
VANISHING IDEALS OVER GRAPHS AND EVEN CYCLES

JORGE NEVES, MARIA VAZ PINTO, AND RAFAEL H. VILLARREAL

Abstract. Let X be an algebraic toric set in a projective space over a finite field. We study
the vanishing ideal, I(X), of X and show some useful degree bounds for a minimal set of
generators of I(X). We give an explicit combinatorial description of a set of generators of I(X),
when X is the algebraic toric set associated to an even cycle or to a connected bipartite graph
with pairwise vertex disjoint even cycles. In this case, a formula for the regularity of I(X) is
given. We show an upper bound for this invariant, when X is associated to a (not necessarily
connected) bipartite graph. The upper bound is sharp if the graph is connected. We are able
to show a formula for the length of the parameterized linear code associated with any graph, in
terms of the number of bipartite and non-bipartite components.

1. Introduction

Let Ps−1 be a projective space over a finite field Fq. An evaluation code, also known as a
generalized Reed-Muller code, is a linear code obtained by evaluating the linear space of homo-
geneous d-forms on a set of points X ⊂ Ps−1 (see Definition 2.1). A linear code obtained in
this way, denoted by CX(d), has length |X|. Evaluation codes have been the object of much
attention in recent years. To describe their basic parameters (length, dimension and minimum
distance), many authors have been using tools coming from Algebraic Geometry and Commuta-
tive Algebra, see [2, 3, 7, 11, 17, 19, 22]. Let Ts−1 be a projective torus in Ps−1. A parameterized
linear code is a special type of generalized Reed-Muller code obtained when X ⊂ Ts−1 ⊂ Ps−1
is parameterized by a set of monomials (see Definition 2.5), in this case X is called an algebraic
toric set because it generalizes the notion of a projective torus. Parameterized linear codes were
introduced and studied in [15]. The extra structure on X yields alternative methods to compute
the basic parameters of CX(d).

In this article we focus on linear codes parameterized by the edges of a graph G (see Defini-
tion 2.6). For the study of algebraic toric sets parameterized by the edges of a clutter, which is
a natural generalization of the concept of graph, we refer the reader to [17, 18]. Not much is
known about the parameterized linear codes associated to a general graph. The first results in
this direction appear in [10], where the length, dimension and minimum distance of the codes
associated to complete bipartite graphs are computed. In [15], one can find a formula for the
length of the code associated to a connected graph (see this formula in Proposition 2.7) and also
a bound for the minimum distance of the code associated to a connected non-bipartite graph.

An important algebraic invariant associated to a parameterized linear code is the regularity
of the ring S/I(X), where S is the coordinate ring of Ps−1, i.e., a polynomial ring in s variables,
and I(X) is the vanishing ideal of X (see Definition 2.2). The knowledge of the regularity of
S/I(X) is important for applications to coding theory: for d ≥ regS/I(X) the code CX(d)
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coincides with the underlying vector space F|X|q and has, accordingly, minimum distance equal
to 1. In [24, Corollary 2.31] the authors give bounds for the regularity of S/I(X), when X is
the algebraic toric set associated to a connected bipartite graph. In [8] a bound is given for the
minimum distance of the codes associated to a graph isomorphic to a cycle of even length, as
well as another bound for regS/I(X) in this case.

The contents of this paper are as follows. In Section 2, we recall the necessary background. To
the best of our knowledge, there is no information available on the parameterized codes arising
from disconnected graphs. If G is an arbitrary graph, in Section 3, Theorem 3.2, we show our
first main result, an explicit formula for the length of CX(d) in terms of the number of bipartite
and non-bipartite connected components of the graph.

An earlier result of [15] shows that the vanishing ideal I(X) is minimally generated by a finite
set of homogeneous binomials. In Section 4, we study I(X) for an arbitrary algebraic toric set X
and show some useful degree bounds for a minimal set of generators of I(X) (see Theorem 4.5
and Proposition 4.6). If the graph G is an even cycle, another main result of this article is
an explicit combinatorial description of a generating set for I(X) consisting of binomials (see
Theorem 5.9). This result is generalized to any connected bipartite graph whose cycles are vertex
disjoint (see Theorem 5.13). We give examples of bipartite graphs not satisfying this assumption
for which I(X) is not generated by the set prescribed in Theorem 5.13 (see Example 5.14).

If the graph G is an even cycle of length 2k, using our description of a generating set for I(X),
we derive the following formula for the regularity:

regS/I(X) = (q − 2)(k − 1)

(see Theorem 6.2). Then, we give the following upper bound for the regularity of S/I(X) for
a general (not necessarily connected) bipartite graph with s edges and m cycles, with disjoint
edge sets, of orders 2k1, . . . , 2km:

regS/I(X) ≤ (q − 2)
(
s−

∑m
i=1ki − 1

)
(see Theorem 6.3). In Corollary 6.5, we show that this estimate is the actual value of regS/I(X)
if G is a connected bipartite graph with s edges and with exactly m even cycles, with disjoint
vertex sets, of orders 2k1, . . . , 2km.

The computational algebra techniques of [15] played an important role in discovering some
of the results, conjectures, and examples of this paper. Using the computer algebra system
Macaulay2 [12] and the results of [15], one can compute the reduced Gröbner basis, the degree
and the regularity of a vanishing ideal I(X) of an algebraic toric set X over a finite field Fq.
This allows us to study and to gain insight on the algebraic invariants of a vanishing ideal that
are useful in algebraic coding theory.

For all unexplained terminology and additional information, we refer to [1] (for graph theory),
[5] (for the theory of binomial ideals), [4, 13, 20] (for commutative algebra and the theory of
Hilbert functions), and [21, 23] (for the theory of linear codes and evaluation codes).

2. Preliminaries

Let K = Fq be a finite field of order q and fix s a positive integer. Recall that the projective
space of dimension s − 1 over K, denoted by Ps−1, is the quotient space (Ks \ {0})/ ∼ where
two vectors x1, x2 in Ks \ {0} are equivalent if x1 = λx2 for some λ ∈ K∗ = K \ {0}. Denote
by Ts−1 the subset of Ps−1 given by

Ts−1 =
{

[x] = [(x1, . . . , xs)] ∈ Ps−1 : x1 · · ·xs 6= 0
}
,
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where [x] is the equivalence class of x. The projective torus Ts−1 is an Abelian group under com-
ponentwise multiplication and is isomorphic to the standard (s−1)-dimensional torus, (K∗)s−1,
over K.

Consider S = K[t1, . . . , ts] =
⊕∞

d=0 Sd, a polynomial ring over the field K with the standard
grading. Given a nonempty set of points X = {[x1], . . . , [xm]} ⊂ Ts−1 ⊂ Ps−1 and letting

f0 = t1, consider, for each d, the map: evd : Sd → K |X| given by

(2.1) f 7→
(
f(x1)

fd0 (x1)
, . . . ,

f(xm)

fd0 (xm)

)
, ∀ f ∈ Sd.

For each d ≥ 0, evd is a linear map of K-vector spaces. Its image is denoted by CX(d).

Definition 2.1. The evaluation code of order d associated to X is the linear subspace of K |X|

given by CX(d), for d ≥ 0.

Notice that if q = 2 then Ts−1 is a point and, accordingly, CX(d) = K, for all d. For this
reason, throughout this article we assume that q > 2.

Clearly an evaluation code is a linear code, i.e., it is a linear subspace of K |X|. Accordingly,
one defines the dimension of the code as its dimension as a vector space, i.e., as dimK CX(d),
its length as the dimension of the ambient vector space, which, for evaluation codes, coincides
with |X| and, finally, its minimum distance, is defined as:

δX(d) = min{‖w‖ : 0 6= w ∈ CX(d)},

where ‖w‖ is the number of nonzero coordinates of w. The basic parameters of CX(d) are
related by the Singleton bound for the minimum distance:

δX(d) ≤ |X| − dimK CX(d) + 1.

Two of the basic parameters of CX(d), the dimension and the length, can be expressed using
the Hilbert function of the quotient of S by a particular homogeneous ideal. This ideal is the
vanishing ideal of X, i.e., the ideal of S generated by the homogeneous polynomials of S that
vanish on X. Denote it by I(X). Recall that the Hilbert function of S/I(X) is given by

HX(d) := dimK(S/I(X))d = dimK Sd/I(X)d = dimK CX(d),

see [20]. The unique polynomial hX(t) =
∑k−1

i=0 cit
i ∈ Q[t] of degree k − 1 = dimS/I(X)− 1

such that hX(d) = HX(d) for d � 0 is called the Hilbert polynomial of S/I(X). The integer
ck−1(k − 1)!, denoted by degS/I(X), is called the degree or multiplicity of S/I(X). In our
situation hX(t) is a nonzero constant because S/I(X) has dimension 1. Furthermore hX(d) = |X|
for d ≥ |X|−1, see [13, Lecture 13] and [6]. This means that |X| is equal to the degree of S/I(X).

A good parameterized code should have large |X| together with dimK CX(d)/|X| and δX(d)/|X|
as large as possible. Here, another algebraic invariant gives an indication of where to look for
nontrivial evaluation codes.

Definition 2.2. The index of regularity of S/I(X), denoted by regS/I(X), is the least integer
` ≥ 0 such that hX(d) = HX(d) for d ≥ `.

As S/I(X) is a 1-dimensional Cohen-Macaulay graded algebra [6], the index of regularity of
S/I(X) is the Castelnuovo-Mumford regularity of S/I(X) [4]. We will refer to reg(S/I(X))
simply as the regularity of S/I(X). The regularity is related to the degrees of a minimal
generating set of I(X).
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Definition 2.3. Let f1, . . . , fr be a minimal homogeneous generating set of I(X). The big
degree of I(X) is defined as bigdeg I(X) = maxi{deg(fi)}.

