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Abstract

This work is a follow up of recent investigations, where we study the implications of a gen-
eralized heat kernel expansion, constructed to incorporate non-perturbatively the effects of a non-
commutative quark mass matrix in a fully covariant way at each order of the expansion. As underly-
ing Lagrangian we use the Nambu-Jona-Lasinio model of QCD,Suth(3) andU4 (1) breaking,
the latter generated by the 't Hooft flavour determinant interaction. The associated bosonized La-
grangian is derived in leading stationary phase approximation (SPA) and up to second order in the
generalized heat kernel expansion. Its symmetry breaking pattern is shown to have a complex struc-
ture, involving all powers of the mesonic fields allowed by symmetry. The considered Lagrangian
yields a reliable playground for the study of the implications of symmetry and vacuum structure on
the mesonic spectra, which we evaluate for the scalar and pseudoscalar meson nonets and compare
with other approaches and experiment.

0 2004 Elsevier B.V. All rights reserved.

1. Introduction

The heat kernel expansion [1] is known as a useful and effective tool to study the prop-
erties of low-energy QCD [2—4]. Depending on the physical problem, it can be used either
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in the form of a derivative expansion [5], or as an inverse mass expansion [6]. Based on the
powerful method of Schwinger-DeWitt [7], it allows for calculations of effective meson
Lagrangians directly in coordinate space btegrating out the quadratic fluctuations of
quark fields in presence of a background of classical mesonic fields. The result is cast as an
asymptotic expansion of the effective action in powers of proper time with Seeley—DeWiitt
coefficientsa,, which accumulate the whole dependence on the background fields. The
remarkable property of the method is that eactier of the expansion is fully gauge and
chiral covariant.

In the case of massive quantum fields with a degenerate mass matexdiag(m,

m,...), itis not difficult to derive from the proper time expansion an expansion in inverse
powers ofm?, since the mass dependence is easily factorized and a subsequent integra-
tion over the proper time leads to the desired result. The resulting asymptotic coefficients
remain unchanged.

If the mass matrix is however non-degenerdte- diag(m1, mo, .. .) its total factoriza-
tion is impossible because of then-commutativity of the matrid/ with the rest of the
elliptic operator. It has been shown recently [8,9] that masses can be redistributed among
the mass-dependent factors by performing resummations in the series. This leads to new
covariant asymptotic coefficients. The aliglom for the resummations was derived and the
generalized heat kernel coefficiemis for the SU ;(2) [8] and SU #(3) [9] flavour cases
were obtained. In [10] the relation of the new coefficients with the standard ones has been
clarified.

Given the success in the mathematical formulation of the problem, it is now a natural
step to apply the new asymptotic expansion in the construction of effective chiral La-
grangians. This expansion provides a reasonable approximation to the physics of massive
and heavy quantum fields with a non-degenerate mass matrix. This is the case, for instance,
of low-energy QCD. Here a light current quark mass matrix which is non-degenerate
is replaced by a non-degenerate mass matrix of heavy constituent quarks through the
non-perturbative mechanism of spontaneous breakdown of chiral symmetry. This area of
physics opens a window where our generalized heat kernel expansion can be applied.

Several different approaches based on the standard heat kernel series have already been
used to study the above mentioned task [2—4]. The main difference between them is hidden
in the definition of the vacuum state. The generalized heat kernel expansion also leads to
its own prescription for the vacuum. It is clear that the closer one is to the physical vacuum,
the more realistic the description of the spectrum of the mesonic exitations will be. From
this point of view we hope that our method is seful tool for the accurate description of
the hadronic vacuum state at low energies.

In the present work we shall choose a well-known quark model [11] to describe the for-
mation of the hadronic vacuum and its mesonic exitations. It is an effective microscopic low
energy Lagrangian combining thig (3) x Ug(3) chiral four-quark Nambu—Jona-Lasinio
(NJL) interactions together with the 't Hooft determinantal six-quark flavour-mixing inter-
action, responsible fay 4 (1) breaking [12]. By including a mass term for the light/ and
stranges quarks one can explicitly break the remainBy);. (3) x SUg(3) chiral symmetry
to the SU ¢ (3) flavour group or its subgroups. This Lagrangian has been previously used
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in [13,14] to calculate the low lying meson mass spectrum at leading btdehe recent

works [16] we have analyzed the quasi-classical corrections stemming from the 't Hooft
interaction, and presented a fully anatyi solution for the bosonized Lagrangian and ef-
fective potential. We will use here these results. They represent a necessary step for the
extension to a larger group of the earlier applications of the method iBU2) x SU(2)

NJL model [17,18].

The paper is organized as follows. In Section 2 we introduce the model and present the
main results of [16] needed for the presemtriv To summarize, these results are the fol-
lowing. Using path integral methods, the bosonization of the fermionic Lagrangian which
involves the six-quark interaction requsréhe introduction of two sets of bosonic auxiliary
fields, each of the scalar and pseudoscalar type(ssay) and (o, ¢). Then the integra-
tion over the fermionic fields can be cast in quadratic form, which can be done exactly.
The remaining integrations are over one of the sets of auxiliary bosonic variahles,
which are done in the stationary phase approximation. The solutions to the stationary path
integral equations can be expressed as an infinite series in powers of the bosonic scalar
and pseudoscalar fields, ¢), with coefficients that are known at all orders. In particular
also the symmetry breaking piece of the bosonized Lagrangian contains an infinite number
of terms involving powers ofo, ¢), and are a consequence of the flavour determinantal
interaction. The piece of the bosonized Lagrangian which comes from the integration over
the fermionic degrees of freedom will be dealt with our generalized heat kernel technique
in Section 3. Here we also show how to deal with the gap equations combined with the
requirement of covariance of the generalifakley—DeWitt coefficients and the symme-
try breaking pattern of the original Lagrangian which must be not altered. We derive the
expressions for the masses of the pseudoscalar and scalars in Section 4. In Section 5 we
present numerical results and conclude with a summary and outlook in Section 6.

2. Themode

To model low-energy QCD, we use the glolagl (3) x Ug(3) chiral symmetric four-
guark interaction of the NJL-type model
G
2

L = = [(@2a@)® + @i vsraq)?]. 1)

wherer,, a =0, 1, ..., 8, are the standard Gell-Mann matrices acting in flavour space and
normalized by the conditiontx, 1) = 26,5, combined with the 't Hooft six-quark flavor
determinantal interaction [12]

Ldet= K (detg PLq + detg Prq), (2)
where the matrice®,, r = (1F ys)/2 are projectors on the left- and right-handed quarks.

The LagrangianCget lifts the unwanted/4 (1) symmetry of Cnj. for massless quarks,

1 An early approach but without 't bft term can be found in [15].
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as required by thé&/ 4 (1) Adler—Bell-Jackiw anomaly of th8U ¢ (3) singlet axial current
gvuysq in QCD. The total fermionic Lagrangian reads

L=q(iy"dy —m)q + Lint, 3)
with the interaction Lagrangian
Lint = LN3L + Ldet. (4)

The quark fields have colofN. = 3) and flavor (Ny = 3) indices which range over
the seti = 1, 2, 3. The current quark masg&, is a diagonal matrix with elements
diagim,, my, my), which explicitly breaks the global chir@J (3) x SUg(3) symmetry
of the Lagrangian.

This approach contains several commonly used simplifications which can be excluded
in a more elaborate consideration. Let us comment first on the four-point interaction (1).
The most general form of this vertex, based on phenomenological arguments, needs only
to be compatible with the symmetry group of low-energy QCD and can be chosen to be
invariant under the8U(3), x U (3) x Ug(3) x Uy (1) x Us(1) group. The six-point
interaction (2) corresponds to thé. — oo limiting case and is modified by the tensor
term at next to the leading/N, order as it follows from the instanton dynamics [19]. We
also assume that all interactions between quarks are taken in the long wavelength limit
(low momenta) where they are effectivelychd. The explicit chiral symmetry breaking
term, gmgq, is standard for QCD. There are some doubts in the literature regarding this
structure in the context of the NJL Lagrangian [20]. Further discussion of this point based
on an instanton approach to the QCD vacuum can be found in [21].

In order to access the natural degrees of freedom of low-energy QCD in the mesonic
sector, we proceed to bosonize the fermionégtangian, by introducing in the vacuum
persistence amplitude

Z= / Dq Dg exp(i/d4x L‘) (5)

the functional unity [14]

1= [ [1D5 Dpa8(su = T3~ Girshas)
a
:/HDsa Dpa Doy Doy
a

x exp{i / d*x [04(sa — GAaq) + ba(Pa — ciiy5/\aq)]}, (6)

thus obtaining

Z:/HD%D@, DqDéexp<i/d4x£q(cj,q,a, ¢>)>

X /HDsa Dpa exp(i/d4x£r(o,¢,s,p)>, (7
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where

qué(iyﬂau_a_iVS‘ﬁ)Qv (8)

. K
L, = E[(Sa)z + (Pa)z] +5a(0a —Ma) + Papa + 3_2Aabcsa(sbsc —3pbpe)s 9

and where the totally symmetric constantg,. are related to the flavour determinant, and
equal to

1
Aape = geijkemnl (Aa)im ()\b)jn (Aedki

2 2
= édabc + \/;(381103190800 — 8a08pc — 8p08ac — (Scoaab)~ (10)

We use the standard definitions for antisymmetftig. and symmetriel, ;. structure con-
stants ofU (3) flavour symmetry. One can find, for instance, the following useful relations
feacAbfc + febcAfac + fechabc =0,
deacAbfc + debcAfac + dechabc = \/éﬁeOAabf' (11)

Here and throughout the paper we use o, 1., and so on for all auxiliary fields, s,
p, and use the following representation of the scalar and pseudoscalar fields

Tu iy o+ b L+ KT

yWes vz KOO Aa®, V2 7; ;
- O, —

| a % K|, | a % K° (12)
0 0 NG V2

with the following identificationss, = nns+ 7%, ¢a = nns— 7%, @5 = v/2ns, 04 = ens+a,
04 = €ns — a8, ando, = +/2¢ for the correctly normalized states in the flavour basis (see
Eqg. (B.7) in Appendix B). Here the subscripts ns and s denote non-strange and strange,
respectively.

For the set of auxiliary mesonic fieldsp the symmetry transformation properties are
the same as the ones far¢ and follow from the chiral transformations of quark fields

bg=i(a+ysB)q.  8q=—iq(a—ysp), (13)

where the parameters of the infinitesimal global transformatioasd 8 are Hermitian
flavour matrices. One has, for example,

§s =ila, s1+{B, p}, Sp=ila, pl—{B,s}. (14)
The symmetry breaking piece tife Lagrangian is contained £)., since

8L, =0, 8L, =58Lsp#0, (15)
where

1
Lsg=—3tGs) + g—4 (det(s + ip) + dets — ip)). (16)
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We see thalsg is not invariant under a global chiral transformation due to explicit sym-
metry breaking, governed by the first term, and due to the 't Hooft interaction, given by the
second term

8Lsp = %tr(ia[rﬁ, s]— B{m, p}) + iﬂo%(dets —ip) —def(s + ip)). a7

In the following we shall consider the case with diagonal matriwheresn,, = my # g,
i.e., the chiral symmetry is explicitly broken down to the vectorial isot&l¢(2) x U (1)y
symmetry. The non-vanishing term proportionattsignalsU 4 (1) breaking leading to the
OZlI-violating effects related to thedler—Bell-Jackiw anomaly of th8J (3) singlet axial
current.

The Fermi fields in Eq. (8) enter the action bilinearly and the integration over them
is exact. The result is given in the next section. It is necessary to shift the scalar fields
in (7), 04(x) = o4(x) + mg. It is well known that in nature the global chiral symmetry
W (3) x g (I) is spontaneously broken down to the Eightfold Way symmetry and the
shift takes this into account. In the new vacuum state the vacuum expectation values of
the shifted fields vaniskO|o,(x)|0) = 0. The new vacuum is determined by the tadpole
mechanism demanding that all tadpole graphs must sum to zero. The congtdetsoting
the constituent quark masses will be fixed by the gap equations.

In [14] the lowest order stationary phase approximation (SPA) has been used to estimate
the leading contribution from the 't Hooft determinant in Eq. (9) in the functional integrals
overs, and p,

+o0
Zlo +m,¢]z./\// HDsaDpanp<i/d4x£r(a ~|—m,¢,s,p)>, (18)

whereN is chosen such th&&[m, 0] = 1. In the SPA the functional integral is dominated
by the stationary trajectorie§, = (s§, p%). leading to

/ HDSa Dp, eXp(i / d*x £, (o +m,d,s, p)) ~ eXp(i / d*x Er(rst)), (29)

where# corrections are neglected. The stationary poifitg, ¢; m), is a solution of the
equations,.(s, p) =0

{ Gsq+ (0 + A)a + %Aabc(qbgc — PbPe) = 0,

Gpa + ¢a — 16 abcgbpc =0,

whereA, = m, — m,. This system is well known from [14]. Using expressions (9) and
(20) we obtain

G 2
£r0rs) = g [(58)° + (P4)° ]+ (@ + Das+ dap)- (21)

One solves Egs. (20) exactly, looking for solutiaifsand pg; in the form of increasing
powers in fields,, ¢,

(20)

Sgt =hq + h(l)ab + hib)c Op0c + hib)c(]jb(f’c + hfibcdabacad + habcdab¢c¢d +-
p4=02¢, + b dpoe + 1S opoeda +h' dppeda + - (22)
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with coefficients depending om, and coupling constants. Putting these expansions in
Egs. (20) one obtains a series of self-consistent equations to determine coeffigients

hglb) hfb) and so on. The first three of them are

3k
Gha + Ay + _Aabchbhc = Oa

32
Gaac + 1_6Aacbhb hce = _5(1(3’
3K %))
Gaac - 1_6Aacbhb hce = _Sae' (23)

All the other equations can be written in terms of the already known coefficients, for in-
stance, we have [16]

B0 _ 3,0, 0,0, p@ _ 3, 0,@,2 ,

abc ™ g39"aa "pp cc abc> abc — 32 aa"pp cc abc
@ _ 3%, 2,2,0 @ _ 3 @, 0,0
hape = _Ehaa hbg h Aaber hapea = Ehaa hbg hicqAabe
@ _3,0,0,@ ;2,3
habea = Ehaa (hbg hica = hcg hEdb) Adper oo (24)

One can see from these equations that the terms quadratic and higher order in mesonic
fields in Egs. (22) are generated by the 't Hooft interaction and will disappeati. Let
us also give the relations following from (23) which have been used to obtain (24)

hy = (Ghy + 28005 = —(3Gh, +2A,)h%). (25)

As a result the effective Lagrangian (21) can be expanded in powers of meson fields.
Such an expansion, up to and including the terms which are cubig ify,, looks like

1 1
Ly (rst) = hgoq + —h(]gUan + _h(2)¢a¢b

2a 2 ab
1 .
+ 50a[hpeovoe + (g + gy )dpge] + O(fieldt). (26)

The coefficientsh, are determined by couplings, « and the mean field\,. This
field has in general only three non-zero components with indice<, 3, 8, according
to the symmetry breaking pattern. The same is trueifobecause of the first equation
in (23). It means that there is a system of only three equations to detehmaing, i, =
diaghu, ha, hy),

K
A; + Gh; +3_2;tijkhjhk=0~ (27)

Here the totally symmetric coefficients, are zero except for the case with different values

of indicesi # j # k whenr,s, = 1. The Latin indices, j, k mark the flavour states=

u, d, s which are linear combinations of states with indices 0, 3 and 8. In Appendix A we
collect the matrices which project one set to the other and write out exact solutions for
Eqg. (23). Let us note that Egs. (27) must be solved self-consistently with the gap equations
(see Eg. (43) below) to yield the constituent quark masses in leading SPA order.
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3. Heat kernel expansion

Eq. (26) contains the piece of the bosonized effective Lagrangian, which has no kinetic
terms and is obtained in the weak field limit. Now we turn to the evaluation of the fermionic
functional integral in Eq. (7), which after the shift (x) — o, (x) + m,, reads

Z[Y] =/Dq Dq exp(i / d4xcj[iy“3ﬂ —(m+o+ i)/5¢)]q), (28)

whereY collects the background field dependence as indicated below. This fermion deter-
minant accounts for the remaining part of the effective Lagrangian and leads, in general, to
non-local mesonic vertices with unphysical cuts (the quark deconfinement problem). We
have resorted here to the Schwinger—DeWitt representation for the real part of the corre-
sponding effective actiori¥[Y], to obtain in the end the asymptotics fdt{Y] in terms

of local polynomials of background fields and their derivatives given by the heat kernel
coefficients at coinciding arguments,

Z[Y]=exp(W[Y]),
1 Oodt 2 T
W[Y]= In|detD] :—5/ 7,o(tA ) Trexp(—t D¢ De), (29)
0

where Tr designates functional trace, the operagstands for the Euclidean Dirac oper-
ator in presence of the background fietdg) and

DIDg=m? -3+, (30)
with the definition
Y =iy (8,0 4 iys0u9) + 0%+ {m, o} + ¢% + iyslo +m, $). (31)

For the regulatop (1 A2), needed to keep the integral convergentat0, we use two
Pauli-Villars subtractiorfs

p(t4%) =1~ (1+14%) exp(—14?), (32)

where the cut-offA is a free dimensionfull parameter. The regularization functiom?),

being written in terms of a dimensionless variable- 1 A2, fulfills the necessary condi-
tions: p(t) ~ 12/2 att — 0 andp(r) — 1 att — oo. It is important to know to what
extent the specific form of this function affects our results. It is obvious that the type of
used regulator does not affect the chiral invariance of the heat kernel expansion, since the
generalized heat kernel coefficiems[9], which carry the whole symmetry properties of

the heat kernel expansion, do not depend on it

d*xg &
W[Y]:—/mgliltr(bi). (33)

2A regularization functiono must be introduced to define the coingide limit for the Schwinger repre-
sentation. The regularization dfi¢ quark determinant in general should be done in accordance with certain
requirements (see, for examplbetreview of R.D. Ball in [1]). Some of them are discussed also in [22].
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Here the expressions for the first fayrin the case o8U(2); x U(1)y flavour symmetry
my, =mg # mg are

bo=1,
b1=-Y,
b ve + A‘”/\ Y
2= QX5 —F=AN81,
2 V3
Y3 A2, Ays
b= —~ —(aY>2 (34)

gY —
6v/3 2[
where we used the def|n|t|onl/ = m2 — mj In (33) the trace is to be taken over

colour, flavour and Dirac 4-spinors |nd|ces and the regulator-dependent intégeats
the weighted sums [9]

= S (@A) + 4 () (35)
with
T d
t
Ji (m?) =/ o p(tA%) exp(—tm5). (36)
0
For the chosen form of the cut-off function we obtain, for instance,
2 2 2 A?
Jo(m)ZA —m“In 1+—2 s (37)
m
A2 A2
2

Both of them are divergent in the limiting cage— oo.

Thus, the effective Lagrangian depends on the intedfalBhe more terms of the heat
kernel series are taken into account, the more the final result depends on the form of the
cut-off functionp () and, therefore, the more careful one should be choosing a regulator.
In the following we restrict our study to the two non-trivial terndg,and by, in the as-
ymptotic expansion o/ [Y]. In this case only two integraldp and /1, are involved. If
we introduced irnp(t) two independent parameters, instead of ohgthe outcome would
not depend at all on the form of the regulatmecause one can always fix these parameters
by fixing independently couplingly and /1 from experimental data. Actually, we slightly
simplified our calculations working with only one parametgrpaying for that the price
of having some dependence on the regulaioreprocedure, which is finally inherited by
the constituent quark masses.

The heat kernel series (33) defines the asymptotics of the effective action for a physical
system with the mass matrix being large compared to the rest of the background fields
and their derivatives. It corresponds exactly to the considered case of low-energy QCD,
where the small meson exitations of the quark sea take place in the “superconducting”
phase with heavy constituent quarks. It is interesting to stress that in comparison with the
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standard Seeley—DeWitt coefficients, which transform covariantly with respect to the ac-
tion of the chiral group, our coefficienks possess more specific transformation properties.
Indeed, in the broken vacuum state an arbitrary infinitesimal varidtiqh; ), induced by
global transformations of the background fields

So =ila,0 +ml+{B, ¢},  Sp=ila,d]—{B,0 +m}, (39)
depends on the variatigtY which is equal to
8Y =i[a+ysp. Y +m?]. (40)

One can see that already the first coefficientransforms non-covariantly, becausé
does not commute with + y58 in (40). Nevertheless, one can prove thatb;) = 0 for
all generalized coefficients [9].

In the present calculations we truncate the heat kernel sergslatthis approximation
the effective Lagrangiaif is given by the sum of only two local terms = L(b1) +
L(b2) +---, where

L(b1) = Ltad(b1) + Lmasdb1),
L(b2) = Ltad(b2) + Lkin(b2) + Lmasdb2) + Lint(b2). (41)
Here we distinguish the tadpole terntzg, from mass termstass kinetic terms,Ciin,
and interaction term<int. We have, for instance,
N:Ip
Lradby) = 5 [mu(ou + 0a) + myoy],

N.I1
1272
Joined together with the tadpole contribution from Lagrangian (26), they lead to the gap
equations

{ hu + Egmu(3lo — AusI1) =0,
hs + 25mg (310 + 2A,517) = 0.

Liad(b2) = Ays [mu (oy +04) — sto's} (42)

(43)

The mass-part of the heat kernel effectivagkangian contains two contributions and is
given by

N:Ip N:1p
Lingss® = 57 (08 +82) = 53 Aus[2V2(30008 + pode) — &F + 7]

+ 2(2m5 + m%)ag + (mi + 5mA2,)U§ + (7m5 — m2)62

+ (mu + my) (my + 2mg)o % + (my — my) 2mg —m)$3}, (44)

where we assume that the indicesind f range over the subsets=1,2,3 and f =
4,5,6,7ofthesets =0,1,...,8. Thus we have

(Z’)[?:ij""y'[_—|—(7'[0)27 ¢%=2(K+K_+KOKO),

ot =2ufag + (@) 0P =2(KgTKy +KiKO). (45)
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The kinetic term Lin(b2), after continuation to Minkowski space, has a non-standard
factor

Liin(b2) = tr[(alm )2+ (0,.9)%]- (46)

16712
It should be rescaled by the redefinition of mesonic fields

472

R R 2

O'ang'a, ¢a=g¢aa g =N11’
c

where the index R stands for the new renormalized fields.
By virtue of the PCAC hypothesis the couplipgs related to the weak decay constants
of the pion, f, or the kaon fx,

(47)

fo=T0 =T (48)
8 2g
To see this let us recall Eq. (6), where the quarks bilingarg andgiysi,qg have been
replaced by the auxiliary fields, and p,. The SPA approximation used to estimate the
path integral over these variables in (19) restricts them to the stationary trajesfprigs
given by Eq. (22). Thus, we have

iqyshaq =Py, Ghaq =5, (49)

The quark operators are finally represented by expansions in increasing powers of bosonic
fieldso, and¢,. This is a convenient form to establish a connection to some current algebra
results, such as the PCAC hypothesis or the Gell-Mann—Oakes—Renner (GOR) relation
[23].

For instance, one easily finds from (49),

_ g |pR(0)  im2
<n—|dysu|0>:’gf<27;('l¢fcl)> J’%Z (’”)< ~16R,10), (50)

where result (56) has been used to obtain the last equality. In exactly the same way one
derives with the help of Eq. (57)

ig(K™|¢R.10)  iv/2m?% (m + my
\/EG(1+0)M) (”;lu +7hs) 28
Let us assume that (48) holds, then these equations coincide with the well-known PCAC
relations.

One can use the second equation in (49) to estimate the quark condensates in the vac-
uum. As far as the isotopic invariance is implemented here we have

= hy _ hs
(Oliu|0) = (Odd|0) = = (0fss]0) = = (52)

(K™ [5ysu|0) =

)<K|¢,F§+|0>. (51)

Combining these equations with Egs. (56), (57) and (48) one finds the GOR relations (up
to the last terms in the round brackets, which are proportional to the current quark masses
and give some model corrections to the leading order result)
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m2 f2 = — 24, (0liiu|0) (1+ ’Z—) (53)

u

(54)

1 . Ty + i
m%f%=—§(mu+ms)(0|uu+ss|0)(l+u).

Ay + Ay

4. Mass spectrum

We proceed now to extract the mass teffimsthe low-lying pseudoscalar and scalar
nonets. We discuss first the pseudoscalar spectrum. The quadratic terms in the fields from
Eqg. (26) and Eq. (44) combine to yield for instance

Ne _ o rug? (55)
1272 2G(1+ wy) 2Gmy, (1 + wy)
To get this result we used the gap equation @3] the stationary phase conditions (27).
Let us also remind that some of our notations and results are explained in Appendix A.
Finally the pion mass is obtained by introducing physical fields (47)

(310 - Ausll) -

Lmasdm) = ¢,~2[

2 gz”;lu
m; =————.
Gmy (1+ wy)
In exactly the same way one can obtain the masses of the other members of the
pseudoscalar nonet

(56)

2 A A
2 8 (mM +ms)
m% = , 57
K™ Gmy +mg) L+ wy) S
2

m%:%(A+B—\/(A—B)2+4D2), (58)
2
& _

2<A—|—B—I—\/(A B)2+4D2). (59)

We also have

2
7

m

hy hy 2 — wy
A+B=—+ —+ )
m, Mg Gu—
1<hu hs+8a)u+a)s)’

m, Mg Gu—

(60)

\/E(hu h‘v_‘_a)s_wu),

my, Mg Gu—
wherep+ = (1 4+ ws — 2a)5). The argument of the square root is
h h 2 2
(A— B2 44p?= (1w 2o @ ) Lg[ 2 ). (61)
my, mgy Gu— Gu—

It is known that form,, = my # m; there is mixing in the 0, 8 channels. This part of the
Lagrangian has been diagonalized by introducing physical fiedd®l,’ via an orthogonal
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transformation, as it is discussed in Appendix B, with the mixing aéiglgn the singlet—
octet basis) defined from the diagonalization requirement.

In the limit of vanishing 't Hooft interactions = 0, the mixing angl@j is equal to the
ideal one with tat6iq) = 2+/2 and one can conclude that- nns, n’ ~ —ns. We find in
this case

2 20 - 2
m2mmd =S g SE ) 8T 62
Gmy G(my + my) Gmy
Using the gap equations one obtains the relations
2 2 2 _ 2
R ! (63)

2my, (mg —my,) B m_u 2m, (mg —my) B
which show the mass splittings within the nonet.
In the SU(3) limit m,, = my = m, for non-vanishing there is napo—¢pg mixing, since

D = 0. One obtains immediately the masses

2 A
2 2 2 g my
— = = — 64
with the singlet—octet mass splitting
3¢%w
2 2
_ - , 65
0088 G (1 1 w)(1— 20) (65)
where
kh 1 KAy,
=——=—|,/1-—%5 -1 66
“= 166 2( 4G? ) (66)

is a solution of the stationary phase equation (27) forH€3) case. In the chiral limit,
m = 0, the singlet masg g takes a non-vanishing value. The would 13¢l) Goldstone
boson receives a mass as a result of the 't Hooft interaction.
We turn now to the scalar sector. The masses of the scalar mesons are as follows. For
the mesons usually referred toas(1¢(J€) = 1-(071)) we obtain

h 1 292w,
2 2 u 2 2 2 S
m2 = L ) +dmP=mi +Amt+ > 67
w=§ (’”u G(l_ws)> " T “ G(l—a)g) (67)

and for the strang& ; IJ" = %(O*)) we have

2 =g2 1 hy + hg
Ko GAl—w,) my+myg

22w,
GA-wd)
(68)

m ) +4mgm, = m%{ + dmgmy, +

In the 0, 8 channels one must diagonalike states. Diagonalization proceeds as in
the pseudoscalar case and the resulting scalar states are denetaddyy, respectively,
indicating a set offg (1¢(JF€) = 07 (0**)) mesons. The mixing angk is defined in
the (0, 8) basis. As a result we obtain for the corresponding masses
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m3=%<A+B—m),
_8

o 2 2
2( +B+(A-B) +4D) (69)
where
hy hy NI 2+ ws
A+B= 1(mf+m5)+ o
my mg G[L+
A_Bzh_u_ﬂ_m

my, mg Guy

D:ﬁ(h—”—ﬂ—”*‘_“’”) (70)
2
(A—B)2+4D2=[3(h—“—ﬁ)— o ] +

and

my,  mg 3Gus
2
8( Ou ) . (71)
my Mg Guy Gu4

Supposing for a moment that= 0, we find the mixing anglés to be equabig, thee-
meson is a pure non-strange statg, and thee’ is purely strangey-es. The scalar masses
become

2 2 2 2

My, =mg, =my + 4ms,,

m%g = m%{ + 4m,my,

2 _ 2 2

me, =my_ +4mg, (72)
giving the following mass splittings within the nonet

m%{é - m2 = 2(mg — my)(mg + 2my),

2

mg — mK* 2(mg — my)(2ms +my,). (73)
The latter is three times bigger than in the pseudoscalar case
mzs - mgns = 3(’”%5 - m%ns) = 6(m.32 - mg)' (74)

Let us consider now th8U (3) limit m, = my = m, for « #0. One has
2¢%w
G(l—-w?

There is no mixing here, sinc® = 0, and the singlet state is splitted due to the 't Hooft
interaction

2

m; —m .= M3 —m +4m + (75)
K3 88

35%w
) 76
G(l-w)(1+2w) (76)
Comparing theSU (3) limit of singlet—octet mass splittings in the pseudoscalar, Eq. (65),

and scalar, Eq. (76), channels, one observes that these expressions have opposite signs for
the physically reasonable sets of parameters (< 1/2), whereu_ andu . are positive.

2 2
Myy — Mgg= —
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The 't Hooft interaction pulls the singlet pseudoscalar state up and the singlet scalar state
down with respect to the corresponding octet ones.

To summarize, the pseudoscalar and scalar masses are obtained by means of a specific
asymptotic expansicnof the heat kernel in the framework of a simple model for low-
energy QCD. It can be improved in different ways. We have already mentioned some of
them in Section 2. Here we also would like to point out that in truncating the heat kernel
series at second order we are neglectingeigize momentum dependent contributions to
the one-loop fermion determinant that become more important for the heavier particles,
so that the pole position for extraction of the masses can be modified in a sizable way.
However it is well known that the lack of confinement in the NJL model introduces serious
difficulties with the crossing of non-physicalrésholds associated with the production
of free quark—antiquark pairs, which one ynencounter by formally continuing the full
Euclidean action to Minkowski space. Tleeare the main reasons why we decided in
this simplified version of the model to truncate the series, taking into account only the
divergent contributions. On one hand, in doing so, we admittedly deviate from the original
NJL Lagrangian, however in a way which relies heavily on its symmetries and asymptotic
dynamics, which are fully taken into accountn @he other hand, this approach gives us,
in principle, a chance to corresystematically the coefficients of the heat kernel series
by introducing new parameters in the regularization function A1, A, ...) and fixing
them in accordance with phenomenological reguients. This procedure, hopefully, can
be developed similarly to QCD sum rules, like it has been done in [24] and discussed, in
particular, in relation with NJL-type models in [25].

5. Numerical resultsand discussion

The parameters of the model,,, i, G, « and A are shown in Table 1.

In Table 2 is the pseudoscalar spectrunggther with the weak decay constafits fx
and mixing anglep; the masses and mixing anglgof the scalars are given in Table 3.
Inputs are indicated by (*). The Latin letter labels on the left-hand side identify the sets in
the tables.

The following empirical values are taken from [26§F = 139.57018+0.00035[MeV],
mf = 493677+ 0.016 [MeV], m, = 547+ 0.12 [MeV], m,, = 957.784+ 0.14 [MeV]
for the masses in the low lying pseudosgasector. The weak decay constaffs® =
1307+ 0.1+ 0.36 [MeV], F¢® = 1598+ 1.4+ 0.44 [MeV] relate to ours through a2
normalization factor, thug; "~ 92.4 MeV and f¢ "~ 113 MeV.

The scalar masses up te 2 GeV are presently known to bep(980 = 9847 +
1.2 [MeV], ap(1450 = 14744+ 19 [MeV], fo(600 = 400-1200 [MeV],f0(980) = 980+
10 [MeV], fo(1370 = 1200-1500 [MeV], fo(1500 = 1500+ 5 [MeV], fo(1710 =
1713+ 6[MeV], K;5(1430 = 1412+ 6 [MeV], where the name of the particle is identified
with its mass, in order not to clutter the notation. In [27] there is reported the possibil-

3 A summation over all constant meson fields in thiseseteads to a derivative (long wavelength) expansion.
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Table 1
The main parameters of the model given in the following urits} = MeV, [G] = GeV2, (k] = GeV~>,

[A]=GeV

’;114 (my) ’ﬁs (ms) G —K A
a 4.9 (302) 167 (519) 9.3 o* 0.95
b 2.8 (211) 85 (356) 2.8 157 1.4
c 2.7 (214) 92 (397) 3.1 88 1.4
d 1.2 (171) 41 (310) 1.1 11 2.3
e 0.7 (155) 24 (296) 0.6 1.6 3.2
f 3.2 (227) 105 (405) 3.7 173 1.3
g 4.9 (296) 161 (493) 7.6 664 0.95
h 2.2 (199) 75 (375) 2.3 45 1.6
i 3.6 (242) 122 (437) 4.6 205 1.2
i 3.6 (235) 109 (382) 3.7 422 1.2
k 47 (286) 155 (485) 7.2 477 0.98
I 15 (179) 50 (317) 15 234 2.0
Table 2
The pseudoscalar nonet parameters in units of MeV (except for the @ngldich is given in degrees)

my mg S fx mpy nyy Hp
a 138* 494* 92* 125* 138 612 35
b 138* 494* 92* 124 547* 1504 2
c 138* 494* 92* 131 526 958* —4
d 138* 494* 92* 129 547* 1078 2
e 138* 495* 92* 134 545* 958* 2
f 137* 496* 92* 128 532 1109 -2
g 137* 496* 92* 122* 507 1089 -7
h 138* 495* 92* 133 535 958* —3*
i 138* 495* 92* 129 516 958* —7*
j 138* 494* 92* 121* 547* 2187 2
k 138* 494* 92* 124* 497 958* -10
| 138* 494* 92* 127* 547* 1156 2

ity of existence of a low lying strange scalar mesk§. A broad resonance with mass
K3(800) =797+ 19+ 43 [MeV] is observed in [28].

We start the discussion of the scalar and pseudoscalar sectors with the following special
case shown in set (a). This pattern correspondSU@3) breaking (, # my) without
U4 (1) breaking ¢ = 0) and has been considered in dietaSection 4 (see Eq. (62) for the
pseudoscalars and Eq. (72) for the scalars).

The overall description of mass spectra is reasonable, given the simplicity of the model.
Particular trends are as follows. Fixing,, mk, f, andm, (set b) orm,, (set c) to their
empirical values, results in reducing the parametef the 't Hooft interaction by approx-
imately a factor 2 in going from (b) to (c) (dropping slightly with increasing value of the
cutoff). The masses for the scalars amg are highly sensitive to the choice of thenass:
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Table 3

The different fits for the masses of the scal&l nonet in units of MeV (except of the angle which is given
in degrees), as compared with a putative nonet famjl{p80), K(’; (800), fp(600) and f(980). The symbols of
resonances stand for their masses

ap {ap(980)} Kg (K§(800)} € {fo(600} €' {f0(980)} bs
a 620 933 620 1205 35
b 1215 1164 346 1199 14
c 888 976 423 1097 22
d 985* 968 249 1017 16
e 900 895 224 954 18
f 985* 1050 441 1153 20
g 985* 1150 601 1295 22
h 891 954 384 1063 22
[ 889 1021 489 1252 23
j 1447 1346 399 1364 12
k 907 1087 339 1248 24
[ 1036 1009 263 1053 15

only a 4% reduction afz,, value in (b) is needed to get the empirigg} (c), corresponding
however to a 35% drop of the latter with respect to its value in (b). Fixitmits empirical
mass in (b) not only yields a much too heayy but also too heavy scalasg, K ande’
(Table 3).

Although the order of magnitude for the scalar masses in set (c) is reasonable, e.g.,
the mass ot is obtained within 10% of its experimental value and #g mass within
20%, the general trend for a large set of parameters js< mgy <me,as opposed to the
present empirical evideang < mgy > m fy980. The latter ordering can be obtained for
sufficiently low values ok, see set (d), witlhn,, >~ m. within 2% of the empirical value,
but at the expense of a very lightand too low values of current and constituent quark
masses. The mass &f;, being almost degenerate with, remains too large by 20%.

In set (e) we fix the 5 parameters of the model completely in the pseudoscalar sector,
throughmy, mg, fz,m,, m,. This constrains the and G parameters to comparatively
very low values and yields also small quark masses;athand K; masses are almost
degenerate, th&; mass being slightly smaller than thg mass.

In sets (f) and (g) three model parameters are fixed throughmg, f, in the
pseudoscalar sector and one in the scalar secigrrequiring that the average value of
then, n’ masses be within 10% of the empirical value.

In sets (h), (i) we fixn,,mg, fr,m, and the mixing angle in the pseudoscalar chan-
nels. Results are also quite sensitive to the choicgkqfsee for instance sets (j) and (k),
where the four input values of sets (b) and (c) have been kept respectively, fixing the re-
maining freedom by reducing slightly the valuesfaf. In set (j) a reduction of x implies
an increase in the magnitudesfincreasing the splitting and turning therefore theig-
nificantly heavier 4 remained fixed). The masses of the scalars increase by about 20%, as
compared to their values in set (b), the lowfgra bit less, by 15%. In set (k) the reduction
of fx implies also an increase in and therefore in the splitting, this time reducing the
value ofm, (sincem,  was kept fixed). The splitting in the scalars is also enhanced, the
is pushed up and down. The masses @b and K increase only slightly.
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In set (I) the input parameters of (b) were kept, iftchosen larger. The parameter
gets reduced and the conclusions are opposite to the ones of set (j).

The values of the mixing angl@p andds shown in Tables 2 and 3 are consistent with
results obtained in [29] in the framework of the lineamodel with brokern/ (3) x U (3)
symmetry, wheredp = —5° and 6s = 21.9°, and with the valuegp ~ 2°, ¢ps ~ —14°
reported in [30]. The last angle here describes the mixing in the flavour basis and cor-
responds tays (see Appendix B) in our nations. This agreemerg not accidental, since
the bosonized NJL model is closely related to the linear sigma model [31,32].

6. Concluding remarks

We have analyzed the Nambu—Jona-Lasinio model of QCD in the light of a new gen-
eralized heat kernel expansion. The resutim effective Lagrangian of low-energy QCD,
incorporating the complete original symmetry pattern, but eliminating all non-physical
thresholds associated with quark—antiquaak formation due to the lack of confinement
of the original Lagrangian. We applied the so obtained Lagrangian in the extraction of the
low lying spectra of pseudoscalars and scalars. The pseudoscalar spectrum turns out to be
quite satisfactory and we used it partly to fhe main parameters of the model. As can be
seen from Table 3 the predictions for scalar mesons are also not too far from the experi-
mental masses of the lightest known scalars, which is remarkable in view of the simplicity
of the model.

There is growing evidence that an isoveaig(980), an isospinoik ;(800), as well as
two isoscalarsfo(600) and f5(980), are members of the same low-lying scalar nonet [30,
33-35]. There are however different opinions about their origin. In our calculation we con-
sidered the lightest scalar nonet as bejggstates. Itis in line with ideas presented in [29].

The outcome of the model is obtained in the leading order stationary phase approxima-
tion and can be implemented. There are défersources for corrections both at leading or-
der and next to leading order. For instance the inclusion of vector and axial-vector mesons
can be important for the physical picture, besathey contribute already at leading order
through the pseudoscalar—axial-vector and scalar—vector mixings. There are also several
contributions at next to leading order, exmeson loop corrections [36] and semi-classical
corrections to the 't Hooft determinant [16]. As discussed in Section 4 of [16] there are two
distinct regimes of chiral symmetry breaking, related to small/large six-quark fluctuations.
For large fluctuations the quantum corrections may be numerically relevant. Our aim in the
present work was to show that the considered new method for the asymptotic expansion of
the heat kernel, which is in fulgreement with all symmetrgquirements, leads already
in its minimal form to realistic results for mass spectra. A more detailed description of the
scalar nonet in the framework of our method;lirding its decay properties, will be given
elsewhere.
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Appendix A. Consequences of Eq. (23)

The first equation in (23) can be written in terms of quark-flavour comporgr{see
Eqg. (27)). In general théu, d, s) basis can be transformed to the ba8is3, 8) by the use
of the following matricesv;, ande,; defined as [16]

