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Abstract. We present various worst-case results on the positive semidefinite

(psd) rank of a nonnegative matrix, primarily in the context of polytopes. We

prove that the psd rank of a generic n-dimensional polytope with v vertices

is at least (nv)
1
4 improving on previous lower bounds. For polygons with v

vertices, we show that psd rank cannot exceed 4 dv/6e which in turn shows

that the psd rank of a p × q matrix of rank three is at most 4 dmin{p, q}/6e.
In general, a nonnegative matrix of rank

(k+1
2

)
has psd rank at least k and

we pose the problem of deciding whether the psd rank is exactly k. Using

geometry and bounds on quantifier elimination, we show that this decision
can be made in polynomial time when k is fixed.

1. Introduction

The positive semidefinite (psd) rank of a nonnegative matrix was introduced in
[7] and [10] and is a special case of the cone rank of a nonnegative matrix from [10].
A familiar example of a cone rank is that of nonnegative rank; given a nonnegative
matrix M ∈ Rp×q, its nonnegative rank is the smallest positive integer k such that
there exists nonnegative vectors a1, . . . , ap, b1, . . . , bq ∈ Rk

+ such that Mij = aTi bj
for each i and j. Let Sk denote the vector space of all real symmetric k×k matrices
and Sk+ denote the cone of all psd matrices in Sk. Then the psd rank of M is the

smallest integer k such that there exists matrices A1, . . . , Ap, B1, . . . , Bq ∈ Sk+ such
that Mij = 〈Ai, Bj〉 := Trace(AiBj) for all i and j. We denote it as rankpsd (M)
and call the matrices A1, . . . , Bq a psd factorization of M .

Nonnegative rank has been studied for several years, has many applications [4],
and is NP-hard to compute [18]. There are several techniques for finding lower
bounds to nonnegative rank, most of which are based on the zero/nonzero structure
(support) of the matrix [4, 6], and some newer methods that do not rely on support
[2, 5]. For a nonnegative p×q matrix, the psd rank is at most the nonnegative rank
which in turn is at most min{p, q}. However, psd rank is more complicated than
nonnegative rank with almost no techniques available for finding bounds. In this
paper we exhibit bounds for psd rank in several contexts, and establish new tools
for studying this rank.

The motivation for the definition of psd rank came from geometric problems
concerning the representation of convex sets for linear optimization. For instance,
given a polytope P ⊂ Rn, one can ask whether P can be expressed as the linear
image of an affine slice of some positive orthant Rk

+. If k is small relative to the
number of facets of P , then this implicit representation of P can be far more
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efficient that the natural representation of P by inequalities in n variables. In the
foundational paper [20], Yannakakis proved that the smallest k possible for a given
P is the nonnegative rank of a slack matrix of P (also called the nonnegative rank
of P ). If P is a full-dimensional polytope in Rn with vertices p1, . . . , pv and f facet-
defining inequalities dj − cTj x ≥ 0 where cj ∈ Rn, dj ∈ R, then the corresponding

slack matrix of P is the v × f nonnegative matrix whose (i, j)-entry is dj − cTj pi,
the slack of vertex pi in the facet inequality dj − cTj x ≥ 0. Yannakakis’ result was
extended in [7] and [10] to show that the psd rank of a slack matrix of P (often
referred to as the psd rank of P ) is exactly the smallest k such that P is the linear
image of an affine slice of the psd cone Sk+. Affine slices of the psd cone are called
spectrahedra and can be written as {(x1, . . . , xd−1) | g(x1, . . . , xd−1) � 0} where g
is the linear matrix pencil x1G1 + . . . + xd−1Gd−1 + Gd defined by the matrices
G1, . . . , Gd ∈ Sk. Again, if k is small compared to f , one can very often optimize
a linear function efficiently over P via semidefinite programming. This geometric
connection has made psd rank an important invariant of a polytope and both upper
and lower bounds on this rank shed information on the complexity of the polytope.
One can further extend Yannakakis’ theorem (and hence psd rank) to all convex
sets [10] but in this paper we only consider polytopes.