From the definition of the Castelnuovo-Mumford regularity of S/I(X) [4], one has:

Proposition 2.4. bigdeg I(X)− 1 ≤ reg(S/I(X)).

Since dimK CX(d) = HX(d) and the Hilbert polynomial of S/I(X) is a constant polynomial

with constant term equal to the dimension of the ambient vector space, K |X|, we deduce that
for d ≥ regS/I(X) the linear code CX(d) coincides with K |X|. This can also be expressed by
δX(d) = 1 for all d ≥ regS/I(X). We conclude that the potentially good codes CX(d) can occur
only if 1 ≤ d < reg(S/I(X)).

For a particular class of evaluation codes, called parameterized linear codes, the ideal I(X)
has been studied to an extent that it is possible to use algebraic methods, based on elimination
theory and Gröbner bases, to compute the dimension and the length of CX(d), see [15]. Let us
briefly describe the notion of a parameterized linear code.

Given an n-tuple of integers, ν = (r1, . . . , rn) ∈ Zn, and a vector x = (x1, . . . , xn) ∈ (K∗)n,
we set xν = xr11 · · ·xrnn ∈ K∗. Let ν1, . . . , νs ∈ Zn and let X∗ ⊂ (K∗)s be the set given by:

X∗ = {(xν1 , . . . , xνs) : x ∈ (K∗)n} .
Consider the multiplicative group structure of (K∗)s and let π : (K∗)s → Ts−1 be the quotient
map by the diagonal subgroup Λ = {(λ, . . . , λ) ∈ (K∗)s : λ ∈ K∗}. Notice that Ts−1 = (K∗)s/Λ
is the projective torus in Ps−1.
Definition 2.5 ([16],[15]). Let ν1, . . . , νs ∈ Nn. The set of points given by X = π(X∗) is called
an algebraic toric set parameterized by ν1, . . . , νs ∈ Nn. The evaluation codes CX(d) obtained
from an algebraic toric set X are called parameterized linear codes.

It is clear that X∗ is a subgroup of (K∗)s, since it is the image of the group homomorphism
(K∗)n → (K∗)s given by x 7→ (xν1 , . . . , xνs). Denote by θ : (K∗)n → X∗ and by π̃ : X∗ → X the
restrictions of the corresponding homomorphisms. Thus, we have the following sequence:

(2.2) (K∗)n
θ−→ X∗

π̃−→ X −→ 1.

For a parameterized algebraic toric set X, the vanishing ideal I(X) carries extra structure.
We know that, in this situation, I(X) is 1-dimensional Cohen-Macaulay lattice ideal [15]. In
particular I(X) is a binomial ideal, i.e., it is generated by binomials. Recall that a binomial in
S is a polynomial of the form ta− tb, where a, b ∈ Ns and where, if a = (a1, . . . , as) ∈ Ns, we set

ta = ta11 · · · t
as
s ∈ S.

A binomial of the form ta− tb is usually referred to as a pure binomial [5], although here we are
dropping the adjective “pure”.

Let G be a simple graph with vertex set VG = {v1, . . . , vn} and edge set EG = {e1, . . . , es}.
Throughout the remainder of this article, when dealing with a graph, we shall reserve the use
of n and s for the number of vertices and the number of edges of the graph in question. For an
edge ei = {vj , vk}, where vj , vk ∈ VG , let νi = ej + ek ∈ Nn, where, for 1 ≤ j ≤ n, ej is the j-th
element of the canonical basis of Qn.

Definition 2.6 ([10]). The algebraic toric set associated to G is the toric set parameterized by
the n-tuples ν1, . . . , νs ∈ Nn, obtained from the edges of G. If X is the parameterized toric set
associated to G we call its associated linear code CX(d) the parameterized code associated to G
and we refer to the vanishing ideal of X as the vanishing ideal over G.
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If x = (x1, . . . , xn) ∈ (K∗)n and ei = {vj , vk} is an edge of G, we set xei = xνi = xjxk, so that
the structural map θ : (K∗)n → X∗ is given by x 7→ (xe1 , . . . , xes). It is clear that if G contains
isolated vertices, then the associated algebraic toric set X coincides with the algebraic toric set
associated to the subgraph of G obtained by removing these vertices. If G has a second edge
through two vertices, then X is isomorphic to its projection away from the coordinate point of
Ps−1 corresponding to that edge; which, in turn, coincides with the algebraic toric set defined by
the graph obtained from G by removing the multiple edge. Hence, from the point of view of the
algebraic toric set X, the existence of multiple edges in G is not interesting. If G has only one
edge then is easy to see that X = Ps−1 is a point, I(X) = 0 and CX(d) = K∗. Thus throughout
the remainder of this article we shall assume that G is a simple graph with no isolated vertices
and with s ≥ 2.

If G is a connected graph, the length of CX(d) has been determined.

Proposition 2.7 ([15, Corollary 3.8]). Let G be a connected graph and X its associated algebraic
toric set. Then |X| = (q − 1)n−1 if G is non-bipartite and |X| = (q − 1)n−2 if G is bipartite.

In particular, since X ⊂ Ts−1 ⊂ Ps−1 and
∣∣Ts−1∣∣ = (q − 1)s−1 we see that if G is a connected

non-bipartite graph with n = s, then the algebraic toric set parameterized by the edges of G
coincides with Ts−1. In this situation, the vanishing ideal of Ts−1, its invariants and all of the
parameters of CX(d) are known, and are summarized in the following proposition.

Proposition 2.8. ([9, Theorem 1, Lemma 1], [17, Corollary 2.2, Theorem 3.5]) If Ts−1 is the
projective torus in Ps−1, then

(i) I(Ts−1) =
(
{tq−1i − tq−11 }si=2

)
;

(ii) FTs−1(t) = (1− tq−1)s−1/(1− t)s;
(iii) reg(S/I(Ts−1)) = (s− 1)(q − 2) and deg(S/I(Ts−1)) =

∣∣Ts−1∣∣ = (q − 1)s−1;

(iv) dimK CTs−1(d) =
∑bd/(q−1)c

j=0 (−1)j
(
s−1
j

)(
s−1+d−j(q−1)

s−1
)
;

(v) δTs−1(d) = (q − 1)s−(k+2)(q − 1 − `) for all d < reg(S/I(Ts−1)), where k ≥ 0 and
1 ≤ ` ≤ q − 2 are the unique integers such that d = k(q − 2) + `.

In the statement of the result, FTs−1(t) =
∑∞

i=0HTs−1(i)ti is the Hilbert series of S/I(Ts−1).
The fact that the vanishing ideal in the case of the torus is a complete intersection plays a crucial
part in the proof of these results. We know that in practice the vanishing ideal associated to
a general graph is far from being a complete intersection. Indeed, by [17, Corollary 4.5] for an
algebraic toric set X associated to a graph (or more generally a clutter—see [17] for a definition),
I(X) is a complete intersection if and only if X = Ts−1.

3. The length of parameterized codes of graphs

We continue to use the notation and definitions used in Section 2. In this section, we show
an explicit formula for the length of any parameterized code associated to an arbitrary graph.

Let G be a simple graph with vertex set VG = {v1, . . . , vn} and edge set EG = {e1, . . . , es}.
Denote by G1, . . . ,Gm the connected components of G. For each 1 ≤ j ≤ m, let nj and sj
denote the number of vertices and edges of Gj , respectively; so that n = n1 + · · · + nm and
s = s1 + · · · + sm. Denote the edges of Gj by

{
ej1, . . . , ejsj

}
, let Xj ⊂ Psj−1 be the algebraic

toric set parameterized by Gj and let

(K∗)nj
θj−→ X∗j

π̃j−→ Xj −→ 1



6 JORGE NEVES, MARIA VAZ PINTO, AND RAFAEL H. VILLARREAL

be the corresponding structural sequences. Since for fixed distinct j1 6= j2 the edges ej1k1 and
ej2k2 have no vertex in common and thus xej1k1 and xej2k2 involve disjoint sets of coordinates of
the vector x, we deduce that θ : (K∗)n → X∗ is isomorphic to

θ1 × · · · × θm : (K∗)n1 × · · · × (K∗)nm → X∗1 × · · · ×X∗m.
In particular |X∗| =

∏m
j=1 |X∗j |. We need to find the order of the kernel of the maps π̃j .

Lemma 3.1. Let G be a connected graph. If G is non-bipartite, then |Ker π̃| = q−1
2 if q is odd

and |Ker π̃| = q − 1 if q is even. If G is bipartite, then |Ker π̃| = q − 1.

Proof. Let x ∈ (K∗)n. Then θ(x) = (1, . . . , 1) implies that xe = 1 for all e ∈ EG . Suppose G is
non-bipartite. Then G contains an odd cycle. We assume, without loss of generality, that the
edges in this cycle are

e1 = {v1, v2} , . . . , e2k−1 = {v2k−1, v1} ,
where v1 . . . , v2k−1 ∈ VG . We deduce that x1x2 = · · · = x2k−1x1 = 1, which, in turn, implies
that x1 = · · · = x2k−1 = u ∈ K∗ with u2 = 1.

Now, let vr ∈ VG be any vertex of G. Then, there exists a path

{v1, vj1} , {vj1 , vj2} , . . . , {vjk , vr}
connecting v1 with vr. Since x1xj1 = xj1xj2 = · · · = xjkxr = 1, we deduce that xr = u. Hence,
either x = (1, . . . , 1) or x = (−1, . . . ,−1), from which we conclude that |Ker θ| = 2 if q is odd
and |Ker θ| = 1 if q even.

