),x2(j+1)].

If ε > Tol, add the point 1/2(x2(j) + x2(j + 1)) to the mesh X3.

4. Let P1 := P2, X1 = X2 and X2 = X3. Compute P2 to fit the desired function

over the mesh X2, over the relevant domain. Compute e := ‖P2−P1‖∞. Go back

to step 2.

5. Let X = X2. Compute P to fit the potential over X2.

12

4 Numerical discussion

As cases studies to test the above approximations, we will discuss the two-oscillator

system described by a Morse potential and the Varandas’ potential.

The Morse potential, expressed in terms of displacements from equilibrium x, y ∈

[−0.5, 5.5], assumes the form

V (x, y) = VM (x) + VM (y) + 0.1(x2y + xy2)e[−2(x2+y2)], (12)

with VM being the one-dimensional Morse potential

VM (x) = 18e−x(2− e−x). (13)

We will start by fitting (13) with both natural and shape-preserving splines, employ-

ing standard functions already implemented in Matlab, so that we can compare both

approximations, cf.? These functions are adapted to handle the analysis of a shape-

preserving interpolation of (12) and the Varandas’ potential.

4.1 One-dimensional potential

Consider the Morse potential VM expressed by equation (13) and represented in Figure

2 by the solid black line. The problem of interpolating this 1D function offers interesting

challenges that are important to discuss before proceeding to interpolating functions

with more dimensions.

Figure 2: Fitting for Morse potential; uniform mesh with 7 nodes.

We start by fitting VM over the domain I = [−0.5, 5.5]. An uniform mesh with 7 nodes

is employed to obtain two approximations: a natural spline S and a shape-preserving

spline P . Both are represented in Figure 2. By observing the plots it is clear that

S offers a better approximation than P in I1 = [−0.5, 0.5], whilst both splines offer

13

a good approximation in I2 = [0.5, 5.5]. These results are in accordance with the

results included in the Theorems ?? and 2.2 when we take the curvature of VM into

consideration. A quantitative analysis of such results is presented in Table 4, where the

errors of approximations of VM by natural and shape-preserving splines, employing a

uniform mesh with mesh widths h, are included.

Table 4: L∞? Error of the approximations of VM by natural and shape-preserving
splines, employing an uniform mesh.

Spline h

1 0.5 0.25 0.125 0.0625

S 2.6393 0.4449 0.0469 0.0038 2.73e-004
P 4.0995 0.9053 0.1358 0.0267 0.0059

Table 5: Error in the approximation to the Morse potential with a shape spline, using
Algoritm 1 to select points (explain table).

Tol iteration number

1 2 3 4

Interval [−0.5, 1.5] [−0.5, 1] [−0.5, 0] –
0.1 ‖P1 − P2‖∞ 9.7E − 1 1.5E − 1 3.1E − 2 –

‖P2 − VM‖∞ 1.4E − 1 2.7E − 2 1.7E − 2 –

Interval [−0.5, 5.5] [−0.5, 1.5] [−0.5, 0.75] [0, 0.25]
0.01 ‖P1 − P2‖∞ 9.7E − 1 1.5E − 1 3.1E − 2 6.9E − 2

‖P2 − VM‖∞ 1.4E − 1 2.7E − 2 5.9E − 3 3.7E − 3

In general, one should expect the natural spline to offer a better accuracy at regions

where the curvature is large. On the other hand, the shape-preserving splines, besides

preserving certain geometrical features of the data, are much more straightforward and

computationally feasible, in particular when one considers functions of more variables.

We will focus on this later type of splines and try to extract the best from their structure.

14

The algorithm 1 can be employed to generate a non-uniform mesh for the approx-

imation of the Morse potential VM . We start from a uniform grid with h = 1 and a

refined grid with h = 0.5. The values displayed in Table 5 were obtained by approxi-

mating the Morse potential over the points corresponding to the meshes. The intervals

where, at each iteration, more points are added, are also displayed. Note that 3 itera-

tions were sufficient to reach the tolerance Tol = 0.1, while 4 iterations were needed to

reach the tolerance Tol = 0.01.

4.2 Two-dimensional potentials

Consider now the 2D Morse potential represented in Figure 3.

Figure 3: Representation of the Morse potential Vxy.

