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Abstract. The numerical range of an operator is a well studied concept with many applications
in several areas of mathematics. In this paper, the numerical range of banded biperiodic Toeplitz
operators is investigated, performing a reduction to the 2 x 2 case. Namely, the parametric equations
of the boundary generating curves are deduced and two algorithms for the numerical generation of the

numerical range are presented.
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1 Introduction

Let M, be the algebra of n x n complex matrices. A matrix T,, = (t3;) € M, is said to be a
biperiodic Toeplitz matrix if ¢; := ap—;, for k odd, and t; := by—;, for k even, k,j = 1,...,n. If there
exists an integer m € N, m < n, such that ay_; = 0 and by_; = 0, for |k —j| > m, k,j =1,...,n,
then T, is said to be a banded biperiodic Toeplitz matriz with bandwidth 2m + 1. Let [? be the Hilbert
space of complex valued sequences {x,,};/2%, such that the series 3.7 |z, |2 converge, endowed with
the usual inner product (z,y) = > 4% 247, An infinite biperiodic Toeplitz matrix T’ with bandwidth
2m + 1 is completely determined by its entries in the (m + 1)th and (m + 2)th rows, that is, by the

sequences

{tm—l—l,k}zo:l = {ama am—15---,00,0-1,0-2,...,0_m, 07 .- '}7
{tm+2,k}20:1 = {07 bﬂ’w bm—17 sy b07 b—17 b—27 RN} b—mv 07 .. ‘}7 (1)
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if m is even, and by

{tm-i-l,k}zozl - {bmu bm—lu e 7b0) b—la b—27 e 7b—mn 07 . '}a

{tm+2,k}zozl = {07 Ams Gm—15---,00,0-1,0-2,...,0—m, 07 .- '}7 (2)

if m is odd. The infinite matrix 7" induces a bounded linear operator T : [? x {> — [ x [2, which acts
by the rule Y = TX, where X is the vector ({zn},20, {yn},:20) € [* x [* written in the form of a
column vector X = [xo, %0, Z1,¥1,-..]7 . In the sequel, we use T to represent interchangeably the infinite
matrix 7 and the linear operator induced by T on 2 x [?. These operators occur in many problems
in mathematics and physics, such as the chain model of electronic structure [14] or the normal mode
theory of one dimensional crystal [1].

Our investigation concerns the numerical range of banded biperiodic Toeplitz operators. The
numerical range of a bounded linear operator A defined on a Hilbert space H with an inner product
(.,.)# is the subset of the complex plane defined as
(Az, )y,

(z, )y

W (A) ::{ Lz € H, <9:,3:)H7é0}.

The Toeplitz-Hausdorff theorem asserts that W(A) is convex and its closure contains the spectrum
of A, o(A). If A is normal, then W (A) is the convex hull of o(A), throughout denoted by Coo(A).
Further, every extreme point (corner) of W (A) is an eigenvalue of A. If A € M, is unitarily reducible,
that is, A = U*(A1®---® Ay,)U for some unitary matrix U and n > 2, then W(A) = Co{W(A4;)U---U
W(Ay)}. The Elliptical Range Theorem states that the numerical range of A € My is an elliptical disk
with foci at A1 and Ag, the eigenvalues of A, and minor axis of length (Tr (A*A) — [\(]* — ])\2\2)1/2.
If A € M, then W(A) is the convex hull of a finite number of algebraic curves [12]. Nevertheless, for
certain types of matrices the numerical range is still an elliptical disk, independently of the size of the
matrices [4, 6]. For more details on the basic properties of W (A) see e.g. [11, Chapter 1], [10] or [15].

This paper is organized as follows. In Section 2, asymptotic equivalence of biperiodic circulant
and banded biperiodic sequences of Toeplitz matrices is investigated. In Section 3, the numerical
range of banded biperiodic Toeplitz operators is characterized, following an approach used in the first
algorithm provided in the last section, which relies on the reduction to the 2 x 2 case. In Section 4, we
investigate the numerical range of biperiodic tridiagonal Toeplitz operators, identifying a class with

an elliptical range. In Section 5, two algorithms for the generation of the numerical range of banded

biperiodic Toeplitz operators are presented.