Suppose now that G is bipartite, and, without loss of generality, denote the bipartition of VG
by {v1, . . . , v`} ∪ {v`+1, . . . , vn}. Let vr be any vertex and let

{v1, vj1} , {vj1 , vj2} , . . . , {vjk , vr}
be a path connecting v1 with vr. Notice that {vj1 , vj3 , . . .} is a subset of {v`+1, . . . , vn} and
{vj2 , vj4 , . . .} is a subset of {v1, . . . , v`}. From x1xj1 = xj1xj2 = · · · = xjkxr = 1 we deduce that

xr = x1 if vr ∈ {v1, . . . , v`} or xr = x−11 otherwise. Hence x = (x1, . . . , x1, x
−1
1 , . . . , x−11 ), i.e.,

the ` first coordinates of x are equal to x1 and the remaining ones are equal to x−11 . Conversely,
it is easy to see that any element of (K∗)n of the form (u, . . . , u, u−1, . . . , u−1) belongs to Ker θ.
We deduce that in this case |Ker θ| = q − 1. The proof now follows easily from Proposition 2.7.
Indeed, we know that the order of X is (q−1)n−1, if G is non-bipartite and (q−1)n−2 otherwise.

Hence, |Ker π̃| = q−1
2 if G is non-bipartite and q is odd, |Ker π̃| = q − 1 if G is non-bipartite and

q is even, and |Ker π̃| = q − 1 if G is bipartite. �

We come to the main result of this section.

Theorem 3.2. Suppose G has m connected components, of which γ are non-bipartite. Then,

|X| =


(
1
2

)γ−1
(q − 1)n−m+γ−1, if γ ≥ 1 and q is odd,

(q − 1)n−m+γ−1, if γ ≥ 1 and q is even,

(q − 1)n−m−1, if γ = 0.

Proof. As in the discussion above, let X1, . . . , Xm be the parameterized toric sets associated to
the connected components of G. Then |X∗| =

∏m
j=1 |X∗j |, which, by Lemma 3.1, is given by

|X∗| =

{ (
1
2

)γ
(q − 1)n−m+γ , if q is odd,

(q − 1)n−m+γ , if q is even.
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From the proof of Lemma 3.1, it is seen that the kernel of the map π̃ : X∗ → X is equal to Λ,
the diagonal subgroup of (K∗)s, if γ = 0, and it is equal to Λ2 = {(λ2, . . . , λ2)|λ ∈ K∗} if γ ≥ 1.
The subgroup Λ has order q − 1. The subgroup Λ2 has order q − 1 if q is even and has order
(q−1)/2 if q is odd (this follows readily using the map λ 7→ (λ2, . . . , λ2)). As |X| = |X∗|/|Ker π̃|,
the result follows. �

Example 3.3. Let G be the graph whose connected components are a triangle and a square.
Thus, n = 7, m = 2, γ = 1. Using the formula of Theorem 3.2, we get: (a) |X| = 1024 if q = 5,
and (b) |X| = 243 if q = 22.

4. Degree bounds for the generators of I(X)

We continue to use the notation and definitions used in Section 2. In this section X ⊂ Ps−1
is the algebraic toric set parameterized by ν1, . . . , νs ∈ Nn and I(X) ⊂ S = K[t1, . . . , ts] is the
vanishing ideal of X. We show some degree bounds for a minimal set of generators of I(X)
consisting of binomials.

Recall that by [15] we know that I(X) is generated by homogeneous binomials ta − tb, with
a, b ∈ Ns. There are a number of elementary observations to be made. Let f = ta−tb be a nonzero
binomial of S. Firstly, since X ⊂ Ts−1, evidently I(Ts−1) ⊂ I(X), hence tq−1i − tq−1j ∈ I(X),

for all 1 ≤ i, j ≤ s. Secondly, if gcd(ta, tb) 6= 1, then we can factor the greatest common divisor

tc from both ta and tb to obtain ta − tb = tc(ta
′ − tb′), for some a′, b′ ∈ Ns. Since tc is never

zero on Ts−1, for any c ∈ Ns, we deduce that ta − tb ∈ I(X) if and only if ta
′ − tb′ ∈ I(X).

Therefore, when looking for “binomial generators” of I(X) we may restrict ourselves to those
binomials ta − tb such that ta and tb have no common divisors. Given a = (a1, . . . , as) ∈ Ns,
we set |a| = a1 + · · ·+ as and supp(a) = {i : ai 6= 0}. Then, clearly, ta and tb have no common
divisors if and only if supp(a) ∩ supp(b) = ∅.

Definition 4.1. A subgroup of Zs is called a lattice. A lattice ideal is an ideal of the form

I(L) = ({ta − tb : a− b ∈ L and supp(a) ∩ supp(b) = ∅}) ⊂ S

for some lattice L of Zs.

Lemma 4.2. Let L ⊂ S be a lattice ideal generated by B = {tai − tbi}ri=1. Then, (a) L = I(L),
where L is the subgroup of Zs generated by {ai − bi}ri=1, and (b) if tai − tbi is homogeneous for
all i and f = ta − tb ∈ L, then f is homogeneous.

Proof. Part (a) follows from [14, Lemma 7.6]. To show (b) notice that, from part (a), f ∈ I(L).
Then, a− b is a linear combination of {ai− bi}ri=1. Thus, if 1 = (1, . . . , 1), we get that |a|− |b| is
equal to 〈1, a− b〉 = 0 because 〈1, ai − bi〉 = 0 for all i. Thus, |a| = deg(ta) = deg(tb) = |b|. �

Lemma 4.3. If f = ta − tb ∈ I(X), then f is homogeneous.

Proof. According to [15, Theorem 2.1], I(X) is lattice ideal generated by homogeneous binomials.
Thus, the lemma follows from Lemma 4.2. �

Lemma 4.4. Let f = ta − tb ∈ I(X), where a, b ∈ Ns and supp(a) ∩ supp(b) = ∅. Suppose that

there exists i such that tq−1i divides ta and supp(b) 6= ∅. Then, there exists a binomial g ∈ I(X),
with deg(g) < deg(f), and there exists j, such that f − tjg ∈ I(Ts−1).
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Proof. Write ta = tq−1i ta
′
, with a′ ∈ Ns. Since supp(b) 6= ∅, there exists j such that tj divides

tb. Write tb = tjt
b′ , for some b′ ∈ Ns. Then,

ta − tb = tq−1i ta
′ − tjtb

′
= (tq−1i − tq−1j )ta

′
+ tj(t

q−2
j ta

′ − tb′).

Set g = tq−2j ta
′ − tb′ . Then, since tq−1i − tq−1j ∈ I(X), we see that g ∈ I(X) and, moreover, it is

clear that if g 6= 0 then deg(g) = deg(f)− 1. �

Theorem 4.5. There exists a set of generators of I(X) which consists of the toric relations

tq−1i − tq−1j plus a finite set of homogeneous binomials ta − tb with supp(a) ∩ supp(b) = ∅ and

such that the degree of ta − tb in each of the variables ti is ≤ q − 2.

Proof. We know that I(X) is generated by binomials [15]. If {f1, . . . , fr} is a set of binomials
generating I(X), then so is the set

B = {f1, . . . , fr} ∪ {tq−1i − tq−1j : 1 ≤ i, j ≤ s}.

If fi ∈ I(Ts−1), we have (B) = ({{f1, . . . , fr} \ {fi}} ∪ {tq−1i − tq−1j : 1 ≤ i, j ≤ s}). Thus, we

may assume that B is a generating set of I(X) with fi /∈ I(Ts−1) for all i. By the discussion
above we may also assume that each fi is of the form ta − tb with supp(a) ∩ supp(b) = ∅. We

can write f1 = ta− tb, with a, b ∈ Ns. Suppose that there exists i such that tq−1i divides ta or tb.
Hence, since f1 is homogeneous by Lemma 4.3, we deduce that the sets supp(a) and supp(b) are
both nonempty. Then, from Lemma 4.4, there exists j and a homogeneous binomial g′1 ∈ I(X)
such that deg(g′1) < deg(f1) and f1 − tjg′1 ∈ I(Ts−1). We can write g′1 = tcg1 for some c ∈ Ns,
where g1 is a binomial in I(X) whose terms have disjoint support. Clearly,

I(X) = (B) =
(
{g1, f2, . . . , fr} ∪ {tq−1i − tq−1j : 1 ≤ i, j ≤ s}

)
and g1 /∈ I(Ts−1). If there exists i such that tq−1i divides one of the terms of g1, we repeat the
previous procedure with g1 playing the role of f1 and obtain a binomial g2, and so on. Thus, by
iterating the previous procedure, we obtain a sequence of homogeneous binomials f1, g1, . . . , gm,
with decreasing degrees, such that

(4.1) I(X) = (B) =
(
{gm, f2, . . . , fr} ∪ {tq−1i − tq−1j : 1 ≤ i, j ≤ s}

)
and gm /∈ I(Ts−1). Thus, using the previous procedure enough times, we obtain a binomial

gm = ta
′ − tb′ none of whose terms ta

′
or tb

′
is divisible by any tq−1i , for 1 ≤ i ≤ s. If we proceed

in this manner, with each of the remaining f2, . . . , fr, we reach a generating set satisfying the
condition in the statement. �

The next proposition is intended mainly for practical applications. It gives a bound on the
degrees of a minimal set of generators of I(X). It is a valuable tool to use when implementing
the calculation of I(X) in a computer algebra software.

Proposition 4.6. Set k =
⌊
s
2

⌋
. If k ≥ 2, then the vanishing ideal of X has a generating set

whose elements have degree ≤ k(q − 2).