Using the shape-preserving spline P defined earlier, we fit the potential using both a

uniform and a non-uniform meshes.

Table 6: Errors in the approximation to the Morse potential employing shape-preserving
splines with both uniform and non-uniform meshes.

grid norm h

1 0.5 0.25 0.125 0.0625

L2 0.9775 0.2094 0.0392 0.0084 0.0016
uniform ∞ 10.0023 3.2307 0.8325 0.2540 0.0700

L2 — — 0.0120 0.0010 1.9572e-4
Algorithm ∞ — — 0.2540 0.0183 0.0047

The numerical solution of the potential is obtained for several uniform mesh side-

sizes h. Table 6 shows the error, both in the L2 and the ∞ norms. As expected, the

error decreases with h. Moreover, it is larger in the areas where the curvature is larger,

15

as seen from Figure 4.

To obtain an improved approximation, we have also use a non-uniform mesh. The

algorithm given above has been employed to generate a 1D mesh X. The symmetry

of the problem suggests that it is sufficient to fit the potential over the mesh X ×X.

The errors of this approximation are included in Table 6. For a better visualization,

see Figure 5.

Figure 4: Error (uexacto-uaproximacao)of the approximations of the Morse potential
employing a uniform mesh, h = 0.25.

Figure 5: Error of the approximations of the Morse potential employing a non-uniform
mesh with 25 points, corresponding to h = 0.25.

The same procedure is adopted to approximate the Varandas’ potential. The errors of

the approximation of the potential are displayed in Table 7. (more?)

Table 7: Error in approximations to the Morse potential.

grid norm h

1 0.5 0.25 0.125 0.0625 0.062572

L2 0.0130 0.0063 0.0031 0.0015 7.6063e-004 3.8012e-004
uniform ∞ 0.1714 0.0904 0.0417 0.0192 0.0095 0.0046

L2 — — 0.0022 0.0011 4.0062e-004 1.8581e-004
Algorithm ∞ — — 0.0192 0.0092 0.0023 0.0012

16

5 Conclusion

Even though the natural splines offer, in some cases, more accuracy than the shape-

preserving splines, the latter turn out to be more adequate when one considers functions

of several variables. The algorithm presented allows the computation of a non-uniform

mesh aiming at a higher accuracy with less interpolation points. In a future report, we

hope to generalize the algorithm to many dimensions and relate the tolerance of the

algorithm to the error of fitting approximation.

Acknowledgments

This work is supported by Fundação para a Ciência e a Tecnologia, Portugal.

17

Figure 6: A plot

18

Figure 1, Varandas

19

6 Anexos

6.1 Natural spline

A natural cubic interpolating spline for the function z = z(x) at the points {x0, x1, . . . , xn}

is a function S such that

• Si := S|[xi−1,xi]
is a cubic polynomial, si(x) = ai(x−xi−1)3 +bi(x−xi−1)2 +ci(x−

xi−1) + di;

• S(xi) = zi := z(xi), for each i = 0, . . . , n;

• S ∈ C2[x0, xn];

• S′′(x0) = S′′(xn) = 0.

In particular, when n = 2, S must satisfy

S1(x0) = z0 ⇒ d1 = z0

S1(x1) = z1 (equação full)

S2(x1) = z1 ⇒ d2 = z1

S2(x2) = z2 (equação full)

S′′1 (x0) = 0 ⇒ b1 = 0

S′′2 (x2) = 0 ⇒ a2 = b2/(x2 − x1)

S′1(x1) = S′2(x1) ⇒ c2 = . . .

S′′1 (x1) = S′′2 (x1) ⇒ b2 = . . .

This means that only two unknows remain to be computed. In a more general case,

when n = p, S must satisfy the following equations

Si(xi−1) = zi−1 ⇒ di = zi−1, for i = 1, . . . , p

Si(xi) = zi, for i = 1, . . . , p (equação full)

20

S′′1 (x0) = 0 ⇒ b1 = 0

S′′d (x2) = 0 ⇒ ap = bp/(xp − xp−1)

S′i(xi) = S′i+1(xi) ⇒ ci+1 = . . . , for i = 1, . . . , p− 1

S′′i (xi) = S′′i+1(xi) ⇒ bi+1 = . . . , for i = 1, . . . , p− 1

This means that only p unknows remain to be computed, and so a p× p matrix has to

be inverted.