2 Asymptotic equivalence of biperiodic circulant and banded bipe-

riodic sequences of Toeplitz matrices

In this section we compute the eigenvalues of biperiodic circulant matrices and approximate a
sequence of banded biperiodic Toeplitz matrices by an asymptotically equivalent sequence of biperiodic
circulant matrices [3]. For this purpose, we introduce the convenient notation and terminology.

A matrix Cp, = (ci;) such that ¢y = cp—j, k,j = 1,--- ,n, with ¢ = cgp—p, k =1,--- ,n =1, is
called a circulant matriz. Circulant matrices arise in many applications, such as problems involving
the discrete Fourier transform [9]. Our study concerns biperiodic circulant matrices, that is, matrices
Cn = (ckj) € M, of even size, such that c;; = ap—j, if k¥ is odd, and cy; = by—j, if k is even,
k,j=1,...,n, with ap, = ag_n, k=1,....,n—2, and by = by_,, k = 2,...,n — 1. We can define
a natural embedding of a banded biperiodic Toeplitz matrix 7,, with bandwidth 2m + 1 such that
2m + 1 < n, into a biperiodic circulant matrix Cpiy (Cpimy1) adding m (m + 1) rows and m
(m 4+ 1) columns if m + n is even (odd), and filling in the upper right and lower left corners of T,
with appropriate entries. Under these conditions, T;, is the principal submatrix in the first n rows
and columns of a biperiodic circulant matrix Cy,4, (Cpim1) and we say that T), is a compression of
Crntm (Cnim+1)- It is clear that, for n even, there is a biperiodic circulant matrix C),, with the same
size as T}, such that T, and C), only differ in the upper right and lower left corners, for n > 2m + 1.
For brevity, C,, will be called the biperiodic circulant matrix associated with T;,.

Let I be the complex unit circle and consider the function f : ' — M, defined as follows

f(9) =Ts = , 0<¢<2m, 3)

ae() == Z sy, ¢, ao() := Z asy_q e (4)

—m<2k<m —m<2k—1<m

and

bo(@) = D byps1e®? be(@) = D by (5)

—m<2k+1<m —m<2k<m

The function f is called the symbol of the Toeplitz operator T
For n even, the §th complex roots of unity are throughout denoted by

. 4k
Pk = e_Z¢k’ where st:Tﬂ-, kzovvg_l (6)



Theorem 2.1 Forn even, let C,, € M,, be the biperiodic circulant matriz associated with the biperiodic

Toeplitz matriz T, of bandwidth 2m + 1. Then there exists a unitary matric U € M, such that

where Ty, € My, are defined in (3). The eigenvalues of Cy, are

1 1
A (9r) = 5 (ae(dn) + be(dr)) = 5\/(%(%) — be(dr))” + dao(Pr) (%), (7)
. . . (o t + + -1 4 3-1\T n.
with associated eigenvectors z4+ = X, Yy s Ty Pks Y Phs -+ > Th Pie g Pis e C":
+ +
x T n
Y (Y
k k

n_ T n_\T
Proof. Let uj, — (1,0,pk,0,...,p,§ 1,0) and vy = (0,1,o,pk,o,...,pg 1) L k=0,...,n/2 1.

. . . 5+1 .
Having in mind that p? - Pk, we can easily confirm that

Cpug, = ac(Pr)ug + bo(¢r)vy  and  Chugp = ao(@r)uk + be(dr)vk,

for ae, ao, be, b, defined in (4) and (5). Considering the unitary matrix

2
U= \/7 |:'U,(),7)0, <o 7u%717v%71] € My,
n

then C,, = U (T¢O BB T¢ﬂ71) U*. Hence, the spectrum of C), is the union of the spectra of the
2

2 x 2 blocks Ty, , and so (7) follows. The rest of the proof is clear.
[ |

As a consequence of Theorem 2.1 and of the Elliptical Range Theorem [11, p.23], we have the

following.