Proof. Let ta − tb ∈ I(X) be a homogeneous binomial. Write a = (a1, . . . , as) ∈ Ns and
b = (b1, . . . , bs) ∈ Ns. By Theorem 4.5, we may assume that supp(a) ∩ supp(b) = ∅ and that
0 ≤ ai, bj ≤ q− 2. Let r = |supp(a)| and ` = |supp(b)|. Then, either r or ` is ≤ k, for otherwise:

r + ` ≥ 2k + 2 = 2 bs/2c+ 2 ≥ s+ 1,

which is impossible. Assume r ≤ k. Then, deg(ta− tb) = a1 + · · ·+as ≤ r(q− 2) ≤ k(q− 2). �
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As seen in Example 4.7 below, this estimate is sharp. For the graph given there, working over
the field F3, the ideal I(X) needs a generator of degree k. If, however, X is the algebraic toric
set associated to a cycle G of order s = 2k, then, we will see that by Corollary 5.12, I(X) is
generated in degrees ≤ (k − 1)(q − 2) + 1.
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Example 4.7. Let G be the graph in Figure 1 and assume that q = 3. Then, using Macaulay2
[12], we found that I(X) is generated by the (minimal) set of binomials:

t25 − t26, t24 − t26, t23 − t26, t22 − t26, t21 − t26,
t3t4t5 − t1t2t6, t2t4t5 − t1t3t6, t1t4t5 − t2t3t6, t2t3t5 − t1t4t6, t1t3t5 − t2t4t6,
t1t2t5 − t3t4t6, t2t3t4 − t1t5t6, t1t3t4 − t2t5t6, t1t2t4 − t3t5t6, t1t2t3 − t4t5t6.

5. Generators of I(X) for even cycles and certain bipartite graphs

We keep the notation of Section 3: X ⊂ Ps−1 is the algebraic toric set parameterized by a
graph G and I(X) ⊂ S = K[t1, . . . , ts] is the vanishing ideal of X. This section is devoted to
giving an explicit description of a binomial generating set for I(X), when G = C2k is a cycle of
even order, or when G is a bipartite graph whose cycles are pairwise vertex disjoint.

Proposition 5.1. Let f = ta − tb ∈ I(X), with a = (a1, . . . , as) and b = (b1, . . . , bs), such that
supp(a) ∩ supp(b) = ∅ and aj , bj ≤ q− 2 for all j. (a) If G is a connected bipartite graph and ei
is an edge of G which does not belong to any cycle of G, then ai = bi = 0. (b) If G is any graph
and G has an edge ei with a degree 1 incident vertex, then ai = bi = 0.

Proof. (a) Assume, without loss of generality that, ei = {v1, v2}. In what follows we use the
symbol t to denote a disjoint union of objects. Since G is bipartite there exist a bipartition
VG = A t B with, say, v1 ∈ A and v2 ∈ B. Since ei does not belong to a cycle of G, the
removal of edge ei produces a disconnected graph G1 t G2, with v1 ∈ VG1 and v2 ∈ VG2 . Let
u ∈ K∗ be a generator of the multiplicative group of K. Let us label the vertices of G with one
of the elements u, u−1 or 1, according to the rule that we now explain. Let vr be any vertex. If
vr ∈ VG1 label vr with 1, if vr ∈ VG2 ∩ A label vr with u−1, and if vr ∈ VG2 ∩ B label vr with u.
Consider x = (x1, . . . , xn) ∈ (K∗)n where, for 1 ≤ r ≤ n, the coordinate xr takes on the value
of the label of vr. Then xej = 1 if j 6= i and xei = u. Assume that ai > 0, then bi = 0 because a
and b have disjoint support. Thus f(xe1 , . . . , xes) = 0, implies that uai − 1 = 0, a contradiction
because 1 ≤ ai ≤ q − 2. Similarly if bi > 0 we derive a contradiction. Hence, we deduce that
ai = bi = 0. (b) This part follows using a similar argument. �

Example 5.2. For non-bipartite graphs Proposition 5.1(a) does not hold. Let G be the graph
in Figure 2 and assume that q = 5. Then, using Macaulay2 [12], we found that the binomial
t1t2t

2
4t7 − t3t25t6t8 is in a minimal generating set of I(X). In this monomial the variables t4 and

t5, which are not in any cycle of G, occur.
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Corollary 5.3. Suppose that G = C2k is a cycle of even order. Let f = ta − tb be a nonzero
homogeneous binomial in I(X), with a = (a1, . . . , as) ∈ Ns and b = (b1, . . . , bs) ∈ Ns such that
supp(a) ∩ supp(b) = ∅ and 0 ≤ ai, bj ≤ q − 2. Then supp(a) ∪ supp(b) = {1, . . . , s}.

Proof. Assume, without loss of generality that s 6∈ supp(a)∪supp(b). Then, f is a polynomial in
the variables t1, . . . , ts−1 which vanishes along the projection of X onto the first s−1 coordinates.
The algebraic toric set obtained after projecting is none other than the algebraic toric set
associated with the graph obtained from G = C2k by removing the edge es, which is a tree.
Hence, by Proposition 5.1, none of the remaining variables t1, . . . , ts−1 occurs in f , in other
words, f = 0, which is a contradiction. �

From now on, until otherwise stated, we will restrict to the case of G = C2k, a cycle of
order 2k with k ≥ 2. Let VC2k = {v1, . . . , v2k} and ei = {vi, vi+1} for 1 ≤ i ≤ 2k − 1 and
es = e2k = {v2k, v1}. We are now ready to give a combinatorial description of the generators of
I(X) other than those coming from the toric relations. From Theorem 4.5 and Corollary 5.3 we

know that there is a set of generators of I(X) consisting of the toric generators tq−1i − tq−1j plus

a set of binomials of the type ta − tb where a = (a1, . . . , as) ∈ Ns, b = (b1, . . . , bs) ∈ Ns are such
that supp(a) t supp(b) = {1, . . . , s} and 0 ≤ ai, bj ≤ q − 2. Hence to any such binomial one can
associate a partition of {1, . . . , s}. For the remainder of this article, given r ∈ {1, . . . , q − 2} we
will fix the following notation:

r̂ = q − 1− r.

Definition 5.4. Let σ = A tB be a partition of {1, . . . , s} and fix r ∈ {1, . . . , q − 2}. Define a
function ρrσ : {1, . . . , s} → {r, r̂}, recursively, by setting ρrσ(1) = r and,

(5.1)

{
ρrσ(i+ 1) = ρ̂rσ(i), if {i, i+ 1} ⊂ A or {i, i+ 1} ⊂ B
ρrσ(i+ 1) = ρrσ(i), otherwise,

for every 1 ≤ i ≤ s− 1.

Notice that, for every i ∈ {1, . . . , s− 2}, ρrσ(i) = ρrσ(i+ 2) if and only if i and i+ 2 are in the
same partition. Since s is even, we deduce that ρrσ(1) = ρrσ(s−1) if and only if 1 and s−1 are in
the same partition. This implies that ρrσ(1) can be defined from ρrσ(s) using the same recursive
formula. Indeed, working in {1, . . . , s} modulo s, the function ρrσ can be recovered recursively,
using the above rule, from ρrσ(k), for any k ∈ {1, . . . , s}. The following lemma will be used in
the proofs of some of the results below.

Lemma 5.5. Let σ = AtB be a partition of {1, . . . , s} and r ∈ {1, . . . , q − 2}. Consider i ∈ A
and σ′ = A′ t B′ where A′ = A \ {i} and B′ = B ∪ {i}. Let ρ : {1, . . . , s} → {r, r̂} be given by

ρ(j) = ρrσ(j) for every j 6= i and ρ(i) = ρ̂rσ(i). Then ρ = ρrσ′, if i > 1 or ρ = ρr̂σ′, if i = 1.
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Proof. We will look first at the case i = 1. In this case, ρ(1) = ρ̂rσ(1) = r̂ = ρr̂σ′(1). If 2 ∈ A,
then ρ(2) = ρrσ(2) = r̂, according to the definition of the function ρ, to Definition 5.4 and to
the fact that 1 ∈ A. But if 2 ∈ A, then 2 ∈ A′, and ρr̂σ′(2) = r̂ since 1 ∈ B′. If 2 ∈ B, then

ρ(2) = ρrσ(2) = r; but if 2 ∈ B, then 2 ∈ B′, and ρr̂σ′(2) = r. In any case, ρ(2) = ρr̂σ′(2). Let
j ∈ {3, . . . , s}. By definition, ρ(j) = ρrσ(j); and ρrσ(j) is determined by σ, by ρrσ(2) and by
Eq. (5.1). Since ρr̂σ′(j) is determined by σ′, by ρr̂σ′(2) and by Eq. (5.1), since ρrσ(2) = ρr̂σ′(2),

and since the partitions σ and σ′ agree in {2, . . . , s}, we conclude that ρ(j) = ρrσ(j) = ρr̂σ′(j).

Therefore, ρ = ρr̂σ′ . For the case i > 1, we use a similar argument to show that ρ = ρrσ′ . �

Given any σ = A t B, a partition of {1, . . . , s}, if, without loss in generality, we choose
1 ∈ A, it is clear that given any r ∈ {1, . . . , q − 2}, there exist unique a and b in Ns such that
supp(a) = A, supp(b) = B, ai = ρrσ(i) if i ∈ supp(a) and bj = ρrσ(j) if j ∈ supp(b).

Definition 5.6. Let σ = AtB be a partition of {1, . . . , s} with 1 ∈ A and let r ∈ {1, . . . , q − 2}.
We denote by f rσ the unique binomial ta − tb such that supp(a) = A, supp(b) = B, ai = ρrσ(i) if
i ∈ supp(a) and bj = ρrσ(j) if j ∈ supp(b).
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The combinatorial data that give rise to a binomial f rσ = ta − tb is clarified by representing
it in the graph G, by putting a label r or r̂ to each edge. Figure 3 illustrates the map ρ6σ when
q = 8, r = 6, s = 8 and σ = {1, 3, 5, 6} t {2, 4, 7, 8}. The labels of the edges correspond to the
exponents of the variables in the corresponding binomial of I(X). Thus, f6σ = t61t

6
3t

6
5t6 − t62t64t7t68.