1 (Y2 V2 V2 1 V2 V3 o1
eai = V3 =3 0|, wu=-%7|+v2 -V3 1]. (A1)
2/3 ( 1 —2) V3 (fz 0 —2)

Here the indexa runsa = 0, 3, 8 (for the other values af the corresponding matrix el-
ements are assumed to be zero). We have then for instgneee,; h;, andh; = w;shy,.
Similar relations can be obtained fa; andA,. In accordance with this notation we use,
for instance, thahi}) = wth}). The following properties of matrices (A.1) are straight-
forward: wigeq; = 8ij, €aiwip = Sab, €aicaj = 8ij/2 andwj wi. = 284.. The coefficients
t;jx are related to the coefficients,,. by the embedding formulaad, Aascesjeck = tijk-
The SU(3) matrices\, with indexi are defined in a slightly differentway.2= w;, A, and
Ao = 2e4; ). In this case it follows that, for instance,= o,A, = 0;1; = diag(oy,, 04, o),
but 2,A, =0; A;.

The solutions of Eq. (27) are given in [16]. One can express all other coeffi¢ignts
in terms of these basic variables. We quote further our resultforsplitting the range of
running indices:, b on three subsets; s =0,8,n,m =1,2,3andf, g =4,5,6,7,

-8 -8
1.2) _ nm p12 _ fe A2
e GAF )’ 8 T GAFw) (A-2)

For the 2x 2 matrix with indices 0, 8 we have

h(1',2) _ -1 3F (4o, — wy) i\/é(wu — wy) (A3)
rs 3Gu+ \ £V2(wy — w5) 3422w, + ws)
with u+ = 1+ ws — 20)5) and
K/’li
i = . A4
Wi = 7es (A.4)

Quite often the stationary phase equatioossidered together with the gap-equations
help us to simplify essentially the results. Here is an useful example that shows Eqs. (27)
and (43) at work.

Example. Let us consider the expression for the mass of kaons following from our mesonic
Lagrangian. It is not difficult to obtain that

1 1/ hy hy

2 2 2

- - Ju s —mp)2. A5
"X “”[G<1+wb,>+2<mv+ Mﬂ“m o =
One notices, by using

hs — hu

gz(—' - —) =2(m? —m§), (A.6)

mg my
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which is a direct consequence of the gap equna; that the following relation is fulfilled

2(hs h hy + hy
() i
ms  my my + mg
Therefore, we obtain
1 hy +h
2 2 u s
= + , A.8
me=s (G(1+wu> m+m) (A-8)
which can be further reduced to the final result indicated in the Eq. (57), by observing that
Ay + As
hy 4 hy = ——— 2. A.9
T Gt (A9)

This last expression follows immediately from Eq. (27).

Appendix B. Diagonalization of the mass matrix and physical states

To illustrate how the physical fields are chosen in the main part of the text we recall here
some useful details of the diagonalization procedure and how to relate to several different
conventions adopted in the literatureutGstarting point is a quadratic for@ written in
the singlet—octet basis(g, Xs)

A DY (Xo

Q—(Xo,Xs)(D B) <X8> (B.1)

which can be diagonalized by an orthogonal transformation to the physical Xat&$
X cosy sind \ (Xo

(x)- (5o &) () ©2
The angle is extracted from the equation

tan?® = 2—D (B.3)

A—B

After some trigonometry thé-dependence of the diagonalized maighcan be absorbed
in just one term

1 _(A+B+ A 0 X
=2(X, X o5 <_> B.4
° 2( )< 0 A+ B~ cos?) X ( )

Itis easy to see that

A_B:sgr<A_B)\/(A—B)2+4D2 (B.5)

cosd cosd
and therefore

Q:m§X2+m2—)_(2

m? = [A+B+sgr(

m% = [A+B—sg

)m]. (B.6)

D>O
Uu@
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Finally, to identify the fieldsX, X with the physical ones, one should proceed as fol-
lows. Firstly, find the angle® from Eqg. (B.3), choosing, for instance, the principal
value of arctan@, i.e., —(r/4) < 0 < (7r/4). Secondly, determine the sign of the ratio
(A — B)/cos@. Only after having established which value(efy, m 3) is bigger, should
one proceed with identification of the physidi@lds, writing down the corresponding ro-

tation (B.2).
Alternatively, one can use the non-strange—strange bagis Xs), where
X 1 X
(0)-(7 ) (o) ©
Xs V3Ll —v2)\Xs
Our definition (B.2), taken together with Eq. (B.7), leads to the explicit representation
X\ _(cosy —siny\ (Xns
()=(5m o) (50) (®:
or
X\ ([ cosy siny [ Xns
(f() - (—simﬁ cos&) (—Xs) (B.9)

The angley here is equal tgy = 6 + 6, wherediq (6iq + 6ig = /2) is determined by the
equations sifiq = v/2/3, coFig = 1/+/3, and thereforgy = 6 + arctarv/2 ~ 0 + 54.74°.
It means thaty is restricted to the range®° < < 99.74°. The angle) = ¢ — (1/2) =
6 — 6ig and belongs to the interval80.26° < vy < 9.74°. These two angles correspond to
two alternative phase conventions for a strangeomponent.

Here are examples that illustrate the physict#rpretation of the given formulae, using
the results of our calculations obtained in Section 4.

Example 1. In the case of pseudoscalars with brolgh(3) symmetry but without 4 (1)
breaking £ = 0) the ¢o and ¢g components are mixed with the angle= 6;4 and (A —

B) < 0. Hence, one can conclude from Eq. (B.6) that Fstate is a heavier one and
corresponds tg’. We have from (B.8)' = —ns andn = nns. However, ifU4 (1) symmetry

is broken(x # 0), one hag A — B) > 0 (these are exactly the cases (b)—(I) shown in the
Table 2) and we must identify the physical fields in opposite onder X, n = X.

Example 2. In the case of scalar mesons there is no difference between the two patterns
« =0 andk # 0. In both cases we havel — B) <0, i.e., X =€, X =e€. If « =0, they
are pure flavour state¥ = —es and X = ¢ps.
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