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Abstract

The evolution of small perturbations around rotating black branes and strings, which are low energy solutions of string
theory, are investigated. For simplicity, we concentrate on the Kerr solution times transverse flat extra dimensions, possibly
compactified, but one can also treat other branes composed of any rotating black hole and extra transverse dimensions, as wel
as analogue black hole models and rotating bodies in fluid mechanics systems. It is shown that such a rotating black brane
is unstable against any massless (scalar, vectorial, tensorial or other) field perturbation for a wide range of wavelengths and
frequencies in the transverse dimensions. Since it holds for any massless field it can be considered, in this sense, a stronge
instability than the one studied by Gregory and Laflamme. Accordingly, it has also a totally different physical origin. The
perturbations can be stabilized if the extra dimensions are compactified to a length smaller than the minimum wavelength for
which the instability settles in, resembling in this connection the Gregory—Laflamme case. Likewise, this instability will have
no effect for astrophysical black holes. However, in the large extra dimensions scenario, where TeV scale black holes can be
produced, this instability should be important. It seems plausible that the endpoint of this instability is a static, or very slowly
rotating, black brane and some outgoing radiation at infinity.
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1. Introduction dimensions, which in order not to contradict observa-
tional evidence must be compactified on small scales.
String theory has made some important progress in ex-
plaining the entropy of certain black holes by counting
microscopic degrees of freedom, and thus scenarios
with extra, compactified dimensions must be taken se-
 E-mail addresses: vcardoso@wugrav.wustl.eqV. Cardoso), riously. In turn, some of the most interesting objects to
lemos@fisica.ist.utl.p).P.S. Lemos). be studied within string theory are those that possess

A consistent theory of quantum gravity, such as
string theory, seems to require the existence of higher
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event horizons, possibly extended in the compact extra

dimensions.

In d spacetime dimensions, an event horizon can

be topologically a spher§?—2, but when extended to
p extra dimensions, it could naturally have topologies
eitherS?—2+7 in which case it is a higher-dimensional
black hole, ors?=2 x RP being then a blaclp-brane

or a black string in the = 1 casd1]. The R? topol-
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Here we shall show that a related class of metrics,
for example, having the form

ds® = afs%eIrr +dx" dx;,

)

where the line elementsZ,,, stands for thel/-dimen-

sional Kerr—Myers—Perry line element, is unstable to
scalar perturbations, as well as to vectorial, gravita-
tional and other type of perturbations. In this sense it

ogy of the transverse dimensions can be compactified s a stronger instability than the one studied3h be-

giving flat toroidal topological space®’.

cause it holds for any massless field. Accordingly, it

One of the first steps towards understanding these has also a totally different physical origin, as we will

extended higher-dimensional solutions is to investi-
gate their classical stability against small perturba-
tions. If a solution is unstable, then it most certainly
will not be found in nature (unless the instability is
secular) and the solution looses most of its power.

Of course the next question one must ask is what is

the final stable result of such instability. Now, ih

spacetime dimensions, the Schwarzschild—Tangherlini

geometry is stable against all kinds of perturbations,
massive or massle$2]. On the other hand, quite sur-
prisingly, Gregory and Laflamm@&] showed that this

see.
2. Formulation of the problem and basic
equations
2.1. The background metric
In four dimensions, there is only one possible rota-

tion axis for a cylindrically symmetric spacetime, and
there is therefore only one angular momentum para-

is not the case for higher-dimensional black branes and meter. In higher dimensions there are several choices
black strings. These ObJeCtS are unstable. The kind of for rotation axes and there is a multitude of angu|ar

black p-branes originally studied if8] were solutions
of ten-dimensional low energy string theory with met-
ric of the form

1)

wheredsZ,, stands for thel-dimensional Schwarz-
schild-Tangherlini line element, the are the coor-
dinates of the compact dimensions, anduns from

1 to p. The total dimension of the spacetinie
obeys D = d + p. In string or supergravity theo-
ries one takesD = 10 or D = 11, but for gener-
icity one can leave it as a free natural parameter.
In [3] it was shown that even though scalar and vec-
tor perturbations of the black brane stay bounded in
time, the tensorial sector of gravitational perturba-
tions displays an instability, with the perturbations
growing exponentially with time, possibly breaking

ds? = dséchw—i— dx' dx;,

the extended black brane into several smaller black x — ;2 4 42¢cog0,

holes. The only way around this instability is to
compactify the transverse direction$ on a scale
smaller than the black hole radiy8] (for a full
discussion of this instability and its developments
seel4]).

momentum parameters, each referring to a particular
rotation axis. Here we shall concentrate on the sim-
plest case, for which there is only one angular mo-
mentum parameter, which we shall denoteabyl he
specific metric we shall be interested in is given in
Boyer—Lindquist-type coordinates by