Lemma 5.7. Let σ = AtB be a partition of {1, . . . , s} and let r ∈ {1, . . . , q − 2}. Suppose that
1 ∈ A and that there exists i ∈ A such that i > 2 and i − 1 6∈ A. Let σ′ be the partition given
by A′ tB′ where A′ = (A \ {i}) ∪ {i− 1} and B′ = (B \ {i− 1}) ∪ {i}. Then f rσ ∈ I(X) if and
only if f rσ′ ∈ I(X).

Proof. Let f rσ = ta − tb. Using the assumption, we can write ta = tci t
a′ and tb = tci−1t

b′ , where
c = ai = bi−1 and a′, b′ ∈ Ns. Then:

(ti−1ti)
ĉf rσ = tĉi−1t

q−1
i ta

′ − tq−1i−1 t
ĉ
i t
b′

= tĉi−1t
q−1
i ta

′ − tĉi−1t
q−1
i−1 t

a′ + tĉi−1t
q−1
i−1 t

a′ − tq−1i−1 t
ĉ
i t
b′

= tĉi−1t
a′(tq−1i − tq−1i−1 ) + (tĉi−1t

a′ − tĉi tb
′
)tq−1i−1 .

Since tj is never zero on X we get:

f rσ ∈ I(X)⇔ (ti−1ti)
ĉf rσ ∈ I(X)⇔ (tĉi−1t

a′ − tĉi tb
′
)tq−1i−1 ∈ I(X)⇔ tĉi−1t

a′ − tĉi tb
′ ∈ I(X).
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Now let a], b] ∈ Ns be such that ta
]

= tĉi−1t
a′ and tb

]
= tĉi t

b′ . Then, σ′ = supp(a]) t supp(b]) is
the partition of {1, . . . , s} obtained from interchanging i−1 and i in AtB. Applying Lemma 5.5

twice, we deduce that f rσ′ = tĉi−1t
a′ − tĉi tb

′
. �

Lemma 5.8. Let σ = A t B be a partition of {1, . . . , s} with 1 ∈ A and let r ∈ {1, . . . , q − 2}.
If f rσ ∈ I(X) then |A| = |B|.

Proof. Let ` = |A|. Using sufficiently many times Lemma 5.7, we may assume that σ is the
partition {1, . . . , `} t {`+ 1, . . . , s}. Accordingly,

f rσ = tr1t
r̂
2 · · · tr

′
` − tr

′
`+1 · · · tr̂s−1trs,

where r′ ∈ {r, r̂}. Now deg(trj · · · ), for a monomial consisting of a product of variables with

consecutive exponents alternating in {r, r̂}, is a strictly increasing function with respect to
the number of variables involved. Since f rσ is homogeneous (by Lemma 4.3) we deduce that
|A| = ` = s− ` = |B|. �

We come to one of the main results of this section, a combinatorial description of a generating
set for vanishing ideals of an even cycle.

Theorem 5.9. Let I(X) be the vanishing ideal of the algebraic toric set X associated to an even

cycle G = C2k. Then, I(X) is generated by the binomials tq−1i − tq−1j , 1 ≤ i, j ≤ s = 2k, and the

binomials f rσ obtained from all r ∈ {1, . . . , q − 2} and all partitions σ = AtB of {1, . . . , s} with
|A| = |B|.

Proof. By Theorem 4.5 and Corollary 5.3, we know that I(X) is generated by the binomials

of the form tq−1i − tq−1j , 1 ≤ i, j ≤ s = 2k, and the homogeneous binomials f = ta − tb with

a = (a1, . . . , as) ∈ Ns and b = (b1, . . . , bs) ∈ Ns such that supp(a) t supp(b) = {1, . . . , s} and
0 ≤ ai, bj ≤ q− 2. Let f be a binomial of the latter type. We may assume that 1 ∈ supp(a), for
we can always replace f by −f in a generating set of I(X). Set σ = supp(a) t supp(b) and let
r = a1. Let us show that f = f rσ, i.e., let us show that ai = ρrσ(i), for every i ∈ supp(a) \ {1}
and bj = ρrσ(j) for every j ∈ supp(b). Let i ∈ supp(a) \ {1} and let u ∈ K∗ be a generator of
the multiplicative group of K. Consider x ∈ (K∗)n given by setting xi = u and xj = 1 for all

j 6= i. Then, f(xν1 , . . . , xνs) = 0 implies that uai−1uai = 1, if i − 1 ∈ supp(a) or uai = ubi−1 if
i − 1 ∈ supp(b). We get, in the first case, ai = q − 1 − ai−1 = ρrσ(i), and, in the second case,
ai = bi−1 = ρrσ(i). Similarly, if j ∈ supp(b), then bj = ρrσ(j). Since f rσ ∈ I(X), by Lemma 5.8,
|A| = |B|.
To complete the proof let σ = AtB be a partition of {1, . . . , s} with |A| = |B|, r ∈ {1, . . . , q − 2}
and let us show that f rσ ∈ I(X). By Lemma 5.7, we may assume that σ is the partition

{1, . . . , k} t {k + 1, . . . , s} and f rσ = tr1t
r̂
2 · · · tr

′
k − tr

′
k+1 · · · tr̂s−1trs, where r′ ∈ {r, r̂}. Now, let

x ∈ (K∗)n. Then f rσ(xν1 , . . . , xνs) = xr1x
r′
k+1 − xr

′
k+1x

r
1 = 0, i.e., f rσ ∈ I(X). �

Te following conjecture has been verified in a number of examples using Macaulay2 [12].

Conjecture 5.10. Let X be the algebraic toric set associated to an even cycle G = C2k and let
λ be the partition {1, 3, . . . , 2k − 1} t {2, 4, . . . , 2k}. If k ≥ 2, then the set of binomials

B = {{f rσ : σ = A tB is a partition of {1, . . . , s} with |A| = |B|, 1 ∈ A and 1 ≤ r ≤ q − 2}
∪{tq−1i − tq−1s : 1 ≤ i ≤ s− 1}} \ {f rλ : 2 ≤ r ≤ q − 2}

is a minimal set of generators and a Gröbner basis of I(X) with respect to the reverse lexico-
graphic order.
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Remark 5.11. By Theorem 5.9 and since, for each 2 ≤ r ≤ q− 2, there exists gr ∈ S such that
f rλ = grf

1
λ , we get that B is a generating set for I(X).

Corollary 5.12. Let G = C2k be an even cycle.

(a) If f = ta − tb is an element of B, then deg(f) is at most (q − 2)(k − 1) + 1.
(b) Any subset of B that is also a generating set of I(X) contains an element of the form

f q−2σ , with deg(f q−2σ ) = (q − 2)(k − 1) + 1.

Proof. We set M = (q − 2)(k − 1) + 1. (a) If f = tq−1i − tq−1j for some i, j, then deg(f) ≤ M
because k ≥ 2. Assume that f is not of this form. Then, f = f rσ for some 1 ≤ r ≤ q − 2, where
σ is the partition σ = A t B and A, B are the supports of a, b respectively, |A| = |B| = k and
1 ∈ A. Let i be the cardinality of the set {j ∈ A : f rσ(j) = r}. Then, deg(f) = ir + (k − i)r̂. If
r = r̂, then r = (q − 1)/2 and deg(f) = k(q − 1)/2 ≤ M . We may now assume r 6= r̂. If i = k,
then

f rσ = f1λ = t1t3 · · · t2k−1 − t2t4 · · · t2k.
Hence, deg(f rσ) = k ≤ M . To complete the proof we may now assume that 1 ≤ i ≤ k − 1. In
this case, we have

deg(f rσ) = ir + (k − i)r̂ = i(r − r̂) + kr̂

≤ (k − 1)(r − r̂) + kr̂ = (k − 1)r + r̂ = r(k − 2) + (q − 1)

≤ (q − 2)(k − 2) + (q − 1) = (k − 1)(q − 2) + 1.

Thus, deg(f rσ) ≤ M , as required. To prove (b) let B′ ⊂ B be a generating set of I(X). Let
σ = {1, 3, . . . , 2k − 3, 2k} t {2, 4, . . . , 2(k − 1), 2k − 1}, then

f q−2σ = tq−21 tq−23 · · · tq−22k−3t2k − t
q−2
2 tq−24 · · · tq−22(k−1)t2k−1

is in B and has degree M . We will show that f q−2σ ∈ B′. Since B′ is a generating set of I(X),

f q−2σ is a linear combination, with coefficients in S, of binomials in B′. These are binomials of
the form fmρ , 1 ≤ m ≤ q− 2, deg(fmρ ) ≤M , and of the form tq−1i − tq−12k for some 1 ≤ i ≤ 2k− 1.