Finding lower bounds on the psd rank of a nonnegative matrix is notoriously
hard, even harder than in the case of nonnegative rank, and only somewhat trivial
bounds are known. For example, dimension counting is enough to conclude that the
psd rank of a matrix M is at least 1

2

√
1 + 8 rank(M)− 1

2 . Support based bounds,
the most popular type of bounds for nonnegative rank, are of limited strength
in the psd case, but can still yield interesting applications, as shown in [13]. In
the special case of slack matrices of polytopes, we can do slightly better. For
example, if M is the slack matrix of an n-dimensional polytope P , we actually have
rankpsd (M) ≥ rank (M) = n+ 1, as seen in [11, 13], by support based arguments.
Furthermore, direct application of quantifier elimination bounds guarantees that if

M has psd rank k, then P has at most kO(k2n) facets (see [10]). This translates to
saying that rankpsd (P ) ≥ Exp( 1

2W (O(log(f)/n))), where f is the number of facets
of P and W the Lambert W -function. Using the asymptotic behavior of W , this

results in a lower bound of the type Ω
(√

log(f)
n log log(f)

)
.

In this paper we establish several new bounds on psd rank for particular families
of matrices with a focus on slack matrices of polytopes. In Section 2 we show that
a generic n-dimensional polytope with v vertices has psd rank at least (nv)

1
4 , much

improving the lower bounds discussed earlier. An analogous result for nonnegative
rank of generic polytopes was proven in [8]. This implies that a generic polygon

with v vertices has psd rank at least (2v)
1
4 while all v-gons have psd rank at most v.

In Section 3 we improve the upper bound for polygons from v to 4 dv/6e by showing
that all hexagons have psd rank four and then using some psd rank calculus from
[10]. Slack matrices of polygons have rank three and we use the previous upper
bound on polygons to show that all rank three matrices have psd rank at most
4 dmin{p, q}/6e. These results are psd analogs of results on nonnegative rank in
[17], where it is shown that a v-gon has nonnegative rank at most

⌈
6v
7

⌉
. Next we

shift gears in Section 4 and examine how low the psd rank of a matrix of fixed
rank can get. A nonnegative matrix of rank

(
k+1
2

)
has psd rank at least k. This

bound is tight if and only if it is possible to sandwich the psd cone Sk+ in between
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two polyhedral cones coming from M . We then reduce this geometric condition to
the feasibility of a semialgebraic system and use results on quantifier elimination
to show that when k is fixed, it is possible to decide in polynomial time whether a
nonnegative matrix of rank

(
k+1
2

)
has psd rank k.

2. A Lower Bound on PSD Rank of Generic Polytopes

In this section we will focus on lower bounds for the psd ranks of generic poly-
topes. A polytope P ⊂ Rn is said to be generic if the coordinates of its vertices
form an algebraically independent set over the rationals, i.e. the vertex coordinates
do not satisfy any non-trivial polynomial equation with rational coefficients. It is
clear that no simple description of such a polytope can be expected. It was shown
in [8] that the nonnegative rank of a generic polygon with v vertices is at least√

2v. Their proof in fact extends to showing that the nonnegative rank of a generic
n-dimensional polytope with v vertices is at least

√
nv. We adapt the philosophy

of their proof to the psd case to prove the lower bound, rankpsd (P ) ≥ (nv)
1
4 .

Theorem 2.1. If P ⊂ Rn is a generic polytope with v vertices, then its psd rank
is at least (nv)

1
4 .

Proof. Let dk := k(k+1)
2 be the dimension of the R-vector space Sk of k × k real

symmetric matrices. Suppose P ⊂ Rn is a generic polytope with v vertices and
rankpsd (P ) = k. Then P is the image under a linear map of a spectrahedron
living in Sk+. Without loss of generality, we may assume that this linear map is the
projection onto the first n coordinates and that P can be written as:

P = {(x1, . . . , xn) | ∃ xn+1, . . . , xdk−1 with g(x1, . . . , xdk−1) � 0}

where g(x1, . . . , xdk−1) = x1G1 + . . .+ xdk−1Gdk−1 +Gdk
, each Gi ∈ Sk.

Let Γ be the set of distinct real entries in the matrices Gi. Then |Γ| ≤ d2k ≤ k4.