6.2 Shape-preserving spline

A shape-preserving cubic interpolating spline for the function z = z(x) at the points

{x0, x1, . . . , xn} is a function S such that

• Si := S|[xi−1,xi]
is a cubic polynomial, si(x) = ai(x−xi−1)3 +bi(x−xi−1)2 +ci(x−

xi−1) + di;

• S(xi) = zi := z(xi), for each i = 0, . . . , n;

• S′(xi) = z′i := z′(xi), for each i = 0, . . . , n;

Note that for each i = 0, . . . , n, the quantity z′(xi) must be computed a priori.

Now, when n = 2, S must satisfy

S1(x0) = z0 ⇒ d1 = z0

S1(x1) = z1 (equação full in a1, b1, c1, d1)

S2(x1) = z1 ⇒ d2 = z1

S2(x2) = z2 (equação full in a2, b2, c2, d2)

S′1(x0) = z′0 ⇒ c1 = z′0

S′1(x1) = z′1 (equação full in a1, b1, c1, d1)

S′2(x1) = z′1 ⇒ c2 = z′1

21

S′2(x2) = z′2 (equação full in a2, b2, c2, d2)

This means that only four unknows remain to be computed. Now, since it can be seen

that a1, b1, c1, d1 can be computed independently from a2, b2, c2, d2, that means we

have to invert two 2× 2 matrices. In a more general case, when n = p, S must satisfy

the following equations, for i = 1, . . . , p

Si(xi−1) = zi−1 ⇒ di = zi−1

Si(xi) = zi (equação full in ai, bi, ci, di)

S′i(xi−1) = z′i−1 ⇒ ci = z′i−1

S′i(xi) = z′i (equação full in ai, bi, ci, di)

Each of these p systems of four equations each can be solved independently of the

others. This means that for each patch a 2× 2 matrix has to be inverted. In total, p

matrices, each 2× 2, have to be inverted.

In other words,

• From the equations in xi−1, one computes ci and di;

• From the equations in xi, one obtains two coupled equations for ai and bi;

6.3 2D shape-preserving spline

A shape-preserving bicubic interpolating spline for the function z = z(x, y) at the points

(xi, yj), i = 0, . . . , nx, j = 0, . . . , ny, is a function S such that

• Sij := S|[xi−1,xi]×[yj−1,yj]
is a bicubic polynomial, Sij(x, y) =

∑
r,s=0,1,2,3 ars(x −

xi−1)r(y − yi−1)s;

• S(xi, yj) = zij := z(xi, yj), for i = 0, . . . , nx, j = 0, . . . , ny;

• ∂S
∂x (xi, yj) = zx

i := ∂z
∂x(xi, yj), , for i = 0, . . . , nx, j = 0, . . . , ny;

22

• ∂S
∂y (xi, yj) = zy

i := ∂z
∂y (xi, yj), , for i = 0, . . . , nx, j = 0, . . . , ny;

• ∂2S
∂x∂y (xi, yj) = zxy

i := ∂2z
∂x∂y (xi, yj), , for i = 0, . . . , nx, j = 0, . . . , ny;

Note that for i = 0, . . . , nx, j = 0, . . . , ny, the quantities zx
i , zy

i and zxy
i must be

computed a priori.

Now, when n = 1, one has the coefficients

Table 8: Coefficients.

a33 a23 a13 a03 y3

a32 a22 a12 a02 y2

a31 a21 a11 a01 y

a30 a20 a10 a00 1

x3 x2 x 1

We thus obtain 16 equations.

• From the equations in (x0, y0), one computes a00, a10, a01, a11;

• From the equations in (x1, y0), one obtains two coupled equations for a00, a10,

a20, a30 and two coupled equations for a01, a11, a21, a31;

• From the equations in (x0, y1), one obtains two coupled equations for a00, a01,

a02, a03 and two coupled equations for a10, a11, a12, a13;

• From the equations in (x1, y1), one obtains four coupled equations for a22, a23,

a32, a33.

This means that when n = d, for each of the d patches one has to invert a 4× 4 matrix

and four 2× 2 matrices.

23