There is a binomial in B′, fmρ = ta
′ − tb′ , such that

tq−21 tq−23 · · · tq−22k−3t2k = tcta
′

for some monomial tc. Since supp(a′) ⊂ {1, 3, . . . , 2k − 3, 2k} and ta
′ − tb′ cannot be of the form

tq−11 − tq−12k , because of its degree, we deduce that σ = ρ. From the equality

tq−21 tq−23 · · · tq−22k−3t2k = tcta
′

= tc(tm1 t
m
3 · · · tm2k−3tm̂2k)

we conclude that m̂ = 1, that is, m = q − 2. Thus, f q−2σ = fmρ . �

Consider the general case when G is any graph. Suppose that G contains a subgraph H ∼= C2k,
isomorphic to an even order cycle. Assume without loss of generality that t1, . . . , t2k are the
variables of S corresponding to the edges of H. Then, given r ∈ {1, . . . , q − 2} and a parti-
tion σ = A t B of {1, . . . , 2k} with |A| = |B| = k and 1 ∈ A, the homogeneous binomial
f rσ ∈ K[t1, . . . , t2k] ⊂ S clearly vanishes on the algebraic toric set associated to G. One could

conjecture that together with the binomials tq−1i − tq−1j , for 1 ≤ i, j ≤ s, the binomials obtained

in this way, going through all the even cycles of G, would form a generating set of I(X). This is
not true, even for bipartite graphs, as is shown by Example 5.14. This conjecture is true if we
restrict to bipartite graphs the cycles of which are vertex disjoint; as we show in Theorem 5.13.
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Suppose G is a bipartite graph the cycles of which have disjoint vertex sets. Let H1, . . . ,Hm
be the subgraphs of G isomorphic to some even order cycle, i.e., such that Hi ∼= C2ki . Let
tεi1
, . . . , tεi2ki

∈ S be the variables associated to the edges, ei1, . . . , e
i
2ki

of Hi. Accordingly, set

Si = K
[
tεi1
, . . . , tεi2ki

]
⊂ S.

Finally, denote by Ii(X) the intersection I(X) ∩ Si. Then, Ii(X) ⊂ Si is equal to I(Xi), the
vanishing ideal of the algebraic toric set Xi associated to Hi. Accordingly, as an ideal over Si,
Ii(X) is generated by the corresponding generating set Bi, in the variables of Si, (using the
notation of Conjecture 5.10).

Theorem 5.13. Let G be a connected bipartite graph, whose (even) cycles H1, . . . ,Hm have
disjoint vertex sets. Let X be the algebraic toric set associated to G. Then I(X) is generated by

the union of the set {tq−1i − tq−1j : 1 ≤ i, j ≤ s} with the set B1(X) ∪ · · · ∪ Bm(X).

Proof. By Theorem 4.5, it suffices to show that if f = ta− tb ∈ I(X), with a = (a1, . . . , as) ∈ Ns,
b = (b1, . . . , bs) ∈ Ns, such that supp(a) ∩ supp(b) = ∅ and 1 ≤ ai, bj ≤ q − 2, then f belongs to
the ideal generated by

J = {tq−1i − tq−1j : 1 ≤ i, j ≤ s} ∪ B1(X) ∪ · · · ∪ Bm(X).

Recall that f is homogeneous by Lemma 4.3. By Proposition 5.1, we know that supp(a)∪supp(b)
is contained in the union of the sets of indices of the variables corresponding to edges of the cycles
of G. In other words, if ei is an edge not in any edge set ofH1, . . . ,Hm then i 6∈ supp(a)∪supp(b).
As above, denote by tεi1

, . . . , tεi2ki
the variables associated to Hi. We proceed by induction on

µf =
{
i ∈ {1, . . . ,m} : (supp(a) ∪ supp(b)) ∩ {εi1, . . . , εi2ki} 6= ∅

}
.

Let i ∈ {1, . . . ,m} be such that (supp(a)∪supp(b))∩{εi1, . . . , εi2ki} 6= ∅. Consider a], a[, b], b[ ∈ Ns

such that supp(a]) ∪ supp(b]) ⊂ {εi1, . . . , εi2ki}, (supp(a[) ∪ supp(b[)) ∩ {εi1, . . . , εi2ki} = ∅,

ta = ta
]
ta

[
and tb = tb

]
tb

[
.

By Corollary 5.3, supp(a]) ∪ supp(b]) = {εi1, . . . , εi2ki}. Since we are assuming H1, . . . ,Hm have

disjoint vertex sets, setting t` = 1 for all ` 6∈
{
εi1, . . . , ε

i
2ki

}
is equivalent to setting in x ∈ (K∗)n,

x` = 1 for all ` 6∈ VHi . Hence, making these substitutions and running the argument of the proof

of Theorem 5.13, we see that ta
] − tb] = f rσ, where r = (a])εi1

∈ {1, . . . , q − 2}, (assuming that

εi1 ∈ supp(a])), and where σ is the partition supp(a]) t supp(b]) = {εi1, . . . , εi2ki}.

Suppose that µf = 1. Then a[ = b[ = 0 ∈ Ns, f rσ is homogeneous and we are done.

Suppose that every binomial g = ta − tb ∈ I(X) with µg ≤ m′ < m is in the ideal generated by

J . Let f = ta − tb ∈ I(X) be a binomial with µf = m′ + 1. Let i ∈ {1, . . . ,m} be such that

(supp(a)∪supp(b))∩{εi1, . . . , εi2ki} 6= ∅. Consider, as above, a], a[, b], b[ ∈ Ns such that ta = ta
]
ta

[

and tb = tb
]
tb

[
. Repeating the previous argument we deduce that ta

]− tb] = f rσ where, r = (a])εi1
and σ = supp(a])tsupp(b]). However, notice that in this case f rσ is not necessarily homogeneous.

Assume that | supp(a])| ≥ | supp(b])|. Let δ ∈ Ns be such that εi1 6∈ supp(δ) ⊂ supp(a]), δ` = a]`
for all ` ∈ supp(δ) and

∣∣supp(a] − δ)
∣∣ = ki (where 2ki is the order of Hi). Set h = |supp(δ)|,

a′ = a]−δ and let b′ ∈ Ns be obtained by applying h times Lemma 5.7 to σ = supp(a])tsupp(b]).
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Then b′ = b] + δ̂, where δ̂ has the same support as δ and (δ̂)` = q− 1− δ`, for every ` ∈ supp(δ̂).

Set σ′ = supp(a′)tsupp(b′). Then f rσ′ = ta
′−tb′ is homogeneous and belongs to Ii(X). Moreover,

(5.2)
f = ta − tb = ta

′
tδta

[ − tb]tb[ = ta
′
tδta

[ − tb′tδta[ + tb
′
tδta

[ − tb]tb[

= f rσ′t
δta

[
+ tb

]
(tδ̂tδta

[ − tb[).

Now (δ̂)` + δ` = q − 1, for all ` ∈ supp(δ) and since f is homogeneous, h = | supp(δ)| >
| supp(b[)|. Choose `1, . . . , `h ∈ supp(b[), h distinct indices. Let γ ∈ Ns to be such that supp(γ) =

{`1, . . . , `h} and (γ)`j = q − 1, for j = 1, . . . , h. Then tδtδ̂ − tγ is in the ideal of S generated by
J , since it is in the ideal of the torus. We have

(5.3) f = f rσ′t
δta

[
+ tb

]
(tδtδ̂ta

[ − tb[) = f rσ′t
δta

[
+ tb

]
ta

[
(tδtδ̂ − tγ) + tb

]
(tγta

[ − tb[).

Let γ] ∈ Ns be such that supp(γ]) = {`1, . . . , `h} and (γ])`j = (b[)`j , for j = 1, . . . , h and set

γ[ = γ − γ] and b\ = b[ − γ]. Then,

(5.4) f = f rσ′t
δta

[
+ tb

]
ta

[
(tδ
∗ − tγ) + tb

]
tγ

]
(tγ

[
ta

[ − tb\),

where g = tγ
[
ta

[ − tb\ is a homogeneous binomial with µg ≤ m′. Hence, by induction, g, and
therefore f , are in the ideal generated by J . �

In Example 5.14, we show that Theorem 5.13 does not hold for general connected bipartite
graphs.
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Figure 4

Example 5.14. Let G1 and G2 be the two graphs in Figure 4 (from left to right) and assume
that q = 5. Notice that we are identifying the two vertices, labeled by 1, in the representation
of G1. Thus, G1 is a bipartite graph with six vertices and eight edges. Denote by X1 and X2,
respectively, the corresponding algebraic toric sets. Then, using Macaulay2 [12], we found that
the binomial t1t4t6t7−t2t3t5t8 is in a minimal generating set of I(X1). In this case, the argument
of the proof of Theorem 5.13 does not work, to the extent that if we set t1, t2, t3, t4 equal to 1,
the resulting binomial, t6t7−t5t8, albeit homogeneous, is not of the type f rσ for any partition σ of
{5, 6, 7, 8}. The same can be said for the binomial resulting from substituting to 1 the variables
t5, t6, t7, t8. As to the vanishing ideal of X2, we found that there exists a minimal generating set
containing t1t2t

2
5 − t3t4t25, which, when restricted to any of the 3 cycles in G2 is not of the type

f rσ for any partition of the corresponding index set.
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6. The regularity of S/I(X)

In this section we address the question of computing the regularity of S/I(X) for an algebraic
toric set X parameterized by a bipartite graph. Theorem 6.3 gives an upper bound for the
regularity of S/I(X) for a general bipartite graph. If X is the algebraic toric set parameterized
by an even cycle of length 2k, by Proposition 2.4 and Corollary 5.12, we get

bigdeg I(X)− 1 = (q − 2)(k − 1) ≤ regS/I(X).

This inequality is already known in the literature, see [8, Corollary 3.1] and [24, Corollary 2.19].
We will show that the regularity of S/I(X) is in fact equal to (q − 2)(k − 1), and generalize
this result by giving a formula for the regularity of any connected bipartite graph whose cycles
have disjoint vertex sets. In the proof of Theorem 6.2, we show the inequality above as an easy
consequence of the description of the generators of the ideal I(X).

Lemma 6.1. Let 1 ≤ i ≤ s−2. Consider the K-automorphism σi : S → S defined by exchanging
ti with ti+2 and leaving all other variables fixed. Then, σi permutes the elements of the set of
all f rσ ∈ I(X), for r ∈ {1, . . . , q − 2} and σ = A tB a partition of {1, . . . , s} with |A| = |B|.

