
Dynamic Programming for Spanning Tree Problems

Luigi Di Puglia Pugliesea ∗ Francesca Guerrieroa José Luis Santosb

aDepartment of Electronics, Computer Science and Systems, University of Calabria, Rende (CS),
87036, Italy

bDepartment of Mathematics, University of Coimbra, Coimbra, 3001-454, Portugal

Abstract

The aim of this paper is to provide a dynamic programming formulation for the
spanning tree problem (ST P). We show that the proposed formulation allows several
instances of the classical ST P to be addressed. The spanning tree structure is modelled
with states and transition between states, defining a state-space. Several properties
are shown and optimality conditions are given. Once the fundamentals of the proposed
formulation are shown, the multi-objective spanning tree problem (MOST P) is ad-
dressed. This problem arises in both telecommunications and transportation fields. In
addition, the growing in both customers demand and social environment impose that
more than one criterion have to be optimized. The scientific literature provides several
works that focus on a specialized instance of the considered problem, that is the bi-
objective version in which only two criteria are taken into account. To the best of our
knowledge, no works provide optimal methods to address the MOST P with an arbi-
trary number l of objective functions. In this paper we extend the proposed dynamic
programming formulation to model and solve the MOST P with l ≥ 3 criteria.

Keywords: Dynamic programming; Spanning tree problems; Multiple objective pro-
gramming; Pareto front.

1 Introduction

The minimum spannning tree problem (ST P) aims at finding the shortest undirected paths
from a pre-determined source node to each non-source node in a given graph. Many solution
approaches to address the ST P were proposed in the scientific literature. For a detailed
description and a computational study of these methods, the reader is referred to [1].

When two criteria have to be optimized, the ST P is referred to as bi-objective spanning
tree problem (BOST P). In this case, the optimality of the solutions refers to the concept of
dominace. If a tree is not dominated by any other, then it is efficient and the associated cost
vector function is said to be Pareto-optimal. They can be considered as best solutions in the
sense that no improvement in any criterion is possible without sacrificing at least one of the
other criteria. Both exact and approximate solution approaches were developed to solve the
BOST P. The exact methods aim at finding the set of all Pareto-optimal solutions, while
the latter provide a sub-set of them or an approximation of the convex hull. Among approx-
imation procedures, we cite the works of Hamacher and Ruhe [4], Knowles and Corne [5]

∗Corresponding Author, e-mail: ldipuglia@deis.unical.it

1

and Zhou and Gen [9]. To the best of our knowledge, only three papers provide exact
solution approaches for the BOST P. Two of these are based on a two-phases procedure
(e.g., see [6,8]). In the first step, all the supported non-dominated solutions are determined.
In the second step, the objective space within two distinct supported non-dominated solu-
tions (triangle) is explored with the aim of finding non-supported non-dominated solutions
if any exist. The second phase is run for each consecutive pair of supported non-dominated
solutions determined in the first phase. The works of Ramos et al. [6] and Steiner and
Radzik [8] mainly differ in the way the Pareto-optimal solutions in the triangles are com-
puted: in [6] these solutions are determined by a branch-and-bound strategy, discarding
any node such that an ad-hoc bounding point (that seems to be dominated by the ideal
point of the corresponding sub-problem) falls outside the triangles; in [8] the non-supported
non-dominated solutions are computed applying a k-best algorithm for the single-objective
version of the problem. The k spanning trees are ranked in the ascent direction of the line
connecting the two considered supported non-dominated solutions. Steiner and Radzik [8]
compared their two-phases method with that proposed in [6] and they concluded that the
former significantly outperforms the latter.

The third exact solution approach proposed by Sourd et al. [7] is based on a general
branch-and-bound scheme, developed to solve multiple objective optimization problem, that
the authors here specialized to the BOST P. Very recently, Climaco et al. in [3] addressed
the minimum cost/minimum label spanning tree problem, by developping path ranking
based solution approaches. The multi-objective spanning tree problem (MOST P) refers to
the ST P with more than two objective functions. To the best of our knowledge, no exact
procedures have been yet developed to solve the MOST P.