Consider the extension field Q(Γ) and its real closure Q(Γ) (this is simply the real

part of the algebraic closure of Q(Γ)). The transcendence degree of Q(Γ) is at
most |Γ| (see [12, Chap 6] for the definition of transcendence degree and its basic
properties). We now show that the vertex coordinates of P are all contained in

Q(Γ).
Let p = (p1, . . . , pn) be a vertex of P and ω ∈ Qn a vector such that the

linear program (L): max{ωTx : x ∈ P} has p as its unique optimal point. Let
ω̃ := (ω, 0, . . . , 0) ∈ Qdk−1 and S := {(x1, . . . , xdk−1) | g(x1, . . . , xdk−1) � 0}. Then
the semidefinite program (SP): max{ω̃Tx : x ∈ S} has the same optimal value as
(L) and the solutions of (SP) are the points in S that project to p.

If S∩int(Sk+) = ∅, then S could be written as an affine slice of a proper face of Sk+.
Since proper faces of the psd cone are isomorphic to smaller psd cones [19, Chap 3],
this would mean that P could be written as a projection of an affine slice of Sl+
for some l < k, which would contradict our original assumption of rankpsd (P ) = k.
Hence, we must have that S ∩ int(Sk+) 6= ∅. Thus, Slater’s condition [19, Chap 4]
is satisfied for (SP). Let (SD) denote the semidefinite program dual to (SP).
From semidefinite programming duality theory [19, Chap 4], we know that a pair
(x, Y ) ∈ Rdk−1×Sk is an optimal primal-dual pair for the programs (SP), (SD) if
and only if they satisfy the following first order conditions:

g(x) � 0, Y � 0, 〈Gi, Y 〉 = −ω̃i, 〈g(x), Y 〉 = 0.
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These conditions are a series of polynomial equations and inequalities with coeffi-
cients in Q(Γ). By the Tarski-Seidenberg Theorem [1, Chap 5], we have that there
exists a solution to these equations over R if and only if there exists a solution
to these equations over Q(Γ). Since Slater’s condition was satisfied, strong duality
holds for (SP), and there are solutions (x, Y ) over R. By our choice of (SP), we have
that each of these solutions (x, Y ) is of the form (p1, . . . , pn, xn+1, . . . , xdk−1, Y ).

Hence, the coordinates p1, . . . , pn are contained in Q(Γ).

By repeating this procedure for each vertex of P , we see that Q(Γ) contains

all n coordinates for each of the v vertices. Hence, Q(Γ) contains nv algebraically

independent elements. Thus, the transcendence degree of Q(Γ) is at least nv.
Hence, we have that nv ≤ |Γ| ≤ k4. �

In [8], the authors also prove that for each v ≥ 3, there is a v-gon with integer

vertices lying in [2v] × [4v2] whose nonnegative rank is Ω((v/log v)
1
2 ). The same

statement also holds in the psd setting with the bound changing to Ω((v/log v)
1
4 )

as recently shown in [3].

3. An Upper Bound on PSD Rank of Polygons

The result in the previous section implies that the psd rank of a generic v-gon
is at least (2v)

1
4 , while on the other hand, v is a trivial upper bound on the psd

rank of any v-gon since its slack matrix has size v × v. This tells us that the worst
case rank of a v-gon lies somewhere between the two. In this section we will use
some simple geometric tools to show that the trivial upper bound can be slightly
improved by a constant to 4

⌈
v
6

⌉
. This result can be stated more generally for

matrices of rank three. We will show that if M is a nonnegative matrix of rank

three of size p × q, then rankpsd (M) ≤ 4
⌈
min{p,q}

6

⌉
. These results are analogous

to recent results on nonnegative rank of polygons and rank three marices. In [17],
Shitov proved that the nonnegative rank of a v-gon is at most

⌈
6v
7

⌉
, and more

generally, that the nonnegative rank of a rank three nonnegative matrix of size

p× q is at most
⌈
6min{p,q}

7

⌉
.

We begin with a general lemma about psd rank of polytopes.

Lemma 3.1. Let P be a polytope with rankpsd (P ) = k, and let P̃ be a polytope
obtained from P by adding either a single inequality to the facet description of P

or a single point to the vertex description of P . Then rankpsd (P̃ ) ≤ k + 1.