Corollary 2.1 For n even and C,, € M,, under the conditions of Theorem 2.1, W(C,,) is the convex
hull of the n/2 ellipses (possibly degenerate) with center at & (ac(¢x) + be(x)) , foci at (7) and minor
axis of length

\/\ae(¢k)\2 +[ao(@r)[* + 1Bo(Dr)[* + [be(Dr)[* = (Mg (01)* = A= ()%,
fork=0,...,n/2—1.
We next derive an inclusion region for W (T,,), where T,, is a banded biperiodic Toeplitz matrix
with bandwidth 2m + 1, which generalizes [8, Lemma 5]. Estimations for W (T},) can be easily derived

by embedding T, into a circulant matrix of order n +m (n+ m + 1) if n + m is even (odd). For

k € R, we denote by [k] the largest integer r with r < k.



Corollary 2.2 Let T}, be a banded biperiodic Toeplitz matriz with bandwidth 2m + 1. Then
[n+72n+1]_1

W (T;,) € Co U w@ |, (9)
k=0

where Ty, € Ms, and €' are the ["t2H]th roots of the unity.
Proof. Suppose that T,, € M,, has bandwidth 2m + 1. For n 4+ m even (odd), consider the biperiodic

circulant matrix Cy 4 (Cpimr1) such that T, is a principal submatrix of Cpyp (Crgms1). We find
W(T,) C W(Cpim) W(T,) C W(Cptm+1)). Bearing in mind Corollary 2.1, the result follows.

|

Theorem 2.2 Let A\, i, k=0,...,n—1, be the eigenvalues of a biperiodic Hermitian Toeplitz matrix
T, Assume that \i(or) < A2(ék) are the eigenvalues of the Hermitian matric Ty, . Then

my:=ess inf A(¢) <Ay < Myp=:ess sup Ao(o). (10)

pe(0,2n] pe(0,2n]
Proof. From the Rayleigh-Ritz theorem [9, Lemma 2.1], it follows that

z*T,x z*T,x

max

=maxA, and min =minA,, k.
zeCn\{0} x*x k

zeCn\{0} x*z k
By Corollary 2.2, we have
max A, < max (@) <ess sup Aa(¢)
k k $e[0,27[

and

ess ¢€i{1(f)1£ﬂ&(¢) < mkin A(or) < mkin A s

because, since 7T), is Hermitian, the elliptical disks in (9) degenerate into line segments whose endpoints

are the eigenvalues of T, . Hence, ess inf Ai(¢) < A, <ess sup Aa(0). [ |
p€[0,2m #€l0,27]

We consider two norms in M,,, namely, the operator (or strong norm) and the Hilbert-Schmidt (or
weak norm) defined and denoted by ||A||? = max r*A* Az and |A|? = %Tr (A*A), respectively.

Two sequences of n x n matrices {A,,} and {B,,} are said to be asymptotically equivalent if A, and
B, are uniformly bounded in strong norm, i. e., |[|4,|| < M < oo and ||B,|| < L < oo, n=1,2,...,
and lim |4, — By| =0 (see [9, p.17]).

n=oo

Theorem 2.3 For n even, let T, be a banded biperiodic Toeplitz matriz and let Cy, be the associated

biperiodic circulant matriz. Then the sequences {T,} and {Cy} are asymptotically equivalent.



Proof. Firstly, suppose that T}, is Hermitian with eigenvalues A\, 1, k = 0,...,n — 1. Let A\ (¢y) <
X2(¢x) be the eigenvalues of the Hermitian matrix T'(¢y), and let my = essqj i[rolf2 [Al(qﬁ) and My =
€|0,27

ess sup Aa(¢). Since T;, is Hermitian, then ||T,|| = ml?X’)‘n,k‘- By Theorem 2.2, we obtain
pef0,2n]

1T || < max(|my|, | Ml).

Suppose, now, that 7, is non-Hermitian. Then consider T,, = ReT,, + iIm7T,, where ReT :=
(T'+T")/2 and ImT := (T —T")/(2i). Let T}, = ReTy +iIm Ty, where ReTy := (T}, + T)/2 and
Im Ty := (T — T};)/(2i). Using the triangle inequality we get

[Tl < [[ReTh| + [[Im T, || < MReT¢ + MImT¢: (11)

for

Mger, =ess sup |u2(¢)| and My, =ess sup |¢2(0)],
o€[0,27[ ¢€[0,27]

where p11(@), p2(@) (ln1(@)] < [p2(@)]) and ¥1(¢), v2() ([1(d)] < [¢2(9)]) are the ecigenvalues of
ReTy and ImTy, respectively. Since T), is banded, then Mget,, MimT, < 00. We have IT.| <
MRge T, + MImT¢7 so T}, is uniformly bounded in strong norm.