42 A—a2sm29dt2

x
2a(r? 4 a® — A)sirt 6
_ a(r“+a ) dtdy
x
2 2\2 2
— Ad?sir?
rc+a*) acsi esinzé’d(pz
)
x .
+ Zdrz + ¥ d6% +r?cof0d2? + dx' dx;,
)
where
(4)
A=r’+a?—mrt ™", (5)

andd$2? denotes the standard metric of the umit
sphere f = d — 4), thex' are the coordinates of the
compact dimensions, andruns from 1 top. This
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metric describes a rotating black brane in an asymp- tain the separated equations
totically flat, vacuum space—time with mass and angu- 1 d s
lar momentum proportional ta andua, respectively. (— sing cos' %>

Hereafteryu, a > 0 are assumed. sing cos' 6 \ do
The event horizon, homeomorphic 8+, is lo- + [a®(w? — k%) cog 0 — m?csé 0
cated atr = ry, such thatA|,—,, =0. Forn =0, an —j(j+n—1)se@9+A]S=0, @)

event horizon exists only fat < /2. Whenn = 1,
an event horizon exists only when< /iz, and the ~ and

event horizon shrinks to zero-area in the extreme limit _ a / =~ dR
a — /. On the ot_h_er hand, Whet_a >2, A =Q A Aﬂ
has exactly one positive root for arbitragy> 0. This

2, .2y 12

means there is no bound an and thus there are no 4 { [w(r® +a®) = mal

extreme Kerr black branes in higher dimensions. A
——j(j+”_1)a2—/\—k2r2}R=0 ®)

2.2. Separation of variables and boundary conditions r2 ’

whereA is a constant of separatiohn;= A — 2mwa +
Consider now the evolution of a massless scalar w?a?, andk? = Zkl?. Interestingly, note the important
field ¥ in the background described I§§). The evo- point that Eqs(7) and (8)are just those that describe
lution is governed by the curved space Klein—Gordon the evolution of a massive scalar field, with masm

equation ad-dimensional Kerr geometry.
Eqgs.(7) and (8)must be supplemented by appropri-
3 3 " ! .
o (\/_—gg,wﬁw> —o, ©6) ate boundary (‘Tondltlons, which are given by
(r—rg)'° asr — ry,
whereg is the determinant of the metric. The metric X~ N ©)
& ' rm(+2/2g7IN @ =K ggr 5 00,

appearing in(6) should describe the geometry refer-

ring to both the black brane and the scalar field, but if Where

we consider that the amplitude ¥fis so small that its [(r121 +a®)w — malry
contribution to the energy content can be neglected, 0 ‘= 1 — D2 +a2) + 22
then the metriq3) should be a good approximation H H
to g,» in (6). We shall thus work in this perturbative has been determined by the asymptotic behavior of
approach. It turns out that it is possible to simplify EQ. (8). In other words, the waves must be purely
considerably equatio(6) if we separate the angular ingoing at the horizon and purely outgoing at the in-
variables from the radial and time variables, as is done finity. For assigned values of the rotational parameter
in four dimensiong5]. For higher dimensions we fol- @ and of the angular indicés j, m there is a discrete
low [6]. In this connection see al4@] for a general (and infinite) set of frequencies called quasinormal
(4 + n)-dimensional Kerr hole with several spin pa- frequencies, QN frequencies arn, satisfying the
rameters. In the end our results agree with the results wave equatior(8) with the boundary conditions just
in [7], if we consider only one angular momentum pa- Specified by Eq(9).

rameter in their equations, and no extra compactified

(10)

dimensions. _ o
We consider the ansatz 3. Theinstability timescale
b= g ot —imp-+ikix' RSO (2), Now, whend = 4, analysis of the perturbations of

a massive scalar field on the Kerr geometry has been
and substitute this form i(6), whereY (£2) are hyper- done[8]. Indeed, Eqgs(7) and (8)have been analyt-
spherical harmonics on thesphere, with eigenvalues ically solved by Zouros and Eardley in the limit of
givenby—j(j+n—-1)(j=0,1,2,...). Then we ob- largek? and by Detweiler in the limit of smali? [8].
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Detweiler’s results have recently been confirmed nu- instability, in the approximations used is/M >
merically by Furuhashi and Namijg]. Detweiler[8] 24(1/kM)°. SincekM « 1 this is not a specially ef-
shows that for smalk?, in particular,kM < 1, the ficient instability, and it does not even appear to over-
geometry is unstable. In fact, he shows that the char- come the Gregory—Laflamme instability timescale.
acteristic frequencies satisfying the boundary con- However, the only results available so far for the

ditions(9) are given by Gregory—Laflamme instability refer to non-rotating
objects. It is possible that as one increases the rotation

w=0+iy, (11) to large values the instability studied here becomes

with more effective (as is apparent from E5)) and that

the Gregory—Laflamme instability gets less effective.

kM \?
ozzkz[l—(—) } n=0,12 ..., (12)

[+1+n 4. Conclusions

and
What is the physical interpretation of this instabil-

y = C(k __anm ) (13) ity for rotating black branes? It is known that the Kerr
2Mry geometry displays superradian@. This means that

with C = C(I,m,a, M,n) a positive constant, as in a scattering experiment of a wave with frequency

shown in Detweilef8]. So, form positive and o < m§$2 the scattered wave will have a larger ampli-
am tude than the incident wave, the excess energy being
<5u (14) withdrawn from the object’s rotational energy. Here
I+

£2 is the horizon’s angular velocity (related &0 M
which is just a superradiance condition, the mode is andr, through$2 = a/(2Mry)) andm is again the
then unstable. In particular, the most unstable mode is azimuthal wave quantum number. Now suppose that
thel = m = 1 mode with are-folding timet given by one encloses the rotating black hole inside a spherical

of mirror. Any initial perturbation will get successively
T 1 1 amplified near the black hole event horizon and re-
wo ka (kM)E (15) flected back at the mirror, thus creating an instability.

) ) This is the black hole bomb, as devised[i®] and

Now, we know their results can be translated imme- recently improved irf11]. This instability is caused
diately into our black brane geometry. Thus rotating by the mirror, which is an artificial wall, but one can
black branes of the fornB) with =4 andp extra  eayise natural mirrors if one considers massive fields.
dimensions are unstable, with afolding ime given |, thjs case, the mass of the field acts effectively as a
by (15). The results fo/ > 4 are not available inthe  mjrror, and thus Kerr black holes are unstable against
literature, but the instability should be present in these 53ssive field perturbatiorf8]. With this in mind, we
cases as well. o - expect that black strings and branes of the fq@h

The only way around this instability is to make the \yj|| pe unstable, because the compactified transverse
superradiant factok — 57— positive, which is the  gjrections work as an effective mass for the graviton
same as havingM > 5. Thus, for sufficiently small  and for the scalar field. In fact, this simple reasoning
a/r4, thisis still inside the range of validity of our ap-  implies that any rotating black brane (more general
proximations,kM « 1. To escape this instability one  than the one described Hg)) will be unstable. This
must compactify the transverse dimensions on a small would be the case for the rotating black hole in string

scaleL, i.e., 27+M < 2’7+ Writing outr explicitly this theory found by Sen or other rotating black hdl&g].
gives Moreover, following Zel'dovich[9], it is known that
L not only the Kerr geometry, but any rotating absorb-
1 < 20, (16) ing body for that matter displays superradiance. Thus,
this instability should appear in analogue black hole
wherea = M /a++/M?/a? — 1~ 2M /a, for smalla. models[13], and in rotating bodies in fluid mechanics

From (15) one obtains that the timescale for the systems.
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Here, we have derived the instability timescale
for a scalar field, and not for geometry (metric) per-
turbations, since Teukolsky's formalism for higher-
dimensional rotating objects is not available. Still, the
argument presented above makes it clear that the in-
stability should be present for metric perturbations
as well. We also expect that the instability will be
stronger for metric modes, because of the follow-
ing simple reasoning. Superradiance is the mecha-
nism responsible for this instability, and thus the larger
the superradiant effects, the stronger the instability.
Now, we know that in the Kerr geometry ih = 4
scalar fields have a maximum superradiant amplifica-
tion factor of about 2%, whereas gravitational modes
have maximum superradiant amplification factor of
about 138%][14]. Then it is expected the instabil-
ity timescale to be almost two orders of magnitude
smaller, and correspondingly, the instability should
grow much stronger for gravitational modes. For gen-
eral black branes, the Gregory-Laflamme instability

seems to be stronger than the one displayed here,

but it is known that certain extremal solutions should
not exhibit the Gregory—Laflamme instabilifyL5],
whereas the instability dealt with here should go all
the way to extremality. So, eventually it takes over
the Gregory—Laflamme instability. Moreover, recent
studies[16] seem to indicate that black strings in a
Randall-Sundrum inspired 2-brane model do not ex-
hibit the Gregory—Laflamme instability.

The endpoint of this rotating instability is not
known, and it can never be predicted with certainty
by a linear analysis. However, it seems plausible to as-
sume that the instability will keep growing until the
energy and angular momentum content of the field ap-
proaches that of the black brane, when back-reaction
effects become important. The rotating brane will then
begin to spin down, and gravitational and scalar radi-
ation goes off to infinity carrying energy and angular
momentum. The system will probably asymptote to
a static, or very slowly rotating, final state consisting
of a non-rotating blacky-brane and some outgoing
radiation at infinity. But we cannot discard the other
possibility that the horizon fragments.
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