The main contribution of this paper is to give a general framework to optimally solve
instances of the ST P. In this paper we focus on the MOST P but the proposed ap-
proach is likely to address instances like the constrained ST P, the k spanning tree problem
(kST P), the Steiner tree problem, the constrained counterpart and the k Steiner tree prob-
lem. These aspects are better explain in the following. In addition, computational results
for theMOST P with a number of objective functions greater than 2 are shown for the first
time.

The rest of the paper is organized as follows. In Section 2 basic concepts and some
notations are given. The general dynamic programming formulation is given in Section
3. The framework described in Section 3 is applied to the MOST P in Section 4 along
with hints on how to extend the general dynamic programming to different instances of
the ST P. The developed algorithm for the MOST P is tested on a meaningfull number
of test problems. The results of the computational experiments are reported in Section 5.
Conclusions and final remarks are given in Section 6.

2 Preliminaries and Notations

Let G(N , E) be a graph where N is the set of n nodes and E is the set containig m edges.
A tree T in G is a connected graph GT defined by the set of nodes N and a sub-set of edges
ET such that |ET | = |N | − 1. With each edge (i, j) ∈ E is associated a scalar wij ≥ 0.
Let T (G) be the set of all spanning trees in graph G. Each tree T ∈ T (G) is evaluated by

f(T) =
∑

(i,j)∈ET wij . Let X
(h)
q be a sub-set of N containing q nodes, that is X

(h)
q = {ir :

r = 1, . . . , q, q ≤ n}. The index h means that there exist more than one sub-set with q

2

nodes. We define as sub-tree sT
(h)
q a connected graph with the set of nodes X

(h)
q and with

the set of edges E(h)
q , where |E(h)

q | = |X(h)
q | − 1.

3 Dynamic Programming based Framework

We denote with S = (S,Γ) the state-space where S is the set of states and Γ is the set of

controls. With each state S
(h)
q = (X

(h)
q , E

(h)
q) ∈ S is associated the sub-tree sT

(h)
q . There

exists a control between two distinct states S
(h)
q and S

(k)
q̄ only if it is possible to build a

sub-tree sT
(k)
q̄ from the sub-tree sT

(h)
q by adding an edge to E(h)

q . Under this respect, it is

obvious that controls of the type (S
(h)
q , S

(h̄)
q) do not exist. If we suppose to have the control

(S
(h)
q , S

(h̄)
q), then E(h̄)

q = E(h)
q ∪ {(i, j)}. Since sub-trees sT

(h)
q and sT

(h̄)
q are composed by

the same number of nodes, that is q, the introduction of the arc (i, j) does not imply the

introduction of a new node in X
¯(h)
q . This means that i, j ∈ X(h)

q , thus sT
(h̄)
q is not a sub-

tree. It follows that there exists a control γ = (S
(h)
q , S

(k)
q̄) for each pair of states only if

|X(k)
q̄ | > |X

(h)
q |. In addition, since |E(k)

q̄ | = |E(h)
q | + 1, it follows that |X(k)

q̄ | = |X(h)
q | + 1.

In other words, there are controls between pairs of states S
(h)
q and S

(k)
q̄ , with q̄ = q + 1.

These assumption permits us to consider only feasible transitions. We define as yφ a feasible

sequence of transitions, that is, yφ = {(S(h)
1 , S

(k)
2), . . . , (S

(h̄)
n−1, S

(k̄)
n)} and the corresponding

sequence of states yφ = {S(h)
1 , . . . , S

(k̄)
n }. Let Φ be the set containing all feasible sequences.

Since with each state is associate a sub-tree, each sequence yφ, φ = 1, . . . , |Φ| is associated a
tree of G(N , E). This implies that |Φ| ≥ |T (G)|.

We assume that a feasible transition from state S
(h)
q to state S

(k)
q+1 involves a cost

w(S
(h)
q , S

(k)
q+1). The objective is to determine a sequence of transitions yφ = {(S(h)

1 , S
(k)
2), . . . ,

(S
(h̄)
n−1, S

(k̄)
n)} and the corresponding sequence of states yφ = {S(h)

1 , . . . , S
(k̄)
n } such that the

total cost

f(yφ) =

n−1∑
q=1

w(S(h)
q , S

(k)
q+1) (1)

is minimized. Let T
(k)
n be the tree associated with the sequence yφ = {S(h)

1 , . . . , S
(k)
n }. Tree

T
(k)∗
n ≡ T ∗φ and the related sequence y∗φ is optimal if and only if f(y∗φ) ≤ f(yφ̄), ∀φ̄ =

1, . . . , |Φ|, φ̄ 6= φ. Since the transition from state S
(h)
q to state S

(k)
q+1 corresponds to the

insertion of a new edge (i, j) ∈ E in the sub-tree associated with the state S
(h)
q , the cost

associated with the transition is equal to the cost associated with the added edge (i, j), that

is, w(S
(h)
q , S

(k)
q+1) = wij .

We define as y
(k)
q a sub-sequence of states. With y

(k)
q is associated the sub-tree sT

(k)
q .

The cost of the sub-sequence y
(k)
q is given by f(y

(k)
q) =

∑q−1
δ=1 w(S

(h)
δ , S

(k)
δ+1) that is equivalent

to f(sT
(k)
q) =

∑
(i,j)∈E(k)q

wij .

It is possible to give a definition of optimality for sub-sequences in order to guarantee the
optimality of each complete transition sequence. In what follows we give the definition of
dominance and equivalence among states that are usuful to state the optimality conditions.

3

Definition 1. (Dominance) Let S
(h)
q and S

(h̄)
q be two states belonging to S. We say that

S
(h)
q dominates S

(h̄)
q if f(sT

(h)
q) < f(sT

(h̄)
q).

Definition 2. (Equivalence) Two sub-trees sT
(k)
q and sT

(k̄)
q and the related states S

(k)
q and

S
(k̄)
q are said to be equivalent if and only if the corresponding sub-sets X

(k)
q and X

(k̄)
q share

the same nodes.

From definitions 1 and 2, Theorem 1 follows.

Theorem 1. (Optimality conditions) Let S
(h)
q and S

(h̄)
q be two equivalent states belonging to

S. If S
(h)
q is dominated by S

(h̄)
q , then all the sub-trees sT

(k)
q+1 built from sT

(h)
q are dominated

by at least one sub-tree sT
(k̄)
q+1 built from sT

(h̄)
q .

Proof. Let E(sT
(h)
q) ⊆ E −E(h)

q = {(i1, j1), (i2, j2), . . . , (iΛ, jΛ)} be the sub-set of edges that

can be used to built |E(sT
(h)
q)| sub-trees sT

(k)
q+1 from sT

(h)
q . Set E(sT

(h)
q) contains all edges

(i, j) ∈ E such that i ∈ X(h)
q and j /∈ X(h)

q . It is evident that if two distinct sub-trees sT
(h)
q

and sT
(h̄)
q are equivalent, then E(sT

(h)
q) ≡ E(sT

(h̄)
q). For each (iλ, jλ) ∈ E(sT

(h)
q), the sub-

tree sT
(k)
q+1(λ) = (X

(h)
q ∪ {jλ}, E(h)

q ∪ {(iλ, jλ)}) is built. The corresponding cost is equal to

f(sT
(h)
q)+wiλjλ . When an equivalent sub-tree sT

(h̄)
q is considered, since wij ≥ 0,∀ (i, j) ∈ E ,

if f(sT
(h)
q) ≥ f(sT

(h̄)
q), then f(sT

(k)
q+1(λ)) ≥ f(sT

(k̄)
q+1(λ)), λ = 1, . . . ,Λ. This concludes the

proof.

Corollary 1. The optimal sequence y∗ is composed by optimal sub-sequences.

Proof. From Theorem 1 we know that each state, that is dominated, has not the potential to

provide the optimal solution. Thus, a sequence y∗ = {S(h)
1 , . . . , S

(k)
n } is composed by state

S
(h)
q such that f(sT

(h)
q) < f(sT

(h̄)
q), ∀S(h̄)

q equivalent to S
(h)
q , q = 1, . . . , n. As a consequence,

each sub-sequence y
(h)∗
q is optimal, that is, f(y

(h)∗
q) < f(y

(h̄)
q), q = 1, . . . , n.

Observation 1. The state-space S is a layered directed acyclic network.

Proof. S can be viewed as composed by n layer. A layer Lq contains all states S
(h)
q , h =

1, . . . ,H and q = 1, . . . , n. In the layer L1 there exists the initial state, that is S
(1)
1 =

({i1}, ∅), where i1 is the root node, whereas layer Ln contains the states associated with
each tree in the graph. In addition, since controls between states belonging to the same
layer do not exist and each control starting from a layer can end only in the succesive layer,
no cycles are present in S.

4 Application of Dynamic Programming Formulation

In this Section we show the application of the dynamic programming formulation defined in
Section 3. In Section 4.1 we propose a new search algorithm in the state-space S for solving
the MOST P, whereas, in Section 4.2 we give some hints on how use the concepts exposed
in Section 3 for modelling and solving several instances of the ST P including the Steiner
tree problem (StT P).

4

4.1 Solving the MOST P
Let Tφ be the spanning tree defined on the connected graph GTφ(N , ETφ). With each edge
(i, j) ∈ E is associated a weight vector Wij ∈ Rp+ containing information about the consump-
tion of weights wlij , l = 1, . . . , p along the edge (i, j). Let F (Tφ) = (f1(Tφ), . . . , fp(Tφ)) ∈ Rp+
be the vector cost function associated with the spanning tree Tφ. For each weight l, function
f l(Tφ), l = 1, . . . , p is defined as f l(Tφ) =

∑
(i,j)∈Tφ w

l
ij ,∀l = 1, . . . , p. TheMOST P can be

mathematically defined as follows:

minT∈T (G) F (T) (2)

It is worth observing that the optimality condition for the multiple objective programming
is generalized in the concept of Pareto efficiency. In what follows, we give the definitions of
both dominance and efficiency.

Definition 3. Let Tφ and Tφ̄ be two different trees belonging to T (G). If f l(Tφ̄) ≥ f l(Tφ),∀ l =
1, . . . , p and at least one inequality is strictly, then tree Tφ dominates tree Tφ̄.

Definition 4. A spanning tree Tφ ∈ T (G) is said to be an efficient solution if it is not
dominated by any Tφ̄ ∈ T (G), Tφ 6= Tφ̄.

Let T be the set of all efficient solutions. By the definitions introduced above, it follows
that F (T), ∀ T ∈ T , is a point belonging to the Pareto front, that is, T is a Pareto-optimal
solution. Let F be the set of all Pareto-optimal spanning trees, the developed methods aim
at determining the entire set F ⊆ T , that is, the Pareto front has to be obtained.

From Theorem 1 it is possible to derive dominance relation between sub-trees.

Definition 5. Let sT
(h)
q and sT

(h̄)
q be two equivalent sub-trees. If f l(sT

(h)
q) ≥ f l(sT (h̄)

q),∀ l =

1, . . . , p and at least one inequality is strictly, then sT
(h̄)
q dominates sT

(h)
q .

This results allows us to avoid considering dominated sub-trees. Applying Definition 5
and considering Observation 1, it follows that each layer Lq contains only non-dominated
states. Based on these considerations, we can draw a dynamic programming based algorithm
to optimally solve the MOST P. The steps of the proposed solution approach are formally
stated in Algorithm 1.