Proof. First, suppose that P̃ arises by adding a single inequality to the facet de-

scription of P . Then there exists some affine halfspace A such that P̃ = P ∩ A.
Write A in the form {x ∈ Rn | a0 + a1x1 + . . .+ anxn ≥ 0}. Since the psd rank of
P is k, we can write P in the form:

(1) P = {(x1, . . . , xn) | ∃ xn+1, . . . , xdk−1 with g(x1, . . . , xdk−1) � 0}

where g is the linear pencil given by matrices G1, . . . , Gdk
∈ Sk. Now define a

vector ã ∈ Rdk with ã = (a1, . . . , an, 0, . . . , 0, a0) and define matrices G̃i ∈ Sk+1

where the upper left block is Gi, the lower right diagonal entry is ãi, and all other

entries are 0. If we let the G̃i’s play the role of the Gi’s in (1), then this new set will

be equal to P̃ . Hence, P̃ has a lift into Sk+1
+ and we have that rankpsd (P̃ ) ≤ k+ 1.
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The case when P̃ arises by adding a point to the vertex description of P follows
from the fact that a polytope and its polar both have the same psd rank [10]. �

Example 3.2. By [11, Theorem 4.7], all triangles and quadrilaterals have psd rank
three and any polygon with at least five sides has psd rank at least four. Since a
pentagon can be obtained by adding an inequality to the facet description of a
quadrilateral, Lemma 3.1 implies that all pentagons have psd rank exactly four.

The following lemma is a direct consequence of the definition of psd rank.

Lemma 3.3. Let P be a polytope and suppose there exists a polyhedron Q and a
linear map π such that P = π(Q). Then rankpsd (P ) ≤ rankpsd (Q).

Theorem 3.4. Every hexagon has psd rank exactly four.

Proof. Let H be a hexagon. We know that rankpsd (H) ≥ 4 [11, Theorem 4.7].
Since psd rank is invariant under invertible affine transformations, we may assume
that H has vertices (1, 0), (a, b), (0, 1), (c, d), (0, 0), and (e, f) where (a, b), (c, d),
and (e, f) lie in the first, second, and fourth quadrants, respectively, and these
points also satisfy a+ b > 1, c+ d < 1, and e+ f < 1.

Consider the polytope O in R3 with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),
(v1, 0, v3), and (0, w2, w3), where

v1 = c− ad

b
, v3 =

d

b
, w2 = f − be

a
, w3 =

e

a
.

With this choice of coordinates, we see that v1 < 0, v3 > 0, w2 < 0, w3 > 0,
v1 + v3 < 1, and w2 + w3 < 1. These conditions imply that O is a combinatorial
octahedron. In [11], an octahedron O was defined to be biplanar if there exist two
distinct planes E1 and E2 such that O ∩Ei contains four vertices of O for i = 1, 2.
By intersecting the O defined above with the xz and yz-planes, we see that it is
biplanar. Thus by [11, Theorem 4.8], we have that rankpsd (O) = 4. Define a linear

map π : R3 → R2 by the matrix

(
1 0 a
0 1 b

)
. Then π(O) = H and by Lemma 3.3,

rankpsd (H) = 4. This lift of a hexagon to an octahedron is shown in Figure 1. �

To obtain our results for nonnegative matrices of rank three, we recall the notion
of a generalized slack matrix and an interpretation of its psd rank.

Definition 3.5. Let P ⊂ Rn be a full-dimensional polytope and Q ⊂ Rn be a
polyhedron with P ⊆ Q. Suppose P is represented as a convex hull of points
in the form P = conv(p1, . . . , pv) and Q is represented by inequalities as Q ={
x ∈ Rn | cTj x ≤ dj , j = 1, . . . , f

}
where cj ∈ Rn and dj ∈ R. Then the generalized

slack matrix of the pair P,Q is the v×f nonnegative matrix SP,Q whose (i, j)-entry
is dj − cTj pi.

