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Abstract. The numerical range of an operator is a well studied concept with many applications

in several areas of mathematics. In this paper, the numerical range of banded biperiodic Toeplitz

operators is investigated, performing a reduction to the 2× 2 case. Namely, the parametric equations

of the boundary generating curves are deduced and two algorithms for the numerical generation of the

numerical range are presented.
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1 Introduction

Let Mn be the algebra of n × n complex matrices. A matrix Tn = (tkj) ∈ Mn is said to be a

biperiodic Toeplitz matrix if tkj := ak−j , for k odd, and tkj := bk−j , for k even, k, j = 1, . . . , n. If there

exists an integer m ∈ N, m < n, such that ak−j = 0 and bk−j = 0, for |k − j| > m, k, j = 1, . . . , n,

then Tn is said to be a banded biperiodic Toeplitz matrix with bandwidth 2m + 1. Let l2 be the Hilbert

space of complex valued sequences {xn}+∞
n=0, such that the series

∑+∞
n=0 |xn|2 converge, endowed with

the usual inner product 〈x, y〉 =
∑+∞

k=0 xkyk. An infinite biperiodic Toeplitz matrix T with bandwidth

2m + 1 is completely determined by its entries in the (m + 1)th and (m + 2)th rows, that is, by the

sequences

{tm+1,k}∞k=1 = {am, am−1, . . . , a0, a−1, a−2, . . . , a−m, 0, . . .},
{tm+2,k}∞k=1 = {0, bm, bm−1, . . . , b0, b−1, b−2, . . . , b−m, 0, . . .}, (1)

∗CMUC, University of Coimbra, Department of Mathematics, P 3001-454 Coimbra, Portugal (bebiano@mat.uc.pt)
†University of Coimbra, Department of Physics, P 3004-516 Coimbra, Portugal (providencia@teor.fis.uc.pt)
‡CMUC, Polytechnic Institute of Tomar, Department of Mathematics, P 2300-313 Tomar, Portugal (anata@ipt.pt)

1



if m is even, and by

{tm+1,k}∞k=1 = {bm, bm−1, . . . , b0, b−1, b−2, . . . , b−m, 0, . . .},
{tm+2,k}∞k=1 = {0, am, am−1, . . . , a0, a−1, a−2, . . . , a−m, 0, . . .}, (2)

if m is odd. The infinite matrix T induces a bounded linear operator T : l2 × l2 → l2 × l2, which acts

by the rule Y = TX, where X is the vector
({xn}+∞

n=0, {yn}+∞
n=0

) ∈ l2 × l2 written in the form of a

column vector X = [x0, y0, x1, y1, . . .]T . In the sequel, we use T to represent interchangeably the infinite

matrix T and the linear operator induced by T on l2 × l2. These operators occur in many problems

in mathematics and physics, such as the chain model of electronic structure [14] or the normal mode

theory of one dimensional crystal [1].

Our investigation concerns the numerical range of banded biperiodic Toeplitz operators. The

numerical range of a bounded linear operator A defined on a Hilbert space H with an inner product

〈., .〉H is the subset of the complex plane defined as

W (A) :=
{〈Ax, x〉H
〈x, x〉H

: x ∈ H, 〈x, x〉H 6= 0
}

.

The Toeplitz-Hausdorff theorem asserts that W (A) is convex and its closure contains the spectrum

of A, σ(A). If A is normal, then W (A) is the convex hull of σ(A), throughout denoted by Coσ(A).

Further, every extreme point (corner) of W (A) is an eigenvalue of A. If A ∈ Mn is unitarily reducible,

that is, A = U∗(A1⊕· · ·⊕An)U for some unitary matrix U and n ≥ 2, then W (A) = Co{W (A1)∪· · ·∪
W (An)}. The Elliptical Range Theorem states that the numerical range of A ∈ M2 is an elliptical disk

with foci at λ1 and λ2, the eigenvalues of A, and minor axis of length
(
Tr (A∗A)− |λ1|2 − |λ2|2

)1/2.

If A ∈ Mn, then W (A) is the convex hull of a finite number of algebraic curves [12]. Nevertheless, for

certain types of matrices the numerical range is still an elliptical disk, independently of the size of the

matrices [4, 6]. For more details on the basic properties of W (A) see e.g. [11, Chapter 1], [10] or [15].

This paper is organized as follows. In Section 2, asymptotic equivalence of biperiodic circulant

and banded biperiodic sequences of Toeplitz matrices is investigated. In Section 3, the numerical

range of banded biperiodic Toeplitz operators is characterized, following an approach used in the first

algorithm provided in the last section, which relies on the reduction to the 2×2 case. In Section 4, we

investigate the numerical range of biperiodic tridiagonal Toeplitz operators, identifying a class with

an elliptical range. In Section 5, two algorithms for the generation of the numerical range of banded

biperiodic Toeplitz operators are presented.

2



2 Asymptotic equivalence of biperiodic circulant and banded bipe-

riodic sequences of Toeplitz matrices

In this section we compute the eigenvalues of biperiodic circulant matrices and approximate a

sequence of banded biperiodic Toeplitz matrices by an asymptotically equivalent sequence of biperiodic

circulant matrices [3]. For this purpose, we introduce the convenient notation and terminology.

A matrix Cn = (ckj) such that ckj = ck−j , k, j = 1, · · · , n, with ck = ck−n, k = 1, · · · , n − 1, is

called a circulant matrix. Circulant matrices arise in many applications, such as problems involving

the discrete Fourier transform [9]. Our study concerns biperiodic circulant matrices, that is, matrices

Cn = (ckj) ∈ Mn of even size, such that ckj = ak−j , if k is odd, and ckj = bk−j , if k is even,

k, j = 1, . . . , n, with ak = ak−n, k = 1, . . . , n − 2, and bk = bk−n, k = 2, . . . , n − 1. We can define

a natural embedding of a banded biperiodic Toeplitz matrix Tn with bandwidth 2m + 1 such that

2m + 1 < n, into a biperiodic circulant matrix Cn+m (Cn+m+1) adding m (m + 1) rows and m

(m + 1) columns if m + n is even (odd), and filling in the upper right and lower left corners of Tn

with appropriate entries. Under these conditions, Tn is the principal submatrix in the first n rows

and columns of a biperiodic circulant matrix Cn+m (Cn+m+1) and we say that Tn is a compression of

Cn+m (Cn+m+1). It is clear that, for n even, there is a biperiodic circulant matrix Cn with the same

size as Tn such that Tn and Cn only differ in the upper right and lower left corners, for n > 2m + 1.

For brevity, Cn will be called the biperiodic circulant matrix associated with Tn.

Let Γ be the complex unit circle and consider the function f : Γ → M2 defined as follows

f(φ) = Tφ =


 ae(φ) ao(φ)

bo(φ) be(φ)


 , 0 ≤ φ < 2π, (3)

where, for k ∈ Z and m ∈ N,

ae(φ) :=
∑

−m≤2k≤m

a2k eikφ, ao(φ) :=
∑

−m≤2k−1≤m

a2k−1 eikφ (4)

and

bo(φ) :=
∑

−m≤2k+1≤m

b2k+1 eikφ, be(φ) :=
∑

−m≤2k≤m

b2k eikφ. (5)

The function f is called the symbol of the Toeplitz operator T .

For n even, the n
2 th complex roots of unity are throughout denoted by

ρk := e−iφk , where φk =
4kπ

n
, k = 0, . . . ,

n

2
− 1. (6)
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Theorem 2.1 For n even, let Cn ∈ Mn be the biperiodic circulant matrix associated with the biperiodic

Toeplitz matrix Tn of bandwidth 2m + 1. Then there exists a unitary matrix U ∈ Mn such that

Cn = U
(
Tφ0 ⊕ · · · ⊕ Tφ n

2−1

)
U∗,

where Tφk
∈ M2, are defined in (3). The eigenvalues of Cn are

λ±(φk) =
1
2

(ae(φk) + be(φk))± 1
2

√
(ae(φk)− be(φk))

2 + 4ao(φk)bo(φk), (7)

with associated eigenvectors z± =
(
x±k , y±k , x±k ρk, y

±
k ρk, . . . , x

±
k ρ

n
2
−1

k , y±k ρ
n
2
−1

k

)T
∈ Cn:

Tφk


 x±k

y±k


 = λ±(φk)


 x±k

y±k


 , k = 0, . . . ,

n

2
− 1. (8)

Proof. Let uk =
(
1, 0, ρk, 0, . . . , ρ

n
2
−1

k , 0
)T

and vk =
(
0, 1, 0, ρk, 0, . . . , ρ

n
2
−1

k

)T
, k = 0, . . . , n/2 − 1.