Since the matrix C, is biperiodic circulant, there exists a unitary matrix U such that
Cp=U <T¢O @'--@T¢%71) U* and so C} = U <T;O @---@T*%_l U*. Hence, the eigenvalues of
C,C}, denoted by oy, k= 0,...,n — 1, are the eigenvalues of T¢iT;i, i=20,...,n/2 —1. Then
ICnll? = mMAX A, and C,, is uniformly bounded in strong norm.

Finally, lim |T,,—C,| = 0, because T}, and C,, differ only in the upper right and lower left corners,
n—oo
m—1

for n > 2m + 1, and have fewer than 2 Z m — k = m(m + 1) non-zero entries, and so the factor 1/n

in the weak norm drives |T;, — C,,| to zero. [ |

3 The numerical range of banded biperiodic Toeplitz operators

Theorem 3.1 is in the same vein as Theorem 1 in [13].

Theorem 3.1 Let A\i(¢) < Xa(¢) be the eigenvalues of the Hermitian matriz Ty, € Mo, and let T be
the banded biperiodic selfadjoint Toeplitz operator in (1) and (2). Then, W (T') = [my, My|, where

myr:=-ess inf Ai(¢ and My :=ess sup Aa(¢).
d s @) ! il



Proof. Let T, be the principal submatrix of T in the first n rows and columns and let C, be the

biperiodic circulant matrix associated with 7;,. We have
iy Thrr = oChxg + x5 (Th — Cpn)zg
= o+ i (Th — Cp)xy, (12)

being o, j, the eigenvalues of C), and zj, the respective normalized eigenvectors, 1 < k < n. Let k', k"

be such that oy, pr = ming o, and a,, g = maxy, oy, . From (12) it follows that
[an,k/ + xZ,(Tn — Cn)ﬂ?k/ y Qp g + SUZ//(TH — Cn)ﬂfk//] - W(Tn). (13)

Next, we claim that

|23 (T, — Cp)xk| o0 0.

In fact, let S = [s;5] = T}, — C,,. By simple computations, we get

n
\a:;;Sxk| = Z i‘kisijxkj
i,7=1
n 1 n
< O kil Isijl lokgl = = > 1sisl BriBss
4,7=1 n 3,7=1

n
where (; > 0 does not depend on n. Since Z |5i5]BkiBr; does not depend on n, the claim follows.
ij=1
Moreover, it is clear that my = lim oy, My = lim o, . Considering in (13) the limit for
n—-—+00 n—-+00
n — +o0o, we conclude that
[my, My] € W(T).
We show that the reverse inclusion holds. Since T}, is selfadjoint, W (T},) is a line segment whose
endpoints are eigenvalues of T;,, and according to Theorem 2.2, W (T;,) C [my, My]. Taking the limit

as n — oo and having in mind that [mg, M| is a closed interval, the result follows.

We recall that a supporting line of a convex set S C C at a boundary point z of S, is a line
passing through z and defining two half-planes such that one of them does not contain S. The next
result is a particular case of Theorem 1 in [2]. We present an alternative simple proof for the sake of

completeness and as a support for the first algorithm provided in the last section.

Theorem 3.2 Let T' be a banded biperiodic Toeplitz operator and let Ty, € Mo, 0 < ¢ < 27, be its
symbol. Then

W(T)=Co| |J W(Ty) |. (14)
¢€[0,27(



Proof. By Corollary 2.2, we obtain

W(Tn) €W (Tu1) SW(Thgo) C---CCo | | W(Ty) |- (15)
0<¢p<2m

W(T)CCo| | W(Ty)
¢€[0,27(

We prove that the reversed inclusion holds. For 6 € [0, 27|, consider a supporting line of W(T') per-
pendicular to the direction of slope 6 and take its orthogonal projection on this direction, W (Re (e_wT)) .
The symbol of Re (e_wT) is the 2 x 2 Hermitian matrix Re (e_wTd)), 0 < ¢ < 2m. Let A\(0,9) <
A2(0, ¢) denote its eigenvalues. By Theorem 3.1, W (Re (e =%T')) = [mg, My| where my = ess inf A\1(6,¢)

¢€[0,27]
and My =ess sup A2(6,¢). So,
¢€[0,27|

W(Re(e#T)) C Co| ) WRe(e™Ty))
¢€[0,27]
Now, letting @ vary in the interval [0, 2x], and having in mind the convexity of W (T'), we conclude

that

W(T)=Co| |J W(Ty)
¢€[0,27]

4 The numerical range of tridiagonal biperiodic Toeplitz operators

Tridiagonal matrices with elliptical numerical range have been investigated by some authors [4,
5, 6, 7]. Here, we consider a biperiodic real tridiagonal Toeplitz operator. The complex case may
be treated following analogous arguments. However, the computations become more involved and

cumbersome.

Theorem 4.1 Let

T= 0 al ap a—1 0 , G_1,00,61,b_1,b9,b1 € R. (16)




Then

W(T) = Co ((51 U (52),
where
€5 = {(f;(0) cos§ — fi(0) sin6) + i(f;(0)sinf + f;()cosh) : 0 <0 <2r}, j=1,2, (17)
with
_ap+bo Lo o 2 12 2 .2
fi(0) = 5 cos 0 + 3 [ai +aZ ) +b] + b7, + (ag — bp)” cos” 0 + 2(a_1b1 + a1b_1) cos(26)
1/2
ﬂ\/(a% + 0%, + 2a1b_1 cos(20)) (a2, + b3 + 2a_1b; cos(26)) , =12 (18)
Proof. Under the hypothesis, the symbol of T" equals
agp a_1+ alei¢
T¢ = ) , 0< ¢ < 27,
[)_1efws + b bo

The eigenvalues of Re(e=T};) are

ag + bo
2

1
Ai(0,0) = cosf + 5 [a% +a?, + b2+ b2, + (ag — by)? cos? 0 + 2(a_1by + a1b_1) cos(26)

+2(a—1a1 + b_1b1) cos ¢ + 2a_1b_1 cos(¢p — 20) + 2a1by cos(¢p + 20)]1/2 )

The extreme values of A1 (6, ¢) with respect to ¢ can be easily determined and are given in (18). The
equations of the supporting lines of W (T') perpendicular to the direction of slope § and at the distance

fj(0) to the origin may be written as
xcosh+ysinf = f;(0), j=1,2.

The envelope of the above family of supporting lines, whose parametric equations are in (17), gives
rise to a so called “boundary generating curve” of W (T'). Due to the convexity of W(T'), OW (T) is

the convex hull of this curve. [ ]

The following result characterizes the numerical range of a class of biperiodic tridiagonal Toeplitz

operators with elliptic shape.

Theorem 4.2 Let T be the tridiagonal operator defined in (16), with aj,b; € C, j = —1,1, satisfying

b_i1=ka, and by = ka_1, for some k € C. Let

2
ao—bo -
v = (57 + ol + laa




_ b b
Then W(T) is the elliptical disc (possibly degenerate) centered at CLOT_I_O with foci CLOTH + 7+1/2

and minor axis of length

2
a —b(]
\/ 90 = 51" 1 (o] +aa (1 -+ [KP2) — 2.

Proof. For 6 € [0, 27[, consider the Hermitian matrix Re (e_wT 4)), whose eigenvalues are

+ 2%,

AL(6,6) = Re ((ag -;bo) e*iﬁ) N \/(Re (ag —4b0) e_ig)Q

1 A A .
where z = 3 (e_le + k:e’e) (ale“ZS + a,1> . It can be easily checked that
” 2 9
max |aje’ —|—a,1‘ = (la1] + |a-1])
0<op<2m
and
min |a1e’® 4+ a 1‘2 = (la1| — |a—1])?
0<p<2m - ! —t

Then, the extreme values of A1 (6, ¢), with respect to ¢ read
B Re ((a() + bo) e_w)

f1,2(0) : 5 + /Pi + Q cos(26) + Ry sin(26),
where
_ 1 2 1 2 2
Py = glao—bol” + ;(lar] &+ |a-a[)"(1 + [K]%)
1 1 -
Qs = 3 Re (ag — bo)? + 5(‘&1’ + la_1])*Rek
1 1 _
Ry = 3 Im(ag — bo)? + 5(\a1| + |a_q|)?Im k.
Let
1 1
ap =P+ olye|  and By =Py - oy, (19)
where )
ap—b _
v = PO (o] %R
If Q1 + R3 =0, then ax = B+ = Py and W(T) is a circular disc. If Q% + R% # 0, for cos(I'y) =

\/ﬁ and sin(I'y) = \/ﬁ, so that I'y = arg(v+), we have

Pi+Qy cos(20)+ Ry sin(20) = Py+4/Q% + R% cos(T+—20) = oy cos? (F; — 0) +034 sin® (F; — 9) ,

with ay and By in (19). Thus, the above mentioned extreme values are
R b —10 T T
fi2(00) = e((aog 0)e )+\/aicos2<2i—0)+ﬁisin2<;—9>,

10




The envelope of the family of supporting lines perpendicular to the direction with slope 6§ and at the

distances f12(f) to the origin, is the curve with parametric equations

zcosf+ysing = f12(6) (20)
—xsinf +ycosh = f{72(9) .

Eliminating 6 in (20), we get
ag+bo 2
)

(Xi—Re<aO'2*'b°))2+ 1

o B+
where X1 = xcos(I'y/2) + ysin(T'/2), Yy = —zsin(T'£/2) + ycos(I'+/2). Since Py + Q4 cos(20) +

Ry sin(20) > 0, these curves are ellipses because ax, S+ > 0. The semi-focal distances are given by
Vax — Bi = \/v+]. Hence, the foci of the ellipses are (ag + by)/2 £ /|71 ]eT+/2, and (ag + bo)/2 +
\/|'y,\e’T*/ 2. The result follows observing that one of the elliptical discs is contained in the other

one. [ |

Remark 1. The numerical range of a tridiagonal matrix remains unchanged if, for some i, the entries
(i,+1) and (i + 1,7) are interchanged [4]. Thus, the previous conclusion also holds if a_; = kb; and
l_)fl = ]{2(11.

Corollary 4.1 For T under the conditions of Theorem 4.2, W(T') is a circular disc (possibly degen-
erate) with center (ag + bo)/2 if and only if (ag — bo)/ (2|a1| + 2|a_1|) is a square root of —k.

Proof. Observe that |ai|+ |a—1| = 0 if and only if the infinite matrix associated to T is diagonal (see

(1) or (2)), being then W (T') the line segment with endpoints ag and bg. When |a1| + |a—1| # 0, the

ap — by S
_ TN ) k=0
(2(\01! + !a—1!)>

is necessary and sufficient for o = [ defined in (19). [

condition

Example 4.1 (Cf. [7, Theorem 8]) Consider the tridiagonal biperiodic Toeplitz operator T such that
ag = bp =0 and a_1 = by = a1 = —b_1 = 1. The eigenvalues of Re (e*iaTd,) satisfy A2 (0, ¢) =
1+ sin(26) sin ¢. Therefore,

i (6, ¢) = £4/1 + sin(26) sin ¢.

The extreme values of A1 (0, ¢), with respect to ¢, are given by

f10) = /1 +[sin(20)]  and  fo(0) = /1 — |sin(26)].

The equations of the supporting lines of W(T') may be written as xcosf + ysin@ = f12(6). By (17),

11



for0 <0 <m/2, fi(0) =sin@ + cos @ leading to the point 1 + i;
form/2 <0 <, f1(0) =sinf — cos leading to the point —1 + i;
form <0 <3m/2, fi(0) = —sinf — cos@ leading to the point —1 —i;
for3n/2 <0 < 2w, f1(8) = —sinf + cosO leading to the point 1 — i.

Thus ¢, = {1+i,1—i,—14+4,—1—1i}. A similar argument is valid considering f2(6) instead of

f1(0), and we easily conclude that €1 = ¢2. Thus, W(T') is the square

Cof{l+d,1—i,—1+4,—1—i}.