Proof. Let f rσ be a binomial associated to r ∈ {1, . . . , q − 2} and σ = A t B a partition of
{1, . . . , s}. Thus, f rσ = ta − tb where A = supp(a), B = supp(b), a` = ρrσ(`), for all ` ∈ supp(a)
and b` = ρrσ(`), for all ` ∈ supp(b). As ρrσ(`) = ρrσ(` + 2) if and only if ` and ` + 2 are in the
same part of the partition, if i and i+ 2 are in the same part of the partition then σi(f

r
σ) = f rσ.

Suppose that i and i+2 are in different parts of the partition and therefore that ρrσ(i+2) = ρ̂rσ(i).

Without loss in generality we may write f rσ = taii t
a′ − tâii+1t

b′ , where supp(a′) = supp(a) ∪ {i}
and supp(b′) = supp(b)∪ {i+ 2}. In this situation, we apply Lemma 5.7 twice, transferring i to
the part it does not belong to, and proceeding similarly with i + 2. Let σ′ be the partition of
{1, . . . , s} obtained in this way and consider the resulting binomial f rσ′ . By Lemma 5.7 we see

that f rσ′ = taii+2t
a′ − tâii tb

′
= σi(f

r
σ). �

Theorem 6.2. Let X be the algebraic toric set associated to an even order cycle G = C2k. Then
regS/I(X) = (q − 2)(k − 1).

Proof. Recall that k ≥ 2. Denote by R the graded ring S/I(X). Consider t1 ∈ S. Since t1 is
regular on R, we have the following exact sequence of graded S-modules:

(6.1) 0 −→ R[−1]
t1−→ R −→ R/(t1) −→ 0,

where R[−1] is the graded S-module obtained by a shift in the graduation, i.e., R[−1]i = Ri−1.
Recall that HX(d) is, by definition, dimK(S/I(X))d, and since S/I(X) is a 1-dimensional ring,
the regularity of S/I(X) is the least integer l for which HX(d) is equal to some constant (indeed
equal to |X|) for all d ≥ l. Now, from (6.1) we get HX(d)−HX(d− 1) = dimK(R/(t1))d. Hence
regS/I(X) = regR/(t1)− 1. For d ≥ 0, we define

hd := dimK(R/(t1))d = HX(d)−HX(d− 1).

We start by showing that regS/I(X) ≤ (q − 2)(k − 1). If we show that hd = 0, for d ≥
(q − 2)(k − 1) + 1, then HX(d− 1) = HX(d), for d− 1 ≥ (q − 2)(k − 1), and our result follows.
Set S′ = K[t2, . . . , ts]. There is a surjection of graded S′-modules

ϕ : S′ −→ S/(I(X), t1) ∼= R/(t1)

defined by ϕ(f) = f + (I(X), t1), for every f ∈ S′. Set I ′(X) = Ker(ϕ), so that

S′/I ′(X) ∼= S/(I(X), t1).
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Then, I ′(X) is a monomial ideal generated by the monomials obtained by setting t1 = 0 in the

generators of I(X); in particular it is generated by tq−1j , for 2 ≤ j ≤ s and by the monomials tb

in some f rσ = ta − tb, for r ∈ {1, . . . , q − 2} and σ a partition of {1, . . . , s} into 2 parts of equal
cardinality. To show that hd = 0, for d ≥ (q − 2)(k − 1) + 1, it is enough to show that every

monomial M in S′ of degree ≥ (q − 2)(k − 1) + 1 belongs to I ′(X). Since tq−1j ∈ I ′(X) for all

2 ≤ j ≤ s, we may assume that there is no j for which tq−1j divides the monomial M in question.
Let us write it in the following way:

M = tb12 t
b2
4 · · · t

bk
2k t

c1
3 t

c2
5 · · · t

ck−1

2k−1,

with 0 ≤ bi, cj ≤ q − 2. We want to show that there exists f rσ = ta − tb ∈ I(X) such that tb

divides M . By Lemma 6.1, if tb divides M and there exists r, σ such that f rσ = ta − tb, then,

for all i ∈ {2, . . . , s− 2}, σi(tb) divides σi(M) and there exists σ′ such that f rσ′ = ta
′ − σi(tb).

Hence, we may assume that c1 ≤ c2 ≤ · · · ≤ ck−1 and that b1 ≥ b2 ≥ · · · ≥ bk. There are
two cases. If bk > 0, then M is divisible by t2t4 · · · t2k, which belongs to I ′(X), since for
σ = {1, 3, . . . , 2k − 1} t {2, 4, . . . , 2k}, we have f1σ = t1t3 · · · t2k−1 − t2t4 · · · t2k. The second case
is for bk = 0. In this case, from

degM =
k−1∑
i=1

(bi + ci) ≥ (q − 2)(k − 1) + 1

we deduce that there exists j ∈ {1, . . . , k− 1} such that bj + cj ≥ q− 1. Since cj ≤ q− 2 we get
bj ≥ 1. Set r = bj . Notice that then cj ≥ q − 1 − bj = q − 1 − r = r̂. Consider the set given
by B = {2, 4, . . . , 2j, 2j + 1, 2j + 3, . . . , 2k − 1} and let σ = A tB be the partition of {1, . . . , s}
that it determines. Then:

f rσ = (t1t3 · · · t2j−1)r(t2j+2 · · · t2k−2t2k)r̂ − (t2t4 · · · t2j)r(t2j+1t2j+3 · · · t2k−1)r̂ ∈ I(X).

Accordingly, (t2t4 · · · t2j)r(t2j+1t2j+3 · · · t2k−1)r̂ ∈ I ′(X). Since bl ≥ bj = r, for all 1 ≤ l ≤ j, we
deduce that tr2l divides M , for all 1 ≤ l ≤ j. Since r̂ ≤ cj ≤ cl, for all j ≤ l ≤ k − 1, we deduce

that tr̂2l+1 divides M , for all j ≤ l ≤ k − 1. In conclusion, (t2t4 · · · t2j)r(t2j+1t2j+3 · · · t2k−1)r̂
divides M and hence M ∈ I ′(X).

Let us now show that regS/I(X) ≥ (q − 2)(k − 1). If we show that hd 6= 0, i.e., hd > 0, for
d = (q − 2)(k − 1), then HX(d − 1) < HX(d), for d = (q − 2)(k − 1), and our result follows.
It suffices to produce a monomial M of degree d = (q − 2)(k − 1), such that M ∈ (S′)d but
M /∈ (I ′(X))d. Consider

M = (t2 · · · tk)q−2 ∈ (S′)d.

Suppose M ∈ I ′(X). Then, as we have seen above,

M =
s∑
j=2

gjt
q−1
j +

∑
σ,r

hσ,rt
b

where gj , hσ,r ∈ S′, f rσ = ta−tb and the second summation runs over all partitions σ of {1, . . . , s}
into 2 parts of equal cardinality and r ∈ {1, . . . , q − 2}. Since M is a monomial and its degree
in each one of the variables is q − 2, we deduce that M must be a monomial of the form

M = hσ,rt
b

for hσ,r ∈ S′, one partition σ of {1, . . . , s} into 2 parts of equal cardinality, one r ∈ {1, . . . , q − 2}
and f rσ = ta − tb. But this is not possible because the monomial M has k − 1 variables, while
hσ,rt

b has at least k variables. We conclude that M /∈ I ′(X). �
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Theorem 6.3. Let G be a bipartite graph. Let H1, . . . ,Hm be subgraphs of G isomorphic to
(even) cycles Hi ∼= C2ki that have disjoint edge sets. Then

regS/I(X) ≤ (q − 2)
(
s−

∑m
i=1 ki − 1

)
.

Proof. For all 1 ≤ i ≤ m, let tεi1
, . . . , tεi2ki

be the variables associated to the edges of Hi.

Without loss of generality, assume that t1 = tε11 , t2 = tε21 , . . . , tm = tεm1 .

Denote by R the quotient S/I(X) and, for 1 ≤ i ≤ m, let

Ri = R/(t1, . . . , ti).

Since t1 is a regular element of R, we have the following short exact sequence of graded S-
modules:

(6.2) 0 −→ R[−1]
t1−→ R −→ R1 −→ 0.

Furthermore, for all 1 ≤ i ≤ m− 1, we have exact sequences of graded S-modules:

(6.3) Ri[−1]
ti+1−→ Ri −→ Ri+1 −→ 0.

Claim 1. For all 1 ≤ i ≤ m, tq−1j = 0 in Ri, for all 1 ≤ j ≤ s.

Proof of Claim 1. Since tq−1j − tq−1i ∈ I(X) and tq−1i = 0 in Ri, we deduce that tq−1j = 0 in Ri,
for all 1 ≤ j ≤ s. �

Claim 2. If there exists a nonnegative integer ` such that (Ri+1)d = 0, for all d ≥ `, then
(Ri)d = 0 for all d ≥ `+ q − 2, where 1 ≤ i ≤ m− 1.

Proof of Claim 2. If (Ri+1)d = 0, for d ≥ ` then from (6.3) we deduce that for all d ≥ ` the

maps (Ri)d−1
ti+1−→ (Ri)d are surjective, i.e., (Ri)d = ti+1(Ri)d−1, for all d ≥ `. Iterating and

using Claim 1, we get: (Ri)d+q−2 = tq−1i+1 (Ri)d−1 = 0, i.e., (Ri)d = 0 for all d ≥ `+ q − 2. �

Claim 3. Let ta be a monomial in S. Suppose that the degree of ta in the variables associated
to Hi is ≥ (q − 2)(ki − 1) + 1. Then ta = 0 in Ri.

Proof of Claim 3. We may assume that ti does not divide ta. Defining

Si := K
[
tεi1
, . . . , tεi2ki

]
,

we have I(Xi) ⊂ Si, where Xi ⊆ P2ki−1 is the set of points parameterized by the edges of the
cycle Hi. It is straightforward to check that I(Xi) ⊂ I(X) ⊂ S. Let ta = tbtc, where tb is a
monomial in tεi1

, . . . , tεi2ki
. It suffices to show tb = 0 in Si/(I(Xi) + ti), but since tb has degree

≥ (q − 2)(ki − 1) + 1, we can run the same argument as in the proof of Theorem 6.2. �

Claim 4. Let `0 = (q− 2)
(∑m

i=1(ki− 1)
)
+(q− 2)

(
s−
∑m

i=1 2ki
)
+1. Then (Rm)d = 0, ∀ d ≥ `0.

Proof of Claim 4. Let ta be a monomial of degree d ≥ `0. In view of Claim 3, we may assume
that the degree of ta in the variables associated to Hi is ≤ (q − 2)(ki − 1). Then, the degree of
ta in the remaining s−

∑m
i=1 2ki variables is ≥ (q − 2)

(
s−

∑m
i=0 2ki

)
+1 which implies that one

of them is raised to a power ≥ q − 1 and therefore, by Claim 1, ta = 0 in Rm. �
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We now finish the proof of the theorem. Notice that `0 = (q − 2)
(
s −

∑m
i=1(ki + 1)

)
+ 1.

Combining Claim 2 with Claim 4 we deduce that (R1)d = 0, for all d ≥ `0 + (m − 1)(q − 2).

Now `0 + (m− 1)(q − 2) = (q − 2)
(
s−

∑m
i=1 ki − 1

)
+1 and using (6.2) we see that (R)d−1

t1−→
(R)d is an isomorphism for all d ≥ (q − 2)

(
s −

∑m
i=1 ki − 1

)
+1. This means that the Hilbert

function of R satisfies: HX(d − 1) = HX(d), for d − 1 ≥ (q − 2)
(
s −

∑m
i=1 ki − 1

)
. Hence,

regR ≤ (q − 2)
(
s−

∑m
i=1 ki − 1

)
. �

Remark 6.4. Notice we do not assume that G is connected nor do we assume that any 2
cycles, H1 and H2, in G have disjoint edge or vertex sets. In fact, we can apply the bound of
Theorem 6.3 to both graphs in Figure 4. For G1, on the left, we should use both cycles of order
4. We obtain regS/I(X1) ≤ 3(8− 4− 1) = 9. Using Macaulay2 [12], for q = 5, we checked that
this is the actual value of the regularity. For G2, on the right, we may only use one of the cycles.
Then, Theorem 6.3 yields regS/I(X2) ≤ (q − 2)(6− 2− 1) = 3(q − 2), which, for q = 5, is not
sharp, as the value of regS/I(X2) is 6. The inequality of Theorem 6.3 is an improvement of the
inequality given in [24, Corollary 2.31].

Corollary 6.5. Let G be a connected bipartite graph, the (even) cycles of which, H1, . . . ,Hm,
with Hi ∼= C2ki, have disjoint vertex sets. Then

regS/I(X) = (q − 2)
(
s−

∑m
i=1 ki − 1

)
.

Proof. Let tεi1
, . . . , tεi2ki

∈ S be the set of variables associated to the edges, ei1, . . . , e
i
2ki

of the even

cycle Hi. We set
Si = K

[
tεi1
, . . . , tεi2ki

]
⊂ S,

and denote by Ii(X) the intersection I(X) ∩ Si. Then, Ii(X) ⊂ Si is the vanishing ideal of the
algebraic toric set associated to Hi. By Theorem 5.13, I(X) is generated by the set

J = {tq−1i − tq−1j : 1 ≤ i, j ≤ s} ∪ I1(X) ∪ · · · ∪ Im(X).

We proceed by induction on the number of edges of G. If G is an even cycle, the result follows
from Theorem 6.2. We may assume that es is an edge of G that does not lie on any cycle of G
and that ts is the variable that corresponds to es. For simplicity of notation, we identify the
edge ei with the variable ti for i = 1, . . . , s and refer to ti as an edge of the graph G. Consider
the graph G1 whose edge set is {e1, . . . , es−1} (the edge set of G minus the edge es), and whose
vertex set is the set of endpoints of the edges e1, . . . , es−1. Let X1 be the algebraic toric set
parameterized by the edges of G1. Clearly G1 is a bipartite graph whose (even) cycles are again
H1, . . . ,Hm.

Case (I): The graph G1 is connected. Let A(X1) = K[t1, . . . , ts−1]/I(X1) be the coordinate ring
of X1 and let FX1(t) be the Hilbert series of A(X1). The Hilbert series can be uniquely written
as FX1(t) = g1(t)/(1− t), where g1(t) is a polynomial of degree equal to the regularity of A(X1).
Because G1 is a connected bipartite graph and has the same cycles as G, by Theorem 5.13, the
vanishing ideal I(X1) is generated by the set

J1 = {tq−1i − tq−1j : 1 ≤ i, j ≤ s− 1} ∪ I1(X) ∪ · · · ∪ Im(X)

(notice that Ij(X) = Ij(X1), for j = 1, . . . ,m). Hence, there is an exact sequence

0→ A(X1)[−(q − 1)]
tq−1
1−→ A(X1) −→ C = K[t1, . . . , ts−1]/(I1(X), . . . , Im(X), tq−1

1 , . . . , tq−1
s−1)→ 0.

As a consequence, we get that the Hilbert series F (C, t) of C is given by

F (C, t) = FX1(t)(1− tq−1) = g1(t)(1 + t+ · · ·+ tq−2),



20 JORGE NEVES, MARIA VAZ PINTO, AND RAFAEL H. VILLARREAL

and deg F (C, t) = (q − 2) + regA(X1). Since G1 is a connected bipartite graph ant its even
cycles have disjoint vertex sets, by induction we get regA(X1) = (q − 2)

(
s − 1−

∑m
i=1 ki − 1

)
,

and therefore,

(6.4) deg F (C, t) = (q − 2)
(
s−

∑m
i=1 ki − 1

)
.

From the exact sequence

0→ (S/I(X))[−1]
ts−→ S/I(X) −→ S/(ts, I(X))→ 0,

we get that FX(t) = F (S/(ts, I(X)), t)/(1 − t). Thus reg(S/I(X)) = deg F (S/(ts, I(X)), t).
Using the isomorphism

S/(ts, I(X)) ' K[t1, . . . , ts−1]/(t
q−1
1 , . . . , tq−1s−1, I1(X), . . . , Im(X)),

we obtain that C ' S/(ts, I(X)). Hence, by Eq. (6.4), the desired formula follows.

Case (II): The graph G1 is disconnected. It is not hard to show that G1 has exactly two connected
components G′1, G′′1 . Let E′1, E

′′
1 be the edge sets of G′1, G′′1 respectively and let X ′1, X

′′
1 be the

algebraic toric sets parameterized by the edges of G′1, G′′1 respectively. We may assume that
H1, . . . ,Hr are the cycles of G′1 and Hr+1, . . . ,Hm are the cycles of G′′1 . By Theorem 5.13, we
have that I(X ′1) and I(X ′′1 ) are generated by

J ′1 = {tq−1i − tq−1j : ti, tj ∈ E′1} ∪ I1(X) ∪ · · · ∪ Ir(X) and

J ′′1 = {tq−1i − tq−1j : ti, tj ∈ E′′1} ∪ Ir+1(X) ∪ · · · ∪ Im(X),

respectively. We set

C ′1 = K[E′1]/({t
q−1
i }ti∈E′1 , I1(X), . . . , Ir(X)), C ′′1 = K[E′′1 ]/({tq−1i }ti∈E′′1 , Ir+1(X), . . . , Im(X)).

By the arguments that we used to prove Case (I), and using the induction hypothesis, we get

degF (C ′1, t) = (q − 2)
(
|E′1| −

∑r
i=1 ki

)
, degF (C ′′1 , t) = (q − 2)

(
|E′′1 | −

∑m
i=r+1 ki

)
.

Since K[E′1] and K[E′′1 ] are polynomial rings in disjoint sets of variables E′1 and E′′1 , according
to [25, Proposition 2.2.20, p. 42], we have an isomorphism

C ′1 ⊗K C ′′1 ' K[t1, . . . , ts−1]/(t
q−1
1 , . . . , tq−1s−1, I1(X), . . . , Im(X)) = S/(ts, I(X)).

Altogether, as F (C ′1 ⊗K C ′′1 , t) = F (C ′1, t)F (C ′′1 , t) (see [25, p. 102]), we obtain

regS/I(X) = deg F (S/(ts, I(X)), t) = degF (C ′1 ⊗K C ′′1 , t) = degF (C ′1, t) + degF (C ′′1 , t)

= (q − 2)
(
|E′1|+ |E′′1 | −

∑m
i=1 ki

)
= (q − 2)

(
s−

∑m
i=1 ki − 1

)
,

as required. This completes the proof of case (II). �
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[3] I. M. Duursma, C. Renteŕıa and H. Tapia-Recillas, Reed-Muller codes on complete intersections, Appl.

Algebra Engrg. Comm. Comput. 11 (2001), no. 6, 455–462.
[4] D. Eisenbud, The geometry of syzygies: A second course in commutative algebra and algebraic geometry,

Graduate Texts in Mathematics 229, Springer-Verlag, New York, 2005.
[5] D. Eisenbud and B. Sturmfels, Binomial ideals, Duke Math. J. 84 (1996), 1–45.
[6] A. V. Geramita, M. Kreuzer and L. Robbiano, Cayley-Bacharach schemes and their canonical modules,

Trans. Amer. Math. Soc. 339 (1993), no. 1, 163–189.
[7] L. Gold, J. Little and H. Schenck, Cayley-Bacharach and evaluation codes on complete intersections, J. Pure

Appl. Algebra 196 (2005), no. 1, 91–99.



VANISHING IDEALS OVER GRAPHS AND EVEN CYCLES 21
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