Having in mind that ρ
n
2
+1

k = ρk, we can easily confirm that

Cnuk = ae(φk)uk + bo(φk)vk and Cnvk = ao(φk)uk + be(φk)vk,

for ae, ao, be, bo defined in (4) and (5). Considering the unitary matrix

U =

√
2
n

[
u0, v0, . . . , un

2
−1, vn

2
−1

]
∈ Mn,

then Cn = U
(
Tφ0 ⊕ · · · ⊕ Tφ n

2−1

)
U∗. Hence, the spectrum of Cn is the union of the spectra of the

2× 2 blocks Tφk
, and so (7) follows. The rest of the proof is clear.

¥

As a consequence of Theorem 2.1 and of the Elliptical Range Theorem [11, p.23], we have the

following.

Corollary 2.1 For n even and Cn ∈ Mn under the conditions of Theorem 2.1, W (Cn) is the convex

hull of the n/2 ellipses (possibly degenerate) with center at 1
2 (ae(φk) + be(φk)) , foci at (7) and minor

axis of length
√
|ae(φk)|2 + |ao(φk)|2 + |bo(φk)|2 + |be(φk)|2 − |λ+(φk)|2 − |λ−(φk)|2,

for k = 0, . . . , n/2− 1.

We next derive an inclusion region for W (Tn), where Tn is a banded biperiodic Toeplitz matrix

with bandwidth 2m+1, which generalizes [8, Lemma 5]. Estimations for W (Tn) can be easily derived

by embedding Tn into a circulant matrix of order n + m (n + m + 1) if n + m is even (odd). For

k ∈ R, we denote by [k] the largest integer r with r ≤ k.
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Corollary 2.2 Let Tn be a banded biperiodic Toeplitz matrix with bandwidth 2m + 1. Then

W (Tn) ⊆ Co




[n+m+1
2

]−1⋃

k=0

W (Tφk
)


 , (9)

where Tφk
∈ M2, and eiφk are the [n+m+1

2 ]th roots of the unity.

Proof. Suppose that Tn ∈ Mn has bandwidth 2m + 1. For n + m even (odd), consider the biperiodic

circulant matrix Cn+m (Cn+m+1) such that Tn is a principal submatrix of Cn+m (Cn+m+1). We find

W (Tn) ⊂ W (Cn+m) (W (Tn) ⊂ W (Cn+m+1)). Bearing in mind Corollary 2.1, the result follows.

¥

Theorem 2.2 Let λn,k, k = 0, . . . , n− 1, be the eigenvalues of a biperiodic Hermitian Toeplitz matrix

Tn. Assume that λ1(φk) ≤ λ2(φk) are the eigenvalues of the Hermitian matrix Tφk
. Then

mf := ess inf
φ∈[0,2π[

λ1(φ) ≤ λn,k ≤ Mf =: ess sup
φ∈[0,2π[

λ2(φ). (10)

Proof. From the Rayleigh-Ritz theorem [9, Lemma 2.1], it follows that

max
x∈Cn\{0}

x∗Tnx

x∗x
= max

k
λn,k and min

x∈Cn\{0}
x∗Tnx

x∗x
= min

k
λn,k.

By Corollary 2.2, we have

max
k

λn,k ≤ max
k

λ2(φk) ≤ ess sup
φ∈[0,2π[

λ2(φ)

and

ess inf
φ∈[0,2π[

λ1(φ) ≤ min
k

λ1(φk) ≤ min
k

λn,k,

because, since Tn is Hermitian, the elliptical disks in (9) degenerate into line segments whose endpoints

are the eigenvalues of Tφk
. Hence, ess inf

φ∈[0,2π[
λ1(φ) ≤ λn,k ≤ ess sup

φ∈[0,2π[
λ2(φ). ¥

We consider two norms in Mn, namely, the operator (or strong norm) and the Hilbert-Schmidt (or

weak norm) defined and denoted by ||A||2 = max
x∗x=1

x∗A∗Ax and |A|2 =
1
n

Tr (A∗A), respectively.

Two sequences of n×n matrices {An} and {Bn} are said to be asymptotically equivalent if An and

Bn are uniformly bounded in strong norm, i. e., ||An|| ≤ M < ∞ and ||Bn|| ≤ L < ∞, n = 1, 2, . . . ,

and lim
n→∞ |An −Bn| = 0 (see [9, p.17]).