5 Algorithms

We present two algorithms to compute the numerical range of a banded biperiodic Toeplitz operator
W (T). According to (14), we can reduce the determination of W (T') to the 2x 2 case, taking the convex
hull of a union of elliptical discs (cf. Theorem 3.2). The first algorithm uses this approach taking
reasonably finite discretizations of the angles 6, ¢. The second algorithm computes the extreme of the
eigenvalues Ay (6, ¢) of Re (e_i0A¢) for a fixed 0, in order to determine a family of supporting lines
of W(T'). Then the envelope of the supporting lines is plotted, computing numerically the derivative
df/df, where f as usual denotes the distance of the supporting line to the origin. Matlab programs

based on these algorithms are implemented, with Figure 1 illustrating their use.

Algorithm 1

2(k— 1)
N

Step 2. For each ¢, make the plot of W (Ty,) in the following way:

Step 1. Compute ¢ = ,k=1,..., N, for some positive integer V;

21
e Compute 0; = ﬁﬁ, l=1,..., M, for some positive integer M;

e For each 0; described above, compute the eigenvalues of the matrix Re (e_ielT ¢k), and the asso-

ciated eigenvectors v;(l, k), j = 1,2. Evaluate
p'(l k‘) — Uj(lak)*Ttﬁkvj(lvk)
T ‘ Uj(lvk)*vj(l7k) ’

For each k, these points belong to the boundary of W (T, ).

j=1,2, k=1,...,N, 1=1,...,M.

Step 3. For each k (k = 1,...,N) determine the convex hull of the points p;(l,k), j = 1,2, | =
1,..., M so obtaining the collection of ellipses OW (T}, ). Compute the convex hull of these ellipses.

An alternative algorithm to determine the boundary of W (T) is the following one.
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Algorithm 2

Step 1. For § € [0, 27, compute the eigenvalues A+ (6, ) of Re (e Ay).

2k
Step 2. Consider 61,...,0y € [—QW’T, 21 + QW“] with 0, = %, k=0,...,N + 1. For each 0y, compute

the extreme values of A (6, ¢) with respect to ¢. Suppose that they are attained at ¢1(6;) and ¢2(6;),

respectively, and are given by f;(0;) = Ay (0, 0;(0k)), 7=1,2, k=0,1,...,N + 1.
Step 3. Compute

Or+1) — f(Ok—1)
13 6) Ory1 — Ok—1

Step 4. Plot the points z;(6x) +iy;(6x), 7 =1,2, k=1,..., N such that

, j=1,2k=1,...,N.

JIJ(QR) — COS ka](ek) — ysin Okf;(ek),
yj(ek) = sin kaJ(Hk) + Y COS Qkf;(ak) .

Step 5. Take the convex hull of the above points, which describe the boundary of W(T).

The next example illustrates the above presented algorithms.

Example 5.1 Consider the pentadiagonal Toeplitz matriz T such that ag = by = a1 = a2 = a_9 =

bo=0,a_1=1,b_1=—-1,b; =1 and by = 1. The symbol of T equals

0 1
Ty = . 1, 0< o< 2m.
1—e @ ¢i®

Algorithm 1 is illustrated in Fig.1(a) and Algorithm 2 in Fig.1(b). In this case, OW(T) = €.

Finally, we give an example of the determination of W (T'), by analytical techniques.

Example 5.2 Consider the biperiodic Toeplitz operator T with bandwidth 2m + 1 = 7 such that
b,3:b,2:b,1:b0:b2:b3:0, b1:—1, a,2:a0:a1:a2:a3:0, CL,1:1 anda,3:2.

The symbol of T equals

0 1427
T, = . 0<¢<om
-1 0
Then,
i 0 2 o —i(¢+9)
Re(e T¢>: , z=—isinf+e ,
z 0

13
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Figure 1: W(T) for the operator in the example 5.1.

being the eigenvalues of Re (e_i9T¢)

At (0,0) = :l:\/g + cos ¢ — écos(Z@) — cos(¢ + 26).

By easy computations the extreme values of A+ (6,¢) with respect to ¢ are obtained

f1.2(6) = V1 +sin2 6 + 2sinf = 1 + sin .

Additional computations show that the searched boundary generating curves are the circles |z — 1| =1

and |z + 1| = 1. Considering the convex hull of these two circles we obtain

OW(T) ={e™+1:0< ¢ <mpU{l4it: —1<t<1}U{e —1:7 <y <2nju{l—it: 1<t <1}
Acknowledgments We would like to thank the referee for helpful comments and the editor Raul

Curto for his constructive criticism.
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