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Abstract. We classify the subgroups of the automorphism group of the product of
4 projective lines admitting an invariant anticanonical smooth divisor on which the
action is free. As a first application, we describe new examples of Calabi–Yau 3-folds
with small Hodge numbers. In particular, the Picard number is 1 and the number of
moduli is 5. Furthermore, the fundamental group is non-trivial. We also construct a
new family of minimal surfaces of general type with geometric genus zero, K2 = 3 and
fundamental group of order 16. We show that this family dominates an irreducible
component of dimension 4 of the moduli space of the surfaces of general type.

1. Introduction

A smooth ample divisor in a Calabi–Yau 3-fold is a minimal surface of general type. This
simple observation yields a bridge between two important classes of algebraic varieties;
a bridge that has had many applications. The most famous example is the construc-
tion of the first Calabi–Yau 3-fold with nonabelian fundamental group by Beauville in
[Bea99], obtained by extending Reid’s construction in [Rei] of a Campedelli surface with
fundamental group isomorphic to the group of quaternions Q8. Beauville shows that the
surfaces constructed by Reid are all “rigid ample surfaces” (i.e., smooth ample divisors
S in Y such that h0(OY (S)) = 1) in the 3-fold he constructs.
Beauville also points out that a rigid ample surface in a Calabi–Yau 3-fold is a surface
with pg = 0, which is one of the most interesting classes of surfaces of general type. He
also mentions that whereas “for surfaces with pg = 0 and K2 = 1 or 2 we have a great
deal of information (...) little is known about surfaces with pg = 0 and K2 = 3, 4, 5.” He

refers to Inoue’s examples with fundamental group Q8 ⊕ (Z2)
K2−2, asking if they are

rigid ample surfaces in a Calabi–Yau 3-fold. [NP11] proves that the answer is affirmative
when K2 = 3.
Nowadays, we know a bit more on surfaces of general type with pg = 0, but not that
much. We know all possible algebraic fundamental groups of a minimal surface of general
type with pg = 0 and K2 = 1, 2, a short list of finite groups, and the cases of bigger order
are classified. But we know very little about the next cases. For sure, a similar result
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is not possible for K2 ≥ 4, since there are examples with infinite algebraic fundamental
group: see [BCP11] for a more precise account on the state of the art in this research
area.
There is an old standing conjecture by Miles Reid [Rei79, Conjecture 4] which, by a
result of Mendes Lopes and Pardini [MP07, Theorem 1.2], would imply that all surfaces
of general type with pg = 0 and K2 = 3 have finite algebraic fundamental group. If
the conjecture is true, it should be possible to extend the results of the case K2 ≤ 2 to
this case. In particular, one could hope to classify the surfaces with the biggest possible
fundamental groups. There is a popular conjecture - not written anywhere, but usually
attributed to M. Reid - asserting that the maximal order should be 16.
In the literature, there are 3 families of such surfaces with fundamental group of cardinal-
ity 16: one with fundamental group Q8⊕Z2 ([BC10] and [NP11]), one with fundamental
group Z2

2⊕Z4 ([MP04]), one constructed very recently ([BC12]) with fundamental group
the central product of the dihedral group with 8 elements and Z4. The first two families
dominate irreducible components of the moduli space ([BC10], [Che12]). In this paper,
we construct a fourth family, dominating an irreducible component. More examples of
surfaces with pg = 0 and K2 = 3 have been recently constructed in [BP12], [CS10],
[PPS10], [PPS09], [KL10] and [Rit10]. In all these examples the fundamental group is
smaller or unknown.

On the Calabi–Yau side, physicists have focused recently on Calabi–Yau’s with small
Hodge numbers (h1,1,h1,2): see, for instance, [Bra11], [CD10], [BCD10], [Dav11], [FS11]
and [BDS12]. In [BF11], the authors describe some new examples of Calabi-Yau vari-
eties. They are given as quotients of anticanonical sections of Fano varieties by finite
groups G acting freely. The Fano varieties are products of del Pezzo surfaces of var-
ious degrees. In particular, for the product X of four complex projective lines, there
exists a Calabi-Yau Y with Hodge numbers (h1,1, h1,2) = (1, 5) and fundamental group
isomorphic to Z8 ⊕ Z2.
In [BF11] an upper bound on the order of G - depending on X - has been found. This
bound is maximal (equal to 16) if and only if X = P1 × P1 × P1 × P1. It is then
natural to ask which finite groups - among those of order 16 - yield free and smooth
quotients of Calabi-Yau manifolds. These quotients are again Calabi-Yau threefolds but
have smaller height and non-trivial fundamental group. In this paper we investigate all
possible actions, and come up with new non-isomorphic examples.

The main results of this work are the following. We contruct new families of Calabi–
Yau manifolds with small Hodge numbers. More precisely, we construct 4 families of
Calabi–Yau 3-folds with fundamental group of order 16 and Hodge numbers h1,1 = 1,
h1,2 = 5. We show that for two of these families, no Calabi–Yau in the family contains
a rigid ample divisor with K2 = 3. On the contrary, in the other 2 cases such a divisor
exists, giving 2 families of surfaces of general type with pg = 0. One of these families is
the family studied in [NP11]. The other family is a family of minimal surfaces of general
type with pg = 0, K2 = 3 and fundamental group Z4 n Z4: there is no example of a
surface with the same topological type in the literature. We also show that this family
dominates an irreducible component of the moduli space of the surfaces of general type.
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The method is the following. Consider the 4-fold X = P1×P1×P1×P1. Assume that G
is a finite subgroup of Aut(X), and let Y be a smooth divisor in |OY (2, 2, 2, 2)|, which
is G-invariant and such that the action of G on Y is free. Then the quotient Y/G is also
a smooth Calabi–Yau 3-fold. In this situation we say that (Y,G) is an admissible pair.

We classify all subgroups G of Aut(X) which appear in an admissible pair (Y,G). More
precisely, we see that for each isomorphism class of groups, there is, up to conjugacy,
at most one possible subgroup of Aut(X), which may form an admissible pair. We
determine the groups which appear in an admissible pair, and we give examples of
admissible pairs in each case. The Hodge numbers of Y/G depend only on G, and we
compute them in all cases.

This classification leads to exactly 4 groups of order 16. In the two Abelian cases, we
show that G does not act on any divisor in |OX(1, 1, 1, 1)|; in other words, Y/G has no
rigid ample divisor with K2 = 3. In the case of G = Z4 n Z4, such a divisor exists,
yielding a 4-dimensional family of surfaces of general type with fundamental group G.
We show that this family dominates an irreducible component of the moduli space. A
similar result holds in the last case G = Z2 ⊕ Q8; we skipped this case because that
family was already completely studied in [NP11] and [BC10].

2. Automorphisms of X = P1 × P1 × P1 × P1

Every g ∈ Aut(X) acts on the 4 factors (see, for instance, [BF11]) giving a surjective
homomorphism π : Aut(X) → S4 with kernel PGL(2)×4. On the other hand the per-
mutations of the factors give an inclusion S4 ↪→ Aut(X) splitting π and therefore giving
a structure of semidirect product

Aut(X) ∼= S4 n PGL(2)×4

Concretely this gives, ∀g ∈ AutX, a unique decomposition g = (Ai)◦σ where σ = π(g),
(Ai) = (A1, A2, A3, A4) ∈ PGL(2)×4, and σ(Ai)σ

−1 = (Aσ(i)).
If g = (Ai) ◦ σ and h = (Bi) ◦ τ ,

h ◦ g = (BiAτ(i)) ◦ (τ ◦ σ),

h ◦ g ◦ h−1 = (BiAτ(i)B
−1
(τ◦σ◦τ−1)(i)

) ◦ (τ ◦ σ ◦ τ−1).

For the purpose of what follows, we will denote by A and B the automorphisms of P1

that are represented, respectively, by

(x0 : x1) 7→ (x0 : −x1) and (x0 : x1) 7→ (x1 : x0),

where (x0 : x1) are projective coordinates on P1. It is easy to see that A and B have
order 2. The group 〈B〉 generated by B is conjugated to the group 〈A〉 generated by A
and this is true for every subgroup of PGL(2) of order 2. In general, the following holds
true.

Theorem 2.1 (Klein). If G is a finite subgroup of PGL(2), then G is isomorphic to
Zn, D2n, A4, S4 or A5. Moreover, two isomorphic finite subgroups are conjugate.

For every subgroup G of Aut(X) we will denote by Fix(G) the set of the points of X
which are fixed by some nontrivial elements in G.
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Remark 2.2. We are interested in automorphisms g ∈ Aut(X) whose fixed locus is dis-
joint from the zero locus of a suitable section of OX(−KX). This implies dim Fix 〈g〉 = 0.
In fact −KX is ample and therefore, if C is a curve in Fix 〈g〉, then C · Y > 0 so there
is at least one fixed point of 〈g〉 lying on Y . On the other hand, Fix 〈g〉 is not empty by
holomorphic Lefschetz fixed point formula.

For the holomorphic fixed point formula we refer the reader to [AB68, Theorem 4.12].
For the convenience of the reader, we recall here the following corollary which we will
use.

Theorem 2.3 (Corollary of the holomorphic Lefschetz fixed point formula). Let X be
a compact complex manifold and let f ∈ Aut(X) be an automorphism with at most
a finite number of isolated nondegenerate fixed points. If we write f∗|H0,q(X) for the

endomorphism induced by f on H0,q(X), then∑
x∈Fix(f)

1

det(I − dxf)
=
∑
q

(−1)qTr(f∗|H0,q(X)).

In our case, since for X = (P1)4 one has H0,∗(X) = H0,0(X) ∼= C, the right side of the
equation is equal to 1. This implies that the left side has to be different from zero and,
in particular, it is necessary to have at least a fixed point to have a contribution.

It is shown in [BF11] that if Fix(G) does not intersect an anticanonical divisor, then |G|
divides 16. We have then 4 cases to consider: groups of order 2, 4, 8 or 16.

2.1. Subgroups of order 2.
The condition in Remark 2.2 is a very restrictive condition for an automorphism of order
2. In fact, up to conjugacy, there is only one involution of Aut(X) with 0-dimensional
fixed locus, as the following lemma shows.

Lemma 2.4. Assume that g ∈ Aut(X) is an automorphism of order 2 such that Fix(g)
has dimension 0. Then π(g) = Id and g is conjugate to (A,A,A,A).

Proof. If g = (Ai) ◦ π(g) has order 2 then σ := π(g) has order at most 2 and, since
g2 = (AiAσ(i)) ◦ σ2, we have the relations AiAσ(i) = Id in PGL(2). Up to conjugation,
we can assume σ ∈ {Id, (12), (12)(34)}. If σ = (12), let x3 and x4 be two fixed points
of A3 and A4, respectively (the existence of which is guaranteed by the holomorphic
Lefschetz fixed point formula). Then, every point of the form

Px1 := (x1, A2x1, x3, x4), x1 ∈ P1,

is fixed. Indeed, since A1A2 = Id, we get

Px1 7→ (A1(A2x1), A2x1, A3x3, A4x4) = ((A1A2)x1, A2x1, x3, x4) = Px1 .

Similarly, if σ = (12)(34), the 2-dimensional locus consisting of the points of the form
(x1, A2x1, x2, A4x2) is pointwise fixed.

Accordingly, we may assume that σ = π(g) = Id, hence g = (Ai) with (since g2 = Id)
A2
i = Id, for all i. If Ai = Id for some i, one has at least a curve of fixed points (namely

the i-th P1), so every Ai has order 2 as an element of PGL(2). By Theorem 2.1, all Ai
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are conjugated in PGL(2) to A, so there exists Bi ∈ PGL(2) such that B−1i AiBi = A.
Then (Bi)

−1 ◦ g ◦ (Bi) = (A,A,A,A). �

Note that if H is a nontrivial subgroup of G, then Fix(H) ⊂ Fix(G). In particular, if
dim Fix(G) = 0, every element of order 2 in G belongs to Ker(π).

2.2. Subgroups of order 4.
Up to isomorphism, there are 2 groups of order 4, namely Z4 and Z2 ⊕ Z2.

Lemma 2.5. Assume that Z2⊕Z2 ' G ≤ Aut(X) satisfies dim Fix(G) = 0. Then G is
conjugated to 〈g, h〉 with g = (A,A,A,A) and h = (B,B,B,B).

Proof. Take two non-trivial elements g, h ∈ G. These have order 2 and a finite number
of fixed points. By Lemma 2.4, we have π(g) = π(h) = Id so g = (Ai) and h = (Bi).
Since g2 = h2 = ghg−1h−1 = Id, one obtains AiBi = BiAi and A2

i = B2
i = Id, hence

〈Ai, Bi〉 ≤ PGL(2) is isomorphic to a subgroup of Z2 ⊕ Z2. If this is a proper subgroup
of Z2⊕Z2, then either Ai, Bi or AiBi is the identity and so one of g, h or gh has at least
a line of fixed points, which contradicts the assumptions. By Theorem 2.1, 〈Ai, Bi〉 is
conjugated to 〈A,B〉 in PGL(2). Moreover the internal automorphisms of PGL(2) which
fix the subgroup 〈A,B〉 act on {A,B,AB} as the full group of permutations. Therefore
there is a Ci ∈ PGL(2) such that C−1i AiCi = A, C−1i BiCi = B; setting k := (Ci), we
have k−1 〈g, h〉 k = 〈(A), (B)〉. �

Lemma 2.6. Assume that g = (Ai) ◦ σ ∈ Aut(X) has order 4 and that there exists
an eigensection s ∈ H0(X,OX(−KX)) of g such that V (s) ∩ Fix 〈g〉 = ∅. Then g is
conjugated to (Id, A, Id, A) ◦ (12)(34).

Proof. Denote G := 〈g〉 ' Z4. By Remark 2.2, dim Fix(G) = 0. Since o(g) = 4, we
get Fix(G) = Fix(g2), so dim Fix(g2) = 0. Hence by Lemma 2.4, g2 is conjugated to
(A,A,A,A). Since

(A) = h−1g2h = (h−1gh)2,

we may assume, up to conjugation, that g2 = (A,A,A,A). Thus g = (A1, A2, A3, A4)◦σ
with σ2 = 1 and AiAσ(i) = A. By conjugation, we may assume σ ∈ {Id, (12), (12)(34)}.
The fixed points of G are

Fix(G) = {(P1, P2, P3, P4) : Pi ∈ {(1 : 0), (0 : 1)}}.

Let us now show that if σ ∈ {Id, (12)}, then at least a fixed point belongs to V (s)
for every invariant section s. If s is a section of s ∈ H0(X,OX(−KX)), then s is a
polynomial of multidegree (2, 2, 2, 2) in the variables ((x10, x11), (x20, x21), (x30, x31),
(x40, x41)). The condition V (s) ∩ Fix(G) = ∅ is equivalent to all of the coefficients of
the 16 monomials x21ix

2
2jx

2
3kx

2
4l being nonzero.

If σ = Id, then A2
j = A for all j = 1, . . . , 4. Hence Aj =

[
1 0
0 ±i

]
. Then x210x

2
20x

2
30x

2
40 and

x210x
2
20x

2
30x

2
41 are eigenvectors for the natural lift of the action of g on H0(X,OX(−KX))

with different eigenvalue. So they cannot both appear with nontrivial coefficient in an
eigensection s, a contradiction.
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If σ = (12), then A1A2 = A2A1 = A2
3 = A2

4 = A. Hence, we get A3, A4 ∈
{[

1 0
0 ±i

]}
. If

k = (A1, Id, Id, Id) ◦ Id, then

k−1gk = (A−11 A1 Id, IdA2A1, A3, A4) ◦ (12) = (Id, A,A3, A4) ◦ (12),

so we may take g of the form

g =
(
[ 1 0
0 1 ] ,

[
1 0
0 −1

]
,
[
1 0
0 ±i

]
,
[
1 0
0 ±i

])
◦ (12).

As in the previous case, this leads to a contradiction, since x210x
2
20x

2
30x

2
40 and x210x

2
20x

2
30x

2
41

are eigenvectors for the natural lift of the action of g on H0(X,OX(−KX)) with different
eigenvalue.

We conclude that we must have σ = (12)(34). Then g = (A1, A2, A3, A4)◦ (12)(34) with
g2 = (A). Letting k = (A1, Id, A3, Id) ◦ Id, we get k−1gk = (Id, A, Id, A) ◦ (12)(34). �

2.3. Subgroups of order 8.
Up to isomorphism, there are 5 groups of order 8; these are Z⊕32 , D8,Z8,Z2 ⊕ Z4 and
Q8.

Lemma 2.7. No subgroup G of Aut(X) with dim Fix(G) = 0 can be isomorphic to Z⊕32 .

Proof. Assume by contradiction that such a group G ' Z⊕32 exists. By Lemma 2.4,
π(G) = {Id}. Then G is generated by 3 elements of order 2 of the form gj = (Aij) for
j = 1, 2, 3. By Theorem 2.1, the subgroup of PGL(2) generated by A11, A12, A13 cannot
be isomorphic to Z⊕32 . Thus 〈A11, A12, A13〉 must be isomorphic to one of the proper

subgroups of Z⊕32 . We deduce that there exists a nontrivial g ∈ G acting trivially on
the first factor. Since every automorphism of P1 has fixed points, the action of g on the
other two factors has some fixed points, giving a 1-dimensional locus of fixed points of
g on X, contradicting dim Fix(G) = 0. �

Lemma 2.8. Let G be a subgroup of Aut(X) isomorphic to D8. Then, for every eigen-
section s ∈ H0(X,OX(−KX)), we have V (s) ∩ Fix(G) 6= ∅.

Proof. Assume by contradiction V (s)∩Fix(G) = ∅. Then by Remark 2.2 and Lemma 2.4,
for every reflection s ∈ G, π(g) = Id. By Lemma 2.6, for a rotation r of order 4,
π(r) 6= Id. But in D8 every rotation is product of two reflections, r = s1s2. This is a
contradiction since then Id 6= π(r) = π(s1)π(s2) = Id · Id. �

Lemma 2.9. Assume that G ' Z4 ⊕ Z2 is a subgroup of Aut(X) such that there exists
an eigensection s ∈ H0(X,OX(−KX)) with V (s)∩Fix(G) = ∅. Then, up to conjugation,
G = 〈(Id, A, Id, A) ◦ (12)(34), (B,B,B,B)〉.

Proof. Assume that G ' Z4 ⊕ Z2 with generators g and h. By Lemma 2.5, we may
assume g2 = (A,A,A,A) and h = (B,B,B,B). By Lemma 2.6, π(g) is conjugated to
(12)(34) so that we may assume g = (Ai) ◦ (12)(34). Since

A1A2 = A2A1 = A3A4 = A4A3 = A,

and AiB = BAi, for all i = 1, . . . , 4 we deduce that G is conjugated to a subgroup of
Aut(X) given by 〈(Id, A, Id, A) ◦ (12)(34), (B,B,B,B)〉, via k := (A1, Id, A3, Id). �
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Lemma 2.10. Assume that G ' Z8 is a subgroup of Aut(X) such that there exists an
eigensection s ∈ H0(X,OX(−KX)) with V (s) ∩ Fix(G) = ∅. Then, up to conjugation,
G = 〈(Id, Id, Id, A) ◦ (1324)〉.

Proof. Choose a generator g = (Ai) ◦ σ of G ' Z8. By Lemma 2.6, we may assume
g2 = (Id, A, Id, A) ◦ (12)(34), so σ is equal to (1324) or its inverse. Substituting g with
g−1 we may assume σ = (1324). Then A1 = A2 = A−13 = AA−14 , with A1A = AA1. We
can then reduce to g = (Id, Id, Id, A)◦(1324) by conjugation with k = (A1, A1, Id, Id). �

Lemma 2.11. Assume that G ' Q8 is a subgroup of Aut(X) such that there exists an
eigensection s ∈ H0(X,OX(−KX)) with V (s) ∩ Fix(G) = ∅. Then, up to conjugation,
G = 〈(Id, A, Id, A) ◦ (12)(34), (Id, A,A, Id) ◦ (13)(24)〉.

Proof. As usual for G ' Q8, let i, j and k = ij be generators of order 4. By Lemma 2.6,
π(i), π(j), π(k) ∈ {(12)(34), (13)(24), (14)(23)}. Since π(i)π(j) = π(k), we deduce that
π(i), π(j) and π(k) are all distinct. We get π(Q8) = 〈(12)(34), (13)(24)〉 ' Z2 ⊕ Z2. In
particular, up to conjugation, i = (Id, A, Id, A) ◦ (12)(34) and j = (Bi) ◦ (13)(24) with
j2 = (A,A,A,A). This forces j to be of the form (B1, B2, B

−1
1 A,B−12 A) ◦ (13)(24)

with ABi = BiA. Similarly, for k := ij = (B2, AB1, B
−1
2 A,B−11 ) ◦ (14)(23) we know

that k2 = (A,A,A,A), which implies B2 = AB1. Choosing l = (B1, B1, Id, Id), we get
l−1il = i and l−1jl = (Id, A,A, Id) ◦ (13)(24). �

2.4. Subgroups of order 16.
Up to isomorphism, there are 14 groups of order 16. These are:

Z8 ⊕ Z2, Z4 ⊕ Z4, Z16, Z4 ⊕ Z2 ⊕ Z2, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2, Q8 ⊕ Z2, D8 ⊕ Z2,

Z4 n Z4 :=
〈
g, h | g4 = h4 = Id, hgh−1 = g−1

〉
, Q16 :=

〈
g, h, k | g4 = h2 = k2 = ghk

〉
,

CP (D8, Z4) :=
〈
g, h, k | g4 = h2 = [g, h] = [h, k] = Id, g2 = k2, ghg = h

〉
,

SG(16, 3) :=
〈
g, h, k | g4 = h2 = k2 = [g, h] = [h, k] = Id, kgk−1 = gh

〉
,

D16 :=
〈
g, h | g8 = h2 = Id, h−1gh = g−1

〉
,

SD16 :=
〈
g, h | g8 = h2 = Id, h−1gh = g3

〉
,

M16 :=
〈
g, h | g8 = h2 = Id, h−1gh = g5

〉
.

Proposition 2.12. Let G be a subgroup of Aut(X) such that there is an eigensection
s ∈ H0(X,OX(−KX)), with V (s) ∩ Fix(G) = ∅. Then G cannot be isomorphic to any
of the following groups: Z⊕42 , Z4 ⊕ Z⊕22 , SG(16, 3), CP (D8,Z4), D8 ⊕ Z2, D16, SD16.

Proof. This follows directly by Lemmas 2.7 and 2.8 since all the groups in the statement
have a subgroup isomorphic either to Z⊕32 or to D8. �

Proposition 2.13. Let G be a subgroup of Aut(X) such that there is an eigensection s ∈
H0(X,OX(−KX)), with V (s) ∩ Fix(G) = ∅. Then G is not isomorphic to Z16 or Q16.

Proof. If G ' Z16, choose a generator g and set σ = π(g). By Lemma 2.6, up to
conjugation, σ4 = π(g4) = (12)(34). But (12)(34) has no fourth root in S4, a contra-
diction. If G ' Q16 then, as in the list above, g4 = h2 = ghgh, with g of order 8 and
h, gh of order 4. By the lemmas 2.6 and 2.10, we may assume π(g) = (1234) whereas
π(h), π(gh) ∈ {(12)(34), (13)(24), (14)(23)}. This contradicts π(g)π(h) = π(gh). �
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Proposition 2.14. Let G be a subgroup of Aut(X) such that there is an eigensection
s ∈ H0(X,OX(−KX)), with V (s) ∩ Fix(G) = ∅. Then G is not isomorphic to M16.

Proof. If G is isomorphic to M16, it has two generators g and h of order 8 and 2,
respectively, such that h−1gh = g5. By Lemma 2.4 and Lemma 2.10, up to conjugation,
we can assume that h = (A,A,A,A), and g = (A1, A2, A3, A4) ◦ σ where σ = (1324).
Denote by D the element A1A2A3A4 ∈ PGL(2). Since o(g) = 8, D is an involution. By
direct computation, h−1gh = hgh = (AAiA) ◦ (1324) and g5 = (D,D,D,DA4) ◦ (1324).
Since h−1gh = g5,

AA1A = AA2A = AA3A = D and AA4A = DA4.

Therefore A1 = A2 = A3 = ADA and then D = A1A2A3A4 = A3
1A4 = ADAA4, so that

A4 = (AD)2. Then, substituting in AA4A = DA4, we get AADADA = DADAD. Since
A2 = Id we get D = Id. But then g4 = (D,D,D,D) = Id, contradicting o(g) = 8. �

There are 4 cases left, Z8 ⊕ Z2, Z4 ⊕ Z4, Q8 ⊕ Z2 and Z4 n Z4. We will now show that
they all occur and that in each case the group action is determined up to conjugacy.

Theorem 2.15. Let G be a subgroup of Aut(X) such that there is an eigensection
s ∈ H0(X,OX(−KX)), with V (s) ∩ Fix(G) = ∅. Then, up to conjugation,

(1) G = 〈(Id, Id, Id, A) ◦ (1324), (B,B,B,B)〉 ' Z8 ⊕ Z2;
(2) G = 〈(Id, A, Id, A) ◦ (12)(34), (Id, Id, B,B) ◦ (13)(24)〉 ' Z4 ⊕ Z4;
(3) G = 〈(Id, A, Id, A) ◦ (12)(34), (Id, A,B,AB) ◦ (13)(24)〉 ' Z4 n Z4;
(4) G = 〈(Id, A, Id, A) ◦ (12)(34), (Id, A,A, Id) ◦ (13)(24), (B,B,B,B)〉 ' Q8 ⊕ Z2.

Proof. By the previous propositions, G is isomorphic to Z8 ⊕ Z2, Z4 ⊕ Z4, Q8 ⊕ Z2 or
Z4 n Z4.

Case (1). Let G ' Z8 ⊕ Z2 with generators g, h of order 8 and 2, respectively. By
Lemma 2.10, up to conjugacy, g = (Id, Id, Id, A) ◦ (1324). The element h has order 2 so
it is of the form h = (B1, B2, B3, B4), with B2

i = Id. Since gh = hg,

B3 = B1, B4 = B2, B2 = B3 and AB1 = B4A,

so that Bi ≡ B1 for all i, and B1AB
−1
1 A−1 = B2

1 = Id. The elements of PGL(2)
commuting with A leave invariant the set of fixed points of A; they are represented by a
matrix which is either diagonal (if B1 fixes both points) or antidiagonal (if B1 exchanges
them). In the diagonal case, since B2

1 = Id, we get B1 ∈ {Id, A} and then g4 = h, a
contradiction.
We deduce that B1 is represented by an antidiagonal matrix

B1 =
[

0 1
f2 0

]
for some f ∈ C∗. Set C =

[
1 0
0 f

]
and k := (C,C,C,C). Then

k−1gk = g and k−1hk = (B,B,B,B).
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Case (2). Let G ' Z4⊕Z4. Let g and h be the two generators of the two factors of G.
We know that the subgroup

〈
g, h2

〉
' Z4 ⊕ Z2 is conjugated to

〈(Id, A, Id, A) ◦ (12)(34), (B,B,B,B)〉 ,

so we may assume g = (Id, A, Id, A) ◦ (12)(34) and h2 = (B,B,B,B). By Lemma 2.6,
σ := π(h) ∈ {(12)(34), (13)(24), (14)(23)}. Since the same is true for π(gh), we have
σ 6= (12)(34). By replacing h with gh, we may assume σ = (13)(24). Since gh = hg and
h2 = (B,B,B,B),

h = (C,C,C−1B,C−1B) ◦ (13)(24)

with CAC−1A−1 = CBC−1B−1 = Id. Conjugation with k := (C,C, Id, Id) sends g to g
and h to (Id, Id, B,B) ◦ (13)(24).

Case (3). Let G ' Z4 n Z4, G =
〈
g, h | g4 = h4 = ghgh−1 = Id

〉
. Take g and h to be

generators of the two Z4. As with the case of Z4⊕Z4, we may assume g = (Id, A, Id, A)◦
(12)(34), h2 = (B,B,B,B) and π(h) = (13)(24). Since ghg = h,

h = (C,AC,BC−1, ABC−1) ◦ (13)(24)

with CAC−1A−1 = CBC−1B−1 = Id. Conjugation with k := (C,C, Id, Id) sends g to g
and h to (Id, A,B,AB) ◦ (13)(24).

Case (4). Let G ' Q8 ⊕ Z2. By Lemma 2.11, we can assume that Q8 = 〈i, j〉 with
i = (Id, A, Id, A) ◦ (12)(34) and j = (Id, A,A, Id) ◦ (13)(24). Let h = (C1, C2, C3, C4) be
the generator of the Z2 factor. Since ih = hi and jh = hj, C1 = C2 = C3 = C4 =: C
with C commuting with A and C2 = Id. These two conditions are satisfied if C = Id,
C = A or C is antidiagonal. If C = Id or C = A then h ∈ Q8 which is impossible. Then

C =
[

0 1
f2 0

]
for some f ∈ C∗. Let D =

[
0 1
f 0

]
. Conjugation by (D,D,D,D) fixes i and j

and sends h to (B,B,B,B). �

3. Heights and Hodge numbers for Y/G

In what follows G is a finite subgroup of Aut(X) and Y is a smooth Calabi–Yau threefold
in X = P1×P1×P1×P1 such that (Y,G) is an admissible pair, i.e., G ≤ StabAut(X)(Y )

and Fix(G)∩Y = ∅. We will compute all pairs of Hodge numbers (h1,1,h1,2) and relative
heights h := h1,1 + h1,2 of Y/G. Every case is realized as a partial quotient of the
examples of section 4. For the reader convenience we recall that, for every anticanonical
divisor Y in X, χ(Y ) = −128 (by, e.g., [BF11, Theorem 3.1]) and that for every Calabi-
Yau Z, χ(Z) = 2(h1,1(Z)− h1,2(Z)).

Recall that, for an admissible pair (Y,G), χ(Y/G) = χ(Y )/|G| and

H1,1(Y/G) = H1,1(Y )G = (Pic(X)⊗ C)G = (Pic(X)⊗ C)π(G).

Hence it suffices to consider the image π(G). For example, we have seen in Theorem 2.15
that, if G ' Z4 n Z4 and (Y,G) is an admissible pair then π(G) = 〈(12)(34), (13)(24)〉.
The action of G on C4 = Pic(X)⊗C has an invariant space of dimension 1 (the diagonal)
so h1,1(Y/G) = 1.

If |G| = 2 one has G ' Z2, χ(Y/G) = −64, π(G) = {Id} and



10 GILBERTO BINI, FILIPPO F. FAVALE, JORGE NEVES, AND ROBERTO PIGNATELLI

• (h1,1(Y/G), h1,2(Y/G)) = (4, 36) and h(Y/G) = 40.

If |G| = 4 then χ(Y/G) = −32 and one of the following holds:

• G ' Z2 ⊕ Z2, π(G) = {Id}, (h1,1(Y/G), h1,2(Y/G)) = (4, 20) and h(Y/G) = 24;

• G ' Z4, π(G) = 〈(12)(34)〉, (h1,1(Y/G),h1,2(Y/G)) = (2, 18) and h(Y/G) = 20.

If G has order 8, then χ(Y/G) = −16 and one of the following holds:

• G ' Z8 with π(G) ' 〈(1234)〉 ' Z4,
(h1,1(Y/G),h1,2(Y/G)) = (1, 9) and h(Y/G) = 10;

• G ' Q8 with π(G) = 〈(12)(34), (13)(24)〉 ' Z2 ⊕ Z2,
(h1,1(Y/G),h1,2(Y/G)) = (1, 9) and h(Y/G) = 10;

• G ' Z4 ⊕ Z2 with π(G) ' 〈(12)(34)〉 ' Z2,
(h1,1(Y/G),h1,2(Y/G)) = (2, 10) and h(Y/G) = 12.

Finally, if |G| = 16, then χ(Y/G) = −8 and each quotient has the same Hodge numbers
and height equal to (1, 5) and 6, respectively. More precisely one of the following holds:

• G ' Z8 ⊕ Z2 with π(G) ' 〈(1234)〉 ' Z4;

• G ' Q8 ⊕ Z2 with π(G) = 〈(12)(34), (13)(24)〉 ' Z2 ⊕ Z2;

• G ' Z4 ⊕ Z4 with π(G) ' 〈(12)(34), (13)(24)〉 ' Z2 ⊕ Z2;

• G ' Z4 n Z4 with π(G) ' 〈(12)(34), (13)(24)〉 ' Z2 ⊕ Z2.

4. Admissible pairs with group of order 16

In this section we give examples of admissible pairs (Y,G) with G maximal, i.e., with
|G| = 16. To be more precise, we give an example for each subgroupG of Aut(X) of order
16 that acts freely on a Calabi–Yau threefold which is stabilized by G. As previously
said, Y/G have Hodge numbers (1, 5). By taking partial quotients, one obtains all the
other examples.

4.1. Admissible pairs with G = Z4 n Z4.
By Theorem 2.15, up to conjugation G := 〈g, h〉 ⊂ Aut(X) with

(1)
g := (Id, A, Id, A, ) ◦ (12)(34),

h := (Id, A,B,AB) ◦ (13)(24).

G is a 2-group with 3 elements of order 2, namely g2 = (A,A,A,A), h2 = (B,B,B,B),
g2h2 = (AB,AB,AB,AB). Therefore Fix(G) = Fix(g2) ∪ Fix(h2) ∪ Fix(g2h2). These
are 3 disjoint sets of 16 points each:

(2)

Fix(g2) = {(x1, x2, x3, x4) : ∀i xi ∈ {(0, 1), (1, 0)}},
Fix(h2) = {(x1, x2, x3, x4) : ∀i xi ∈ {(1, 1), (1,−1)}},
Fix(g2h2) = {(x1, x2, x3, x4) : ∀i xi ∈ {(1, i), (1,−i)} .}
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H0(OX(2, 2, 2, 2)) has basis
{
xa110x

b1
11x

a2
20x

b2
21x

a3
30x

b3
31x

a4
40x

b4
41 : a1 + b1 = · · · = a4 + b4 = 2

}
.

Consider Q0, . . . , Q5 ∈ H0(OX(2, 2, 2, 2)) given by:

(3)

Q0 :=
∏4
i=1 xi0xi1,

Q1 := (x211x
2
20 + x210x

2
21)(x

2
31x

2
40 + x230x

2
41),

Q2 := x20x21x30x31(x
2
10 + x211)(x

2
40 + x241)− x10x11x40x41(x220 + x221)(x

2
30 + x231),

Q3 := x10x11x30x31(x
2
20 + x221)(x

2
40 + x241) + x20x21x40x41(x

2
10 + x211)(x

2
30 + x231),

Q4 := (x210 + x211)(x
2
20 + x221)(x

2
30 + x231)(x

2
40 + x241),

Q5 := (x210x
2
20 + x211x

2
21)(x

2
30x

2
40 + x231x

2
41).

Denote by L ⊂ |OX(2, 2, 2, 2)| the linear system generated by Q0, . . . , Q5.

Lemma 4.1. The linear system L is 5-dimensional and has 64 base points, given by:{
x10x11 = x20x21 = x230 + x231 = x240 − x241 = 0

}
∪{

x10x11 = x20x21 = x230 − x231 = x240 + x241 = 0
}
∪{

x210 + x211 = x220 − x221 = x30x31 = x40x41 = 0
}
∪{

x210 − x211 = x220 + x221 = x30x31 = x40x41 = 0
}
·

Proof. It is not hard to see that the Qi are linearly independent, for example, by expand-
ing Q0, Q1, Q2, Q3, Q4 −Q1 −Q5, Q5 and checking that there is no common monomial
in any two of them.

A base point of L must satisfy (x210 +x211)(x
2
20 +x221)(x

2
30 +x231)(x

2
40 +x241) = 0. Assume

that x210 + x211 = 0. Using Q0 we get x20x21x30x31x40x41 = 0. Notice that x20x21 6= 0
for, otherwise, Q1 = Q2 = Q3 = Q5 = 0 would reduce to

x231x
2
40 + x230x

2
41 = 0

x40x41(x
2
30 + x231) = 0

x30x31(x
2
40 + x241) = 0

x230x
2
40 + x231x

2
41 = 0

which is impossible. Then x30x31x40x41 = 0 and at least one among x30x31 and x40x41
vanish. Suppose x30x31 = 0. Then Q2 reduces to x40x41(x

2
20 + x221) = 0. Arguing as

above we can show that x220 + x221 6= 0. Hence also x40x41 = 0 and either Q1 or Q5

reduces to x220−x221 = 0. Assuming x40x41 = 0 instead of x30x31 = 0 a similar argument
leads to the same conclusion. The statement follows by repeating the same argument
with starting assumption x220 + x221 = 0, x230 + x231 = 0 or x240 + x241 = 0. �

Corollary 4.2. The general Y ∈ L is a Calabi–Yau 3-fold on which G acts freely.

Proof. Notice that G leaves invariant each of the divisors (Qi = 0), i = 0, . . . , 5; indeed
g and h fix all of Qi. In particular, the action of G induces an action on every Y ∈ L.
Moreover, the base locus of L computed in Lemma 4.1 does not contain any of the fixed
points of the action, given in (2); hence the action on the general Y ∈ L is free.
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Consider the points [(±i, 1), (±1, 1), (0, 1), (0, 1)] of the base locus of L. After localizing
at the affine open set of X given by x11 = x21 = x31 = x41 = 1, the equation of Q4

becomes (x210 + 1)(x220 + 1)(x230 + 1)(x240 + 1). It is easy to see that this equation defines
a hypersurface in C4 smooth at the points (±i,±1, 0, 0). Similarly, one checks that
(Q4 = 0) is smooth at all of the 64 base points in Lemma 4.1. By Bertini’s Theorem, it
follows that the general Y ∈ L is smooth. By Lefschetz Hyperplane Section Theorem,
Y is simply connected and since ωY = ωX(2, 2, 2, 2)|Y = OY , Y is a Calabi–Yau. �

4.2. Admissible pairs with G = Z4 ⊕ Z4.
By Theorem 2.15, up to conjugation, G := 〈g, h〉 with

(4)
g := (Id, A, Id, A) ◦ (12)(34),

h := (Id, Id, B,B) ◦ (13)(24)

The following 6 homogeneous forms

Q′0 :=
∏4
i=1 xi0xi1,

Q′1 := (x211x
2
20 + x210x

2
21)(x

2
31x

2
40 + x230x

2
41),

Q′2 := x20x21x30x31(x
2
10 − x211)(x240 − x241)− x10x11x40x41(x220 − x221)(x230 − x231),

Q′3 := x10x11x30x31(x
2
20 + x221)(x

2
40 + x241) + x20x21x40x41(x

2
10 + x211)(x

2
30 + x231),

Q′4 := (x210 + x211)(x
2
20 + x221)(x

2
30 + x231)(x

2
40 + x241),

Q′5 := (x210x
2
20 + x211x

2
21)(x

2
30x

2
40 + x231x

2
41).

are invariant under the natural action of G on the vector space H0(OX(2, 2, 2, 2)). As in
the case of Z4nZ4, it can be shown that these forms span a 5-dimensional linear system
whose general member is smooth, has trivial canonical bundle, is simply connected and
on which G acts without fixed points.

4.3. Admissible pairs with G = Z8 ⊕ Z2.
By Theorem 2.15, up to conjugation, G := 〈g, h〉 with

(5)
g := (Id, Id, Id, A) ◦ (1324),

h := (B,B,B,B)

An explicit Calabi–Yau threefold Y ⊂ X, member of |OX(2, 2, 2, 2)|, invariant under the
action by G and on which G acts without fixed points is given in [BF11].

4.4. Admissible pairs with G = Q8 ⊕ Z2.
For this example we refer to [NP11], where it is given an action of G on X which is not
exactly the one described in Theorem 2.15, but a conjugated of it. Indeed in [NP11,
Theorem 1.1] there is a family of hypersurfaces Z2 ∈ |OX(−KX)| whose general element
is smooth and such that the group acts freely on it. By Theorem 2.15, that action is
conjugated to the one given here, and (Z2, G) is an admissible pair.
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5. Surfaces of general type

In this section we consider the families of admissible pairs (Y,G) of a Calabi–Yau 3-fold
Y ∈ |OX(2, 2, 2, 2)| and a group of order 16, acting on X = P1 × P1 × P1 × P1 such that
Y is invariant under this action and does not meet the fixed locus of G on X. The aim
is to find a Fano 3-fold V ∈ |OX(1, 1, 1, 1)|, invariant under the action of G. Then G
acts freely on the surface T := V ∩ Y , and the quotient T/G yields families of surfaces
of general type with pg = 0 and K2 = 3.

There are only 4 such admissible pairs. For G = Q8 ⊕ Z2 this has been already done in
[NP11], so we skip this case. Below we show that V does not exist if G is Z8 ⊕ Z2 or
Z4 ⊕ Z4. The remainder of this section is concerned with describing a new irreducible
component of the moduli space of canonical models of surfaces of general type with
pg = 0, K2 = 3 and fundamental group Z4 n Z4. To ease notation, let H denote the
class of a divisor in |OX(1, 1, 1, 1)|.

Proposition 5.1. No divisor in |OX(H)| is invariant by the action of Z8 ⊕ Z2 nor by
the action of Z4 ⊕ Z4 given in Theorem 2.15.

Proof. Note that the actions of A and B on P1 naturally lift to H0(OP1(1)), by tak-
ing A(x0) = x0, A(x1) = −x1, B(x1) = x0, B(x0) = x1. Using (4) and (5), these
lifts induce an actions of G on H0(OX(H)), since the set of 16 vectors x1ix2jx3kx4l,

(i, j, k, l) ∈ {0, 1}4 is a natural basis for H0(OX(H)).

In both cases, if we denote by g1 the automorphism induced by g and by h1 the auto-
morphism induced by h, a direct computation shows that g1h1 = −h1g1.
Assume that there is a geometrically invariant hyperplane section H. Then H is the
zero locus of a section v ∈ H0(OX(H)), which must be an eigenvector for both g1 and
h1. However, given that g1h1 = −h1g1, this is impossible. �

Consider the case (Y,Z4 n Z4). Namely, consider the family of Calabi–Yau 3-folds
Y ∈ L ⊂ |OX(2H)|, where L is the linear system generated by the quadrics (3). Let
G = Z4 n Z4 act on X as given in (1). Consider V = (F1 = 0) ∈ |OX(H))| defined by

(6) F1 := (x20x30 − x21x31)(x11x40 + x10x41)− i(x20x31 − x21x30)(x10x40 + x11x41).

Lemma 5.2. V is a Fano 3-fold polarized by −KV = H|V . The singular locus of V

is the set of the points such that x2i0 − x2i1 = 0, ∀i and x10x20x30x40 = −x11x21x31x41.
Therefore, Sing(V ) ⊂ Fix(h2) ⊂ Fix(G), where h is given in (1).

Proof. The only nontrivial claim is the statement about the singularities, which is
checked locally on each of the 16 affine open sets. In an affine open set, for exam-
ple, the affine open set given by x11 = x21 = x31 = x41 = 1, it is easy to see that the
singular points satisfy x2i0 = 1, ∀i and x10x20x30x40 = −1. Checking on all remaining
affine open set can be done with Macaulay2. �

Theorem 5.3. The general element T in the linear system L|V is a simply connected

smooth minimal surface of general type with pg(T ) = 15, q(T ) = 0 and K2
T = 48 on

which G acts freely. The quotient S := T/G is a minimal surface of general type with
pg(S) = q(S) = 0, K2

S = 3 and fundamental group G.
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Proof. By Lemma 5.2 and Lemma 4.1, the singular locus of V does not intersect the base
locus of L. Some points of the base locus of L are contained in V , for example, on the
affine open set given by x11 = x21 = x31 = x41 = 1, the point [(0, 1), (0, 1), (1, 1), (i, 1)]

belongs to V ∩ BsL. Nevertheless, at this point, ∂Q4

∂x10
= 0, ∂Q4

∂x40
= −4i, ∂F1

∂x40
= −1,

so [(0, 1), (0, 1), (1, 1), (i, 1)] is a smooth point of (Q4 = 0) ∩ V . A similar computation
shows that (Q4 = 0) ∩ V is smooth at all the base points of L|V . By Bertini’s theorem,
the general element of L|V is smooth. The general T does not contain any of the 48
points in Fix(G), so the G-action induced on T is free.
By Lefschetz hyperplane section theorem T is simply connected, q(T ) = 0; then q(S) = 0
and π1(S) ∼= G. By adjunction KT = H|T is ample with self-intersection 2H4 = 48, and

therefore KS is also ample and K2
S = 48/16 = 3. Moreover pg(T ) = h0(OX(H))−1 = 15,

and hence χ(OS) = χ(OT )/16 = 1−0+15
16 = 1. �

Theorem 5.3 produces a family of minimal surfaces of general type with pg = 0 quotients
of complete intersections T = {F = Q = 0} in X, parametrized by an open subset
P ◦ of the 6−dimensional subspace P := 〈F1〉 × 〈Q0, . . . , Q5〉 of P ′ := H0(OX(H)) ⊕
H0(OX(2H)).

Lemma 5.4. The action of G on X lifts to an action on P ′ such that P is the invariant
subspace (P ′)G. In particular, ∀v ∈ P , TvP

′ has an induced G-action making the natural
identification of P ′ with it G-equivariant.

Proof. We gave the action of G on X in (1) by giving a lift to H0(OX(H)). This
determines a lift to H0(OX(2H)) by asking the G-equivariance of the multiplication
map H0(OX(H))⊗H0(OX(H))→ H0(OX(2H)). This lifts the action of G to P ′.
All vectors v in P are eigenvectors, thus the action of G on P is six copies of the same
1−dimensional representation. Twisting by its dual, we find a lift fixing all vectors in
P : P ⊂ (P ′)G and the natural identification of P ′ with TvP

′ is G-equivariant.
To conclude we show that dim(P ′)G = 6.
First we checked that the trace of the action (1) on H0(OX(H)) is zero for every non-
trivial element, which implies that it is isomorphic to the regular representation C[G].
Since the regular representation is invariant by 1-dimensional twists, also the twisted
representation we are considering is isomorphic to it, and therefore H0(OX(H))G has
dimension 1 and equals 〈F1〉.
On the other hand, if (F,Q) is a general point in P ◦, OT (2H) ∼= OT (2KT ). Since
the action of G on T has no fixed points and T is a surface of general type, by the
holomorphic Lefschetz fixed point formula every linearization of the action on G on
H0(2KT ) is isomorphic to 4 copies of the regular representation; this holds in particular
for the linearization induced on the cokernel by the exact sequence

0→ F1 ⊗H0(OX(H))⊕ 〈Q〉 → H0(OX(2H))→ H0(OT (KT ))→ 0

and therefore

dim(P ′)G = dim(F1 ⊗H0(OX(H))⊕ 〈Q〉)G + dimH0(OX(2H))G = 2 + 4 = 6.

�
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We show now that all deformations of the complete intersection of an element of |OX(H)|
with an element of |OX(2H)| are obtained by moving the two hypersurfaces in their
linear system.

Proposition 5.5. Let Y be a smooth element of |OX(2H)|, V be an element of |OX(H)|
such that T = Y ∩ V is smooth. Then all small deformations of T are embedded, i.e.
the natural map

δ : H0(OV (H))⊕H0(OY (2H))→ H1(ΘT )

is surjective. Moreover h1(ΘT ) = 67 and h2(ΘT ) = 3.

Proof. We compute cohomology groups of sheaves on Y and T using (in this order) the
following exact sequences:

0→ OX → OX(2H)→ OY (2H)→ 0, and its twist by −H and by −2H,
0→ OY → OY (H)→ OT (H)→ 0,
0→ ΘX(−2H)→ ΘX → ΘX|Y → 0, and its twist by −H,
0→ ΘY (−H)→ ΘX|Y (−H)→ NY |X(−H) ∼= OY (H)→ 0,
0→ ΘY → ΘX|Y → OY (2H)→ 0,

recalling that ΘX = OX(2, 0, 0, 0) ⊕ OX(0, 2, 0, 0) ⊕ OX(0, 0, 2, 0) ⊕ OX(0, 0, 0, 2), and,
since Y is a Calabi–Yau 3-fold, that h0(ΘY ) = h3(Ω1

Y ) = h1,3(Y ) = 0. Table 1 contains
the result of this computation (empty cells are zeros).

h0 h1 h2 h3 h4

ΘX 12

ΘX(−H)

ΘX(−2H) 4

ΘX(−3H)

OY (2H) 80

OY (H) 16

OY 1 1

OT (H) ∼= ωT 15 1

ΘX|Y 12 4

ΘX|Y (−H)

ΘY (−H) 16

ΘY 68 4

ΘY 68 4

Table 1. Cohomology table

Now, consider the further exact sequence

0→ ΘY (−H)→ ΘY → ΘY |T → 0.
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Then h1(ΘY |T )− h0(ΘY |T ) = 52 and h2(ΘY |T ) = 4. Finally, from

(7) 0→ ΘT → ΘY |T → NZ|T = OT (H)→ 0,

recalling that since T is of general type, h0(ΘT ) = 0, we get h1(ΘT ) = 67, h2(ΘT ) = 3.

Consider the map, δ, in the statement. It has 2 components. The first component is
the composition of the restriction map H0(OV (H))→ H0(OT (H)), which is surjective,
with the coboundary map H0(OT (H)) → H1(ΘT ) in the cohomology sequence of (7),
whose cokernel surjects onto H1(ΘY |T ). Hence the image of δ contains the kernel of

the map H1(ΘT ) → H1(ΘY |T ). The composition of the second component with the

map H1(ΘT )→ H1(ΘY |T ) factors as H0(OY (2H))→ H1(ΘY )→ H1(ΘY |T ) which is a
composition of surjective maps, so surjective. It follows that δ is surjective. �

We can finally prove our last result.

Theorem 5.6. The family of surfaces in Theorem 5.3 dominates an irreducible compo-
nent of dimension 4 of the moduli space of minimal surfaces of general type of genus 0.

Proof. Take a smooth surface T ∈ L|V fulfilling the conditions of Theorem 5.3 and
consider the exact sequence

0→ ΘT → ΘX|T → OT (H)⊕OT (2H)→ 0.

The action of G on X and T induce actions on ΘT and ΘX|T for which ΘT → ΘX|T is
G-equivariant, and therefore induces an action on the cokernel, making the coboundary
map

dT : H0(OT (H)⊕OT (2H))→ H1(ΘT ),

which is the differential of the map sending embedded deformations of T to abstract
deformations, G-equivariant. Since δ factors through d, d is surjective and so the induced
map among the G-invariant subspaces

(8) dGT : H0(OT (H)⊕OT (2H))G → H1(ΘT )G

is surjective too.
The étale map π : T → S = T/G induces by pull-back an isomorphism ΘS → (π∗ΘT )G.
Since G is finite, π∗ΘT splits as direct sum of invariant subsheaves, one for each character
of G; in particular inducing an isomorphism from H1(ΘS) to H1(ΘT )G.
We have then a commutative diagram

TvP

��

dv // H1(ΘS)

��
(TvP

′)G // (H0(OT (H)⊕OT (2H)))G // H1(ΘT )G

where v ∈ P ◦ is a point corresponding to a surface S = T/G, dv is the differential at v of
the map from the family in Theorem 5.3 to the abstract deformations of S. Since (recall
Proposition 5.5) both vertical maps are isomorphisms, and the two horizontal maps at
the bottom are surjective, dv is surjective too. This shows that the family dominates a
component of the moduli space.
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Note that P ◦ has dimension 6 and multiplying the two equations by constants gives
a faithful C∗ × C∗ action on P ◦ trivial on the moduli space, so this component has
dimension at most 6−2 = 4. On the other hand, the expected dimension is 10χ−2K2

S =
10− 6 = 4; hence its dimension is 4. �

Remark 5.7. A similar argument shows that also the family given by the action of
Z2 ⊕ Q8 dominates an irreducible component of dimension 4 of the moduli space of
minimal surfaces of general type of genus 0. As explained by the last two authors in
[NP11], this was proved by Bauer and Catanese in [BC10], where an open set of that
family is constructed and studied with a different method. Therefore we decided not to
give here the details of our proof of that case.

Acknowledgments. The authors are grateful to Gian Pietro Pirola for helpful remarks,
and to an anonymous referee for improving some arguments of the last section.
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