Theorem 2.3 For n even, let Tn be a banded biperiodic Toeplitz matrix and let Cn be the associated

biperiodic circulant matrix. Then the sequences {Tn} and {Cn} are asymptotically equivalent.
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Proof. Firstly, suppose that Tn is Hermitian with eigenvalues λn,k, k = 0, . . . , n − 1. Let λ1(φk) ≤
λ2(φk) be the eigenvalues of the Hermitian matrix T (φk), and let mf = ess inf

φ∈[0,2π[
λ1(φ) and Mf =

ess sup
φ∈[0,2π[

λ2(φ). Since Tn is Hermitian, then ||Tn|| = max
k
|λn,k|. By Theorem 2.2, we obtain

‖Tn‖ ≤ max(|mf |, |Mf |).

Suppose, now, that Tn is non-Hermitian. Then consider Tn = ReTn + i ImTn where ReT :=

(T + T ∗)/2 and ImT := (T − T ∗)/(2i). Let Tφ = Re Tφ + i Im Tφ, where ReTφ := (Tφ + T ∗φ)/2 and

Im Tφ := (Tφ − T ∗φ)/(2i). Using the triangle inequality we get

‖Tn‖ ≤ ‖ReTn‖+ ‖ImTn‖ ≤ MRe Tφ
+ MIm Tφ

, (11)

for

MRe Tφ
= ess sup

φ∈[0,2π[
|µ2(φ)| and MIm Tφ

= ess sup
φ∈[0,2π[

|ψ2(φ)|,

where µ1(φ), µ2(φ) (|µ1(φ)| ≤ |µ2(φ)|) and ψ1(φ), ψ2(φ) (|ψ1(φ)| ≤ |ψ2(φ)|) are the eigenvalues of

Re Tφ and ImTφ, respectively. Since Tn is banded, then MRe Tφ
,MIm Tφ

< ∞. We have ‖Tn‖ ≤
MRe Tφ

+ MIm Tφ
, so Tn is uniformly bounded in strong norm.

Since the matrix Cn is biperiodic circulant, there exists a unitary matrix U such that

Cn = U
(
Tφ0 ⊕ · · · ⊕ Tφ n

2−1

)
U∗ and so C∗

n = U

(
T ∗φ0

⊕ · · · ⊕ T ∗φ n
2−1

)
U∗. Hence, the eigenvalues of

CnC∗
n, denoted by αn,k, k = 0, . . . , n − 1, are the eigenvalues of TφiT

∗
φi

, i = 0, . . . , n/2 − 1. Then

‖Cn‖2 = max
k

αn,k, and Cn is uniformly bounded in strong norm.

Finally, lim
n→∞ |Tn−Cn| = 0, because Tn and Cn differ only in the upper right and lower left corners,

for n > 2m + 1, and have fewer than 2
m−1∑

k=0

m− k = m(m + 1) non-zero entries, and so the factor 1/n

in the weak norm drives |Tn − Cn| to zero. ¥

3 The numerical range of banded biperiodic Toeplitz operators

Theorem 3.1 is in the same vein as Theorem 1 in [13].

Theorem 3.1 Let λ1(φ) ≤ λ2(φ) be the eigenvalues of the Hermitian matrix Tφ ∈ M2, and let T be

the banded biperiodic selfadjoint Toeplitz operator in (1) and (2). Then, W (T ) = [mf ,Mf ], where

mf := ess inf
φ∈[0,2π[

λ1(φ) and Mf := ess sup
φ∈[0,2π[

λ2(φ).
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Proof. Let Tn be the principal submatrix of T in the first n rows and columns and let Cn be the

biperiodic circulant matrix associated with Tn. We have

x∗kTnxk = x∗kCnxk + x∗k(Tn − Cn)xk

= αn,k + x∗k(Tn − Cn)xk, (12)

being αn,k the eigenvalues of Cn and xk the respective normalized eigenvectors, 1 ≤ k ≤ n. Let k′, k′′

be such that αn,k′ = mink αn,k and αn,k′′ = maxk αn,k. From (12) it follows that
[
αn,k′ + x∗k′(Tn − Cn)xk′ , αn,k′′ + x∗k′′(Tn − Cn)xk′′

] ⊆ W (Tn). (13)

Next, we claim that

|x∗k(Tn − Cn)xk| −−−−→n→∞ 0.

In fact, let S = [sij ] = Tn − Cn. By simple computations, we get

|x∗kSxk| =

∣∣∣∣∣∣

n∑

i,j=1

x̄kisijxkj

∣∣∣∣∣∣

≤
n∑

i,j=1

|x̄ki| |sij | |xkj | = 1
n

n∑

i,j=1

|sij |βkiβkj ,

where βki ≥ 0 does not depend on n. Since
n∑

i,j=1

|sij |βkiβkj does not depend on n, the claim follows.

Moreover, it is clear that mf = lim
n→+∞αn,k′ , Mf = lim

n→+∞αn,k′′ . Considering in (13) the limit for

n → +∞, we conclude that

[mf ,Mf ] ⊆ W (T ).

We show that the reverse inclusion holds. Since Tn is selfadjoint, W (Tn) is a line segment whose

endpoints are eigenvalues of Tn, and according to Theorem 2.2, W (Tn) ⊆ [mf ,Mf ]. Taking the limit

as n →∞ and having in mind that [mf ,Mf ] is a closed interval, the result follows.

¥

We recall that a supporting line of a convex set S ⊂ C at a boundary point z of S, is a line

passing through z and defining two half-planes such that one of them does not contain S. The next

result is a particular case of Theorem 1 in [2]. We present an alternative simple proof for the sake of

completeness and as a support for the first algorithm provided in the last section.

Theorem 3.2 Let T be a banded biperiodic Toeplitz operator and let Tφ ∈ M2, 0 ≤ φ < 2π, be its

symbol. Then

W (T ) = Co


 ⋃

φ∈[0,2π[

W (Tφ)


 . (14)

7



Proof. By Corollary 2.2, we obtain

W (Tn) ⊆ W (Tn+1) ⊆ W (Tn+2) ⊆ · · · ⊆ Co


 ⋃

0≤φ<2π

W (Tφ)


 . (15)

Thus,

W (T ) ⊆ Co


 ⋃

φ∈[0,2π[

W (Tφ)


 .

We prove that the reversed inclusion holds. For θ ∈ [0, 2π[, consider a supporting line of W (T ) per-

pendicular to the direction of slope θ and take its orthogonal projection on this direction, W
(
Re

(
e−iθT

))
.

The symbol of Re
(
e−iθT

)
is the 2 × 2 Hermitian matrix Re

(
e−iθTφ

)
, 0 ≤ φ < 2π. Let λ1(θ, φ) ≤

λ2(θ, φ) denote its eigenvalues. By Theorem 3.1, W (Re (e−iθT )) = [mθ,Mθ] where mθ = ess inf
φ∈[0,2π[

λ1(θ, φ)

and Mθ = ess sup
φ∈[0,2π[

λ2(θ, φ). So,

W (Re(e−iθT )) ⊆ Co


 ⋃

φ∈[0,2π[

W (Re(e−iθTφ))


 .

Now, letting θ vary in the interval [0, 2π[, and having in mind the convexity of W (T ), we conclude

that

W (T ) = Co


 ⋃

φ∈[0,2π[

W (Tφ)


 .

¥

4 The numerical range of tridiagonal biperiodic Toeplitz operators

Tridiagonal matrices with elliptical numerical range have been investigated by some authors [4,

5, 6, 7]. Here, we consider a biperiodic real tridiagonal Toeplitz operator. The complex case may

be treated following analogous arguments. However, the computations become more involved and

cumbersome.

Theorem 4.1 Let

T =




a0 a−1 0 0 0 · · ·
b1 b0 b−1 0 0 · · ·
0 a1 a0 a−1 0 · · ·
0 0 b1 b0 b−1 · · ·
...

...
...

...
...

. . .




, a−1, a0, a1, b−1, b0, b1 ∈ R. (16)
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Then

W (T ) = Co (C1 ∪ C2),

where

Cj = {(fj(θ) cos θ − f ′j(θ) sin θ) + i(fj(θ) sin θ + f ′j(θ) cos θ) : 0 ≤ θ < 2π}, j = 1, 2, (17)

with

fj(θ) =
a0 + b0

2
cos θ +

1
2

[
a2

1 + a2
−1 + b2

1 + b2
−1 + (a0 − b0)2 cos2 θ + 2(a−1b1 + a1b−1) cos(2θ)

±2
√(

a2
1 + b2

−1 + 2a1b−1 cos(2θ)
) (

a2
−1 + b2

1 + 2a−1b1 cos(2θ)
) ]1/2

, j = 1, 2. (18)

Proof. Under the hypothesis, the symbol of T equals

Tφ =


 a0 a−1 + a1eiφ

b−1e−iφ + b1 b0


 , 0 ≤ φ < 2π.

The eigenvalues of Re(e−iθTφ) are

λ±(θ, φ) =
a0 + b0

2
cos θ ± 1

2
[
a2

1 + a2
−1 + b2

1 + b2
−1 + (a0 − b0)2 cos2 θ + 2(a−1b1 + a1b−1) cos(2θ)

+2(a−1a1 + b−1b1) cosφ + 2a−1b−1 cos(φ− 2θ) + 2a1b1 cos(φ + 2θ)]1/2 .

The extreme values of λ+(θ, φ) with respect to φ can be easily determined and are given in (18). The

equations of the supporting lines of W (T ) perpendicular to the direction of slope θ and at the distance

fj(θ) to the origin may be written as

x cos θ + y sin θ = fj(θ), j = 1, 2.

The envelope of the above family of supporting lines, whose parametric equations are in (17), gives

rise to a so called “boundary generating curve” of W (T ). Due to the convexity of W (T ), ∂W (T ) is

the convex hull of this curve. ¥

The following result characterizes the numerical range of a class of biperiodic tridiagonal Toeplitz

operators with elliptic shape.

Theorem 4.2 Let T be the tridiagonal operator defined in (16), with aj , bj ∈ C, j = −1, 1, satisfying

b−1 = k a1 and b1 = k a−1, for some k ∈ C. Let

γ+ =
(

a0 − b0

2

)2

+ (|a1|+ |a−1|)2k̄.
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Then W (T ) is the elliptical disc (possibly degenerate) centered at
a0 + b0

2
with foci

a0 + b0

2
± γ+

1/2

and minor axis of length
√
|a0 − b0|2

2
+ (|a1|+ |a−1|)2(1 + |k|2)− 2|γ+|.

Proof. For θ ∈ [0, 2π[, consider the Hermitian matrix Re
(
e−iθTφ

)
, whose eigenvalues are

λ±(θ, φ) =
Re

(
(a0 + b0) e−iθ

)

2
±

√
(Re (a0 − b0) e−iθ)2

4
+ |z|2,

where z =
1
2

(
e−iθ + k eiθ

) (
a1eiφ + a−1

)
. It can be easily checked that

max
0≤φ<2π

∣∣∣a1eiφ + a−1

∣∣∣
2

= (|a1|+ |a−1|)2

and

min
0≤φ<2π

∣∣∣a1eiφ + a−1

∣∣∣
2

= (|a1| − |a−1|)2 .

Then, the extreme values of λ+(θ, φ), with respect to φ read

f1,2(θ) :=
Re

(
(a0 + b0) e−iθ

)

2
+

√
P± + Q± cos(2θ) + R± sin(2θ),

where

P± =
1
8
|a0 − b0|2 +

1
4
(|a1| ± |a−1|)2(1 + |k|2)

Q± =
1
8

Re (a0 − b0)2 +
1
2
(|a1| ± |a−1|)2Re k̄

R± =
1
8

Im(a0 − b0)2 +
1
2
(|a1| ± |a−1|)2Im k̄.

Let

α± := P± +
1
2
|γ±| and β± := P± − 1

2
|γ±|, (19)

where

γ± =
(a0 − b0)2

4
+ (|a1| ± |a−1|)2k̄.

If Q2± + R2± = 0, then α± = β± = P± and W (T ) is a circular disc. If Q2± + R2± 6= 0, for cos(Γ±) =
Q±√

Q2
±+R2

±
and sin(Γ±) = R±√

Q2
±+R2

±
, so that Γ± = arg(γ±), we have

P±+Q± cos(2θ)+R± sin(2θ) = P±+
√

Q2± + R2± cos(Γ±−2θ) = α± cos2
(

Γ±
2
− θ

)
+β± sin2

(
Γ±
2
− θ

)
,

with α± and β± in (19). Thus, the above mentioned extreme values are

f1,2(θ) =
Re

(
(a0 + b0)e−iθ

)

2
+

√
α± cos2

(
Γ±
2
− θ

)
+ β± sin2

(
Γ±
2
− θ

)
.
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The envelope of the family of supporting lines perpendicular to the direction with slope θ and at the

distances f1,2(θ) to the origin, is the curve with parametric equations




x cos θ + y sin θ = f1,2(θ)

−x sin θ + y cos θ = f ′1,2(θ) .
(20)

Eliminating θ in (20), we get
(
X± − Re

(
a0+b0

2

))2

α±
+

(
Y± − Im

(
a0+b0

2

))2

β±
= 1,

where X± = x cos(Γ±/2) + y sin(Γ±/2), Y± = −x sin(Γ±/2) + y cos(Γ±/2). Since P± + Q± cos(2θ) +

R± sin(2θ) ≥ 0, these curves are ellipses because α±, β± ≥ 0. The semi-focal distances are given by
√

α± − β± =
√
|γ±|. Hence, the foci of the ellipses are (a0 + b0)/2±

√
|γ+|eiΓ+/2, and (a0 + b0)/2±

√
|γ−|eiΓ−/2. The result follows observing that one of the elliptical discs is contained in the other

one. ¥

Remark 1. The numerical range of a tridiagonal matrix remains unchanged if, for some i, the entries

(i, i + 1) and (i + 1, i) are interchanged [4]. Thus, the previous conclusion also holds if ā−1 = kb1 and

b̄−1 = ka1.

Corollary 4.1 For T under the conditions of Theorem 4.2, W (T ) is a circular disc (possibly degen-

erate) with center (a0 + b0)/2 if and only if (a0 − b0)/ (2|a1|+ 2|a−1|) is a square root of −k̄.

Proof. Observe that |a1|+ |a−1| = 0 if and only if the infinite matrix associated to T is diagonal (see

(1) or (2)), being then W (T ) the line segment with endpoints a0 and b0. When |a1| + |a−1| 6= 0, the

condition (
a0 − b0

2(|a1|+ |a−1|)
)2

+ k̄ = 0

is necessary and sufficient for α = β defined in (19). ¥

Example 4.1 (Cf. [7, Theorem 8]) Consider the tridiagonal biperiodic Toeplitz operator T such that

a0 = b0 = 0 and a−1 = b1 = a1 = −b−1 = 1. The eigenvalues of Re
(
e−iθTφ

)
satisfy λ2± (θ, φ) =

1 + sin(2θ) sin φ. Therefore,

λ±(θ, φ) = ±
√

1 + sin(2θ) sinφ.

The extreme values of λ+(θ, φ), with respect to φ, are given by

f1(θ) =
√

1 + | sin(2θ)| and f2(θ) =
√

1− | sin(2θ)|.

The equations of the supporting lines of W (T ) may be written as x cos θ + y sin θ = f1,2(θ). By (17),
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for 0 < θ < π/2, f1(θ) = sin θ + cos θ leading to the point 1 + i;

for π/2 < θ < π, f1(θ) = sin θ − cos θ leading to the point −1 + i;

for π < θ < 3π/2, f1(θ) = − sin θ − cos θ leading to the point −1− i;

for 3π/2 < θ < 2π, f1(θ) = − sin θ + cos θ leading to the point 1− i.

Thus C1 = {1 + i, 1− i,−1 + i,−1− i}. A similar argument is valid considering f2(θ) instead of

f1(θ), and we easily conclude that C1 = C2. Thus, W (T ) is the square

Co{1 + i, 1− i,−1 + i,−1− i}.

5 Algorithms

We present two algorithms to compute the numerical range of a banded biperiodic Toeplitz operator

W (T ). According to (14), we can reduce the determination of W (T ) to the 2×2 case, taking the convex

hull of a union of elliptical discs (cf. Theorem 3.2). The first algorithm uses this approach taking

reasonably finite discretizations of the angles θ, φ. The second algorithm computes the extreme of the

eigenvalues λ+(θ, φ) of Re
(
e−iθAφ

)
for a fixed θ, in order to determine a family of supporting lines

of W (T ). Then the envelope of the supporting lines is plotted, computing numerically the derivative

df/dθ, where f as usual denotes the distance of the supporting line to the origin. Matlab programs

based on these algorithms are implemented, with Figure 1 illustrating their use.

Algorithm 1

Step 1. Compute φk =
2(k − 1)π

N
, k = 1, . . . , N, for some positive integer N ;

Step 2. For each φk make the plot of W (Tφk
) in the following way:

• Compute θl =
2lπ

M
, l = 1, . . . , M, for some positive integer M ;

• For each θl described above, compute the eigenvalues of the matrix Re
(
e−iθlTφk

)
, and the asso-

ciated eigenvectors vj(l, k), j = 1, 2. Evaluate

ρj(l, k) :=
vj(l, k)∗Tφk

vj(l, k)
vj(l, k)∗vj(l, k)

, j = 1, 2, k = 1, . . . , N, l = 1, . . . , M.

For each k, these points belong to the boundary of W (Tφk
).

Step 3. For each k (k = 1, . . . , N) determine the convex hull of the points ρj(l, k), j = 1, 2, l =

1, . . . ,M so obtaining the collection of ellipses ∂W (Tφk
). Compute the convex hull of these ellipses.

An alternative algorithm to determine the boundary of W (T ) is the following one.
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Algorithm 2

Step 1. For θ ∈ [0, 2π[, compute the eigenvalues λ±(θ, φ) of Re
(
e−iθAφ

)
.

Step 2. Consider θ1, . . . , θN ∈ [−2π
N , 2π + 2π

N ] with θk =
2πk

N
, k = 0, . . . , N + 1. For each θk, compute

the extreme values of λ+(θk, φ) with respect to φ. Suppose that they are attained at φ1(θj) and φ2(θj),

respectively, and are given by fj(θk) = λ+ (θk, φj(θk)), j = 1, 2, k = 0, 1, . . . , N + 1.

Step 3. Compute

f ′j(θk) =
f(θk+1)− f(θk−1)

θk+1 − θk−1
, j = 1, 2, k = 1, . . . , N.

Step 4. Plot the points xj(θk) + iyj(θk), j = 1, 2, k = 1, . . . , N such that




xj(θk) = cos θkfj(θk)− y sin θkf
′
j(θk),

yj(θk) = sin θkfj(θk) + y cos θkf
′
j(θk) .

(21)

Step 5. Take the convex hull of the above points, which describe the boundary of W (T ).

The next example illustrates the above presented algorithms.

Example 5.1 Consider the pentadiagonal Toeplitz matrix T such that a0 = b0 = a1 = a2 = a−2 =

b−2 = 0, a−1 = 1, b−1 = −1, b1 = 1 and b2 = 1. The symbol of T equals

Tφ =


 0 1

1− e−iφ eiφ


 , 0 ≤ φ < 2π.

Algorithm 1 is illustrated in Fig.1(a) and Algorithm 2 in Fig.1(b). In this case, ∂W (T ) = C1.

Finally, we give an example of the determination of W (T ), by analytical techniques.

Example 5.2 Consider the biperiodic Toeplitz operator T with bandwidth 2m + 1 = 7 such that

b−3 = b−2 = b−1 = b0 = b2 = b3 = 0, b1 = −1, a−2 = a0 = a1 = a2 = a3 = 0, a−1 = 1 and a−3 = 2.

The symbol of T equals

Tφ =


 0 1 + 2e−iφ

−1 0


 , 0 ≤ φ < 2π.

Then,

Re
(
e−iθTφ

)
=


 0 z

z̄ 0


 , z = −i sin θ + e−i(φ+θ),
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Figure 1: W (T ) for the operator in the example 5.1.

being the eigenvalues of Re
(
e−iθTφ

)

λ± (θ, φ) = ±
√

3
2

+ cosφ− 1
2

cos(2θ)− cos(φ + 2θ).

By easy computations the extreme values of λ+(θ, φ) with respect to φ are obtained

f1,2(θ) =
√

1 + sin2 θ ± 2 sin θ = 1± sin θ.

Additional computations show that the searched boundary generating curves are the circles |z − 1| = 1

and |z + 1| = 1. Considering the convex hull of these two circles we obtain

∂W (T ) = {eiψ +1 : 0 ≤ ψ ≤ π}∪{1+ it : −1 ≤ t ≤ 1}∪{eiψ−1 : π ≤ ψ ≤ 2π}∪{1− it : −1 ≤ t ≤ 1}.
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