Lemma 1. The complexity of the proposed Algorithm 1 is O
(∏n−1

q=1 [q × (n− q)]
)

.

Proof. At the first level L1 there is only one state that corresponds to the root node. From
this state it is possible to construct exactly n−1 sub-trees in the worst case. Thus, layer L2

contains exactly n−1 states. From each state S
(h)
2 ∈ L2 it is possible to construct a sub-tree

for each arc (i, j) ∈ E such that i ∈ X(h)
2 and j ∈ N \X(h)

2 , that is, |X(h)
2 | × (n − |X(h)

2 |).
The layer L3 contains |L2| × [2 × (n − 2)] and so on. Thus, the worst case complexity is

O
(∏n−1

q=1 [q × (n− q)]
)

.

5

Algorithm 1 DP
1: Step 0 (Initialization)
2: X1

1 = {1}; S1
1 = ({1}, ∅); L1 = {S1

1}.
3: Step 1 (State-space exploration)
4: for q=1,. . . ,n-1 do

5: for all S(h)
q ∈ Lq do

6: for all i ∈ X(h)
q do

7: for all (i, j) ∈ E : i ∈ X(h)
q AND j /∈ X(h)

q do

8: Set X̄q+1 = X(h)
q ∪ {j}.

9: Set S̄q+1 = (X̄q+1, Ehq ∪ {(i, j)}).
10: if sT̄q+1 is not dominated by any equivalent sT

(k)
q+1 ∈ Lq+1 then

11: Add sT̄q+1 to Lq+1.

12: Remove from Lq+1 all equivalent sub-trees sT
(k)
q+1 that are dominated by sT̄q+1.

13: end if
14: end for
15: end for
16: end for
17: end for
18: Step 2 (Exit step)
19: Ln contains all Pareto-optimal spanning trees.
20: Return Ln.

4.2 Other Extentions

The dynamic programming formulation described in Section 3 can be used to model and
solve several instances of the classical ST P. In particular, it is possible to address the kST P
keeping, for each layer, the first k equivalent sub-trees. The constrained ST P (CST P) in
which an upper bound on the consumption of resources along the tree is imposed, can be
easily solved. In particular, it is possible to treat the CST P as a MOST P. The states
for which the total amount of resources exceed the upper bounds can be fathomed. The
problem of determining the StT P can be modelled by the dynamic programming formulation
proposed in this paper. In this case, the optimal sequence of transitions is that one with
minimum cost and containing the minimum number of states such that the set of nodes
associated with the last state contains all the Steiner nodes. Under this assumption, all
instances of the StT P, that is, the CStT P and the kStT P can be addressed as for the
CST P and the kST P instances.

5 Computational Experiments

In this Section we describe the computational experiments carried out to test the behaviour
of the defined solution approach for the MOST P. Algorithm 1 is coded in Java language
and the tests are performed on Intel core i7 CPU M620 4GB RAM machine. The tests are
conducted on instances based on random networks generated by the spacyc generator [2].
The considered networks have a number n of nodes from 5 to 12 and a number of arcs
m = n × d, with d = 5, 10, 15, 20. For each networks with n nodes and m arcs, we have
generated 5 test problems by setting different values for the seed to generate the arc costs.
It is worth observing that spacyc code generates parallel arcs. In order to leave only one
arc for each set of parallel arcs, a preprocessing in applied for each test problems. After the
preprocessing, the number of arcs is reduced and the network does not present parallel arcs.
The number of arcs m, after the preprocessing phase, is shown in Table 1.

In addition, we have considered 3 groups of test problems: group 1 contains instances

6

n
d 5 6 7 8 9 10 11 12
5 8.60 13.80 18.00 22.60 26.60 33.80 34.60 39.20

10 9.60 15.00 20.00 27.60 32.80 42.40 49.40 57.40
15 10.00 15.00 20.40 27.80 34.40 43.80 51.80 62.00
20 10.00 15.00 21.00 28.00 35.80 45.00 53.40 64.80

Table 1: Number of arcs m for each network after the preprocessing.

with 3 criteria, instances with 4 criteria belong to group 2, whereas in group 3 instances
with 5 criteria are included. Thus we consider a total of 480 instances. In what follows,
we refer to R1 as the set of networks with 5 nodes, with R2 to those with 6 nodes and so
on. The collected computational results are shown in Table 2, where each line reports the
average results on 20 instances.

3 criteria 4 criteria 5 criteria

Tests #states #PO time #states #PO time #states #PO time

R1 60.20 16.65 0.00 81.25 29.30 0.00 109.35 46.90 0.00
R2 224.37 42.89 0.00 414.68 121.79 0.02 675.95 245.79 0.04
R3 781.80 92.10 0.08 1491.00 269.65 0.20 2900.45 753.05 0.79
R4 2165.65 135.15 0.39 6069.60 661.60 2.96 13570.45 2296.20 16.43
R5 6950.60 256.80 4.43 20086.25 1370.95 36.66 61034.50 6667.90 709.52

R6 23185.05 458.20 85.44 83652.80 3629.15 1851.20 178703.00(9) 12326.44(9) 9627.69(9)

R7 57142.80 549.10 1133.95 122330.16(6) 2665.67(6) 5287.97(6)

R8 166608.90 910.05 13835.09

AVG 1 32139.92 307.62 1882.42 33446.53 1249.73 1025.57 42832.28 3722.71 1725.74
AVG 2 2036.52 108.72 0.98 5628.56 490.66 7.97 15658.14 2001.97 145.35

Table 2: Computational results collected on test problems with 3, 4 and 5 criteria. Under
columns #states we report the number of states explored by Algorithm 1, the number of
Pareto-optimal trees is shown under columns #PO. The computational cost in terms of
execution time, given in seconds, is reported under columns time.

In what follows, we discuss about the computational results on the average case. In par-
ticular, we refer to the values reported in Table 2. Of course, it is interesting to evaluate the
behaviour of the proposed dynamic programming based algorithm considering the number
of arcs m and consequently, the value of d. In Figure 1, the number of states and the number
of Pareto-optimal trees are plotted with respect to the number of nodes n and, for each n,
the results for each value of d are reported. We remark that the parameter d defines the
number of arcs. However, the values of m are those reported in Table 1.

From Figure 1, it is observed that the higher the parameter d the higher the number
of states and the number of Pareto-optimal trees for values of d from 5 to 15. A slightly
decreases in both the number of states and the number of Pareto-optimal trees is observed
for d = 20.

Table 2 shows the average results on all the solved test problems for each group (see
column AVG 1), that is, on test problems R1 - R8, R1 - R7 and R1 - R6 for group 3, 4
and 5, respectively. In order to give a comparison among the groups, we report the average
results on test problems that are solved by all groups under column AVG 2, that is, the
average results on test problems R1 - R5 for each group. The empty entries mean that the
corresponding test problems are not solved within the imposed time limit of 4 hours (14400
seconds). In addition, the superscript indicate the number of solved instances.

From Table 2 it is observed the expected trend. Indeed, the higher the number of criteria
the higher the number of Pareto-optimal spanning trees. This behaviour is observed for all
the considered test problems. In addition, as drawn in Figure 2, for each group, a remarkable
growing of the number of both the explored states and the Pareto-optimal trees with respect

7

Figure 1: Computational results plotted with respect to the values of n and d.

to the increase of the dimensions of the networks is observed.
The computational results collected in Table 2 underline that it is necessary to explore

an high number of states. In particular, the number of states is, on average, 49.77, 14.92 and
6.42 times higher than the number of Pareto-optimal trees for group 1, 2 and 3, respectively.
It is worth observing that for groups 2 and 3 we also consider the solved instances of networks
R7 and R6, respectively. The differences among the groups is related to the fact that, for
group 1, networks with an higher number of nodes (R1 - R8) are solved than those solved
for group 2 (R1 - R7) and group 3 (R1 - R6). Indeed, the ratio between #states and #PO
increases with the number of nodes but decreases with the number of criteria in the test
problems. Regarding the computational cost, the time spent for solving the test problems
belonging to group 2 and 3 is, on average (see AVG 2), 8.12 and 148.15 times higher than
the computational cost for solving those in group 1. This behaviour can be justified by
considering the number of explored states. Indeed, the states explored by Algorithm 1 to
solve the test problems in group 2 and 3 is, on average, 2.76 and 7.69 times higher than
those explored for the test problems belonging to group 1. However, the increase in terms
of computational cost is more higher than the growing in terms of explored states. This
behaviour is due to the fact that the time for dominance check has to be taken into account.

8

Figure 2: Number of Pareto-optimal trees and number of states plotted with respect to the
number of nodes n, for each group of instances.

6 Conclusions

This paper is divided into two parts. In the first one, a new formulation for the spanning tree
problems is given. The problem is viewed under a dynamic programming framework. Indeed,
the feasible region is formulated using the concepts of states and transitions among states,
defining a state-space. We conduct an in depth study about the characteristics of the defined
state-space. We focus on its structure and we derive useful properties. Optimal conditions
for the defined state-space are given. In the second part, we define an optimal algorithm
dealing with the multi-objective spanning tree problem with an arbitrary number of objective
functions. The defined algorithm is based on the properties and optimal conditions given
in the first part. In addition, computational study for instances with more than 2 objective
functions is provided for the first time. We show that the new formulation can be used to
model and solve a variety of instances of the spanning tree problem including the Steiner
tree. In particular, the properties and the optimal conditions of the defined state-space
can be extended to solve the k spanning tree, the costrained spanning tree, the k Steiner
tree and the constrained Steiner tree probelms. These problems are the subjects of current
investigation.

References

[1] C. F. Bazlamacc and K. S. Hindi. Minimum-weight spanning tree algorithms a survey
and empirical study. Computers & Operations Research, 28:767–785, 2001.

[2] B.V. Cherkassky, A.V. Goldberg, and T. Radzik. Shortest paths algorithms: Theory
and experimental evaluation. Mathematical Programming, 73(2):129–174, 1996.

[3] J.C.N. Clmaco, M. Eugnia Captivo, and M.M.B. Pascoal. On the bicriterion minimal
cost/minimal label spanning tree problem. European Journal of Operational Research,
2009. doi: 10.1016/j.ejor.2009.10.013.

[4] H.W. Hamacher and G. Ruhe. On spanning tree problems with multiple objec- tives.
Annals of Operations Research, 52:209–230, 1994.

[5] J.D. Knowles and D.W. Corne. A comparison of encodings and algorithms for multi-
objective spanning tree problems. In Proceedings of the 2001 Congress on Evolutionary
Computation CEC2001, pages 544–551, 2001.

9

[6] R.M. Ramos, S. Alonso, J. Sicilia, and Gonzales C. The problem of the optimal biob-
jective spanning tree. European Journal of Operational Research, 111:617–628, 1998.

[7] F. Sourd, O. Spanjaard, and P. Perny. Multi-objective branch-and-bound. application to
the bi-objective spanning tree problem. In MOPGP06: 7th Int. Conf. on Multi-Objective
Programming and Goal Programming, 2006.

[8] S. Steiner and T. Radzik. Computing all efficient solutions of the biobjective minimum
spanning tree problem. Computers & Operations Research, 35:198–211, 2008.

[9] G. Zhou and M. Gen. Genetic algorithm approach on multi-criteria minimum spanning
tree problem. European Journal of Operational Research, 114:141–152, 1999.

10