It is a well-known result in the community that the nonnegative rank of SP,Q is
the smallest nonnegative rank of a polyhedron R such that P ⊆ R ⊆ Q ([2]; see
[9],[15] for related statements). The same result also holds for psd rank, and in fact
for any cone rank in the sense of [10]. We include a proof of the psd case, as we
will use the result more than once and it does not seem to be written anywhere.

Proposition 3.6. Let P and Q be polyhedra as in Definition 3.5, and suppose Q
does not contain any lines. Then rankpsd (SP,Q) is equal to the smallest k such that
there exists an affine slice L of Sk+ and a linear map π such that P ⊆ π(L) ⊆ Q.
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v

Figure 1. This figure depicts the lift of a hexagon to an octahe-
dron shown in the proof of Theorem 3.4. The left picture shows a
hexagon in a normalized form. The right picture shows the octa-
hedron and its linear projection onto the hexagon. The projection
map is the identity on the xy-plane and is depicted by the red
dashed lines for the vertices of the octahedron not in the xy-plane.

(We call k the psd rank of the pair P,Q and it measures the smallest possible psd
rank of a convex set sandwiched between P and Q.)

Proof. After translation and rescaling we may assume that

Q =
{
x ∈ Rn | cTj x ≤ 1, j = 1, . . . , f

}
.

Let ` denote the psd rank of SP,Q. Then SP,Q has a psd factorization through S`+.

Thus there exist matrices U1, . . . , Uv, V1, . . . , Vf ∈ S`+ such that (SP,Q)ij = 〈Ui, Vj〉.
Define an affine set

A =
{

(x,M) ∈ Rn × S` | 1− cTj x = 〈M,Vj〉 for all j = 1, . . . , f
}
.

Let AM be the projection of A onto the M coordinates and define L = AM ∩ S`+.
Define π to be the map on L that sends M to any element x ∈ Rn where (x,M) ∈ A.
This map is well-defined and linear. Since (pi, Ui) ∈ A, we see that P ⊆ π(L). Also,
for z ∈ π(L), we have that cTj z ≤ 1 for all j = 1, . . . , f . Thus, π(L) ⊆ Q. Hence, `
is greater than k, the psd rank of the pair P,Q.

For the converse, note that there exists a convex set C with P ⊆ C ⊆ Q such
that C has psd rank k. By [10, Theorem 2.4], the slack operator SC is factorizable
through Sk+, i.e. there exist maps σ : C → Sk+ and τ : C◦ → Sk+ such that
1−〈x, y〉 = 〈σ(x), τ(y)〉 for (x, y) ∈ C×C◦. Here C◦ denotes the polar of C. Then
σ(p1), . . . , σ(pv), τ(c1), . . . , τ(cf ) give a Sk+-factorization of SP,Q, and so k ≥ `. �

Now suppose we are given a nonnegative p× q matrix M with rank (M) = 3 and
we are interested in rankpsd (M). First, we may assume that M has no zero rows,
since adding or removing zero rows from M will not affect its psd rank. Therefore, if
1 denotes the vector of all ones, then M1 is a strictly positive vector. Since scaling
the rows of M by positive scalars does not affect the psd rank, we can then assume
that 1 is in the column span of M . Now consider a rank factorization M = UV



WORST-CASE RESULTS FOR POSITIVE SEMIDEFINITE RANK 7

with U ∈ Rp×3 having rows Ui = (1, uTi ) for ui ∈ R2 and V ∈ R3×q. Let

P := conv(u1, . . . , up) and Q :=
{
x ∈ R2 : (1, xT )V ≥ 0

}
.

Then the pair P,Q satisfies the conditions of Proposition 3.6 and M = SP,Q. Hence,

rankpsd (M) = rankpsd (SP,Q) ≤ rankpsd (P )

where the inequality follows from Proposition 3.6. In particular, a 6×q nonnegative
matrix of rank three is the generalized slack matrix of a hexagon inside a q-gon and
so has psd rank at most four. Since rankpsd (M) = rankpsd (MT ), the psd rank of
a p× 6 nonnegative matrix of rank three is also at most four.

Theorem 3.7. Let M be a nonnegative p × q matrix with rank (M) = 3. Then

rankpsd (M) ≤ 4
⌈
min{p,q}

6

⌉
. In particular, the psd rank of an v-gon is at most

4
⌈
v
6

⌉
.

Proof. We can write M as the concatenation of dq/6e matrices with p rows and at
most six columns, each of which therefore has psd rank at most four. The result
now follows by noting that the psd rank of the concatenation of two matrices is at
most the sum of the psd ranks of the individual matrices. Indeed, if {Ai}, {Bj}
factorize M and {A′i}, {Ck} factorize M ′ then the following block diagonal matrices
factorize [M1 M2]:{(

Ai 0
0 A′i

)}
,

{(
Bj 0
0 0

)
,

(
0 0
0 Ck

)}
.

�

Very little is known about the ranks of v-gons for v ≥ 7. For example, we know
that all 7-gons have psd rank either four or five by Theorem 3.4, Lemma 3.1 and
[11], but there is no concrete heptagon whose psd rank is actually known. We know
some 8-gons with psd rank four, but we have no idea how high their psd rank can
be, apart from the trivial upper bound of six, obtained again by Lemma 3.1. In
fact the smallest “concrete” polygons known to have psd rank greater than four are
the generic polytopes whose lower bounds are guaranteed by Theorem 2.1, which
in this case is a generic 129-gon.

4. Geometry of Minimal PSD Rank

Up until now in this paper we focused on studying matrices of a fixed rank which
have high psd rank. In particular, in the previous section we gave upper bounds on
the psd rank of a rank three matrix. In this section we go in the opposite direction
and study matrices of fixed rank with minimal psd rank. Given a nonnegative
matrix M of rank three, a dimension count immediately shows that rankpsd (M) ≥
2. We now derive a geometric characterization of when rankpsd (M) = 2 which will
generalize to higher values of rank and yield a complexity result for psd rank.

As before Theorem 3.7, we may assume that our rank three matrix M has size
p × q, it has no all-zero rows or columns, and that 1 is in the column span of M .
Let M = UV be a rank factorization of M with 1 as the first column of U . Let the
rows of U be (1, uT1 ), . . . , (1, uTp ) and define polyhedra P := conv(u1, . . . , up) and

Q := {x ∈ R2 | (1, xT )V ≥ 0} as before. Then P ⊆ Q and M = SP,Q.
By Proposition 3.6, we know that rankpsd (M) = 2 if and only if there exists a

linear map π and an affine space L such that P ⊆ π(L∩S2+) ⊆ Q. Since translating
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Figure 2. Disk nested between P and (
√

2/2)P where P is the
unit square.

P and Q will not affect the slack matrix M , we may assume that 0 ∈ int(P ).
Under this assumption, we see that the affine space L cannot be all of S2. Hence,
L must be a two-dimensional slice of S2 and π|L must be invertible. Since S2+ is
linearly equivalent to the positive half of the three-dimensional second order cone,
{(x, y, z) | x2 + y2 ≤ z2 and z ≥ 0}, we see that L ∩ S2+ is the linear image of
the convex hull of a “half-conic” where half-conics are all ellipses, parabolas, and
connected components of hyperbolas in R2. Finally, we use the fact that the set of
conics is invariant under invertible linear transformations to see the following.

Proposition 4.1. Let M be a nonnegative rank three matrix. Let P ⊆ Q ⊆ R2 be
the polytope and polyhedron arising from a rank factorization of M as above. Then
rankpsd (M) = 2 if and only if there exists a half-conic such that its convex hull C
satisfies P ⊆ C ⊆ Q. In particular if Q is bounded, then rankpsd (M) = 2 if and
only if we can fit an ellipse between P and Q.

Example 4.2. Consider the one-parameter family of matrices

Mε =


2− ε 2− ε ε ε
ε 2− ε 2− ε ε
ε ε 2− ε 2− ε

2− ε ε ε 2− ε

 ,
with ε ∈ [0, 1]. For ε 6= 1 this matrix has rank 3, and we would like to know for
which (if any) values of ε we get rankpsd (M) = 2. Note that Mε = S(1−ε)P,P ,
where P is the ±1 square. It is easy to see that we can put a half-conic between
(1− ε)P and P if and only if 1− ε ≤

√
2/2 as seen in Figure 2. Since it is known

that the square itself has psd rank three, Proposition 3.6 allows us to completely
determine the psd ranks of this matrix family:

rankpsdMε =


1 if ε = 1;

2 if ε ∈ [1−
√

2/2, 1);

3 if ε ∈ [0, 1−
√

2/2).

The geometric techniques used above generalize to higher rank matrices. Let
M ∈ Rp×q be a nonnegative matrix of rank d =

(
k+1
2

)
. Then by a dimension count,

rankpsd (M) ≥ k. Thus we can ask the following decision problem about M :

Definition 4.3. MIN PSD RANK: Given a nonnegative matrix M of rank
(
k+1
2

)
,

is rankpsd (M) = k?

For ease in working with higher dimensions, we will switch from the polytope
viewpoint used above to a conic viewpoint. In the remainder of this section d =
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k+1
2

)
= rank (M). Let M = UV be a rank factorization and let P,Q be the cones

P = cone(u1, . . . , up) and Q = {x ∈ Rd |xTV ≥ 0} where ui are the rows of U .
Then P and Q are d-dimensional cones with P ⊆ Q and M = SP,Q where SP,Q

is a generalized slack matrix of the pair of cones P,Q, defined analogously to that
for pairs of polyhedra. Using Proposition 3.6 and counting dimensions, we get the
following geometric characterization of the MIN PSD RANK problem:

Proposition 4.4. The psd rank of M is k if and only if there is an invertible linear
map π : Sk → Rd such that P ⊆ π(Sk+) ⊆ Q.

In [18], Vavasis defined EXACT NMF (Nonnegative Matrix Factorization) as the
problem of determining whether the nonnegative rank of a given matrix M equals
its rank. He also defined INTERMEDIATE SIMPLEX which asks, given two nested
polyhedra P ⊆ Q, if there is a simplex T such that P ⊆ T ⊆ Q. He proceeded to
show that EXACT NMF is equivalent to INTERMEDIATE SIMPLEX. The above
reduction of MIN PSD RANK to the geometric condition of Proposition 4.4 can be
thought of as the psd analog to the equivalence shown by Vavasis.

Now we will reduce the geometric criterion into a semialgebraic set feasibility
problem. Consider the basis of Sk given by the elementary symmetric matrices Eij

defined as follows. Let Eii be the matrix with a one in position (i, i) and zeros
everywhere else. For i < j, let Eij be the matrix with 1√

2
in positions (i, j) and

(j, i) and zeros everywhere else. This basis allows a natural bijection between Sk
and Rd by identifying a symmetric matrix Y =

∑
1≤i≤j≤dEijyij with the vector

y = (yij) ∈ Rd. Note that this bijection preserves the inner product in Sk (this is

the reason for the
√

2 factors). Let L be the r× r nonsingular matrix representing
the invertible linear map π with respect to the above basis. Then π(Y ) = Ly,
and π−1 : Rd → Sk sends z 7→ L−1z where L−1z corresponds to a matrix in Sk
under the bijection discussed above. We can now write down the conditions given
by Proposition 4.4 in terms of L and L−1.

The condition that P ⊆ π(Sk+) is equivalent to π−1(ui) ∈ Sk+ for every generator
ui of P . Thus we need L−1ui � 0 for each row ui of U . Note that each entry in
the symmetric matrix corresponding to L−1ui is a linear polynomial in the entries
of L−1. The condition π(Sk+) ⊆ Q says that for each column vj of V , the linear

inequality vTj x ≥ 0 is valid on π(Sk+), or equivalently, that for every matrix A ∈ Sk+,

vTj (π(A)) ≥ 0. Therefore, we get that for every column vj of V , the symmetric

matrix corresponding to vTj L is psd. Putting all this together we get the following
reduction of the MIN PSD RANK problem.

Proposition 4.5. The matrix M has psd rank k if and only if there are two ma-
trices L,K ∈ Rd×d such that

(1) L is the inverse of K, i.e., LK = KL = I,
(2) The k × k linear matrix inequality Kui � 0 holds for each row ui of U ,
(3) The k× k linear matrix inequality vTj L � 0 holds for each column vj of V .

Further, the above system can be written down in polynomial time from M .

Proof. The equivalence of MIN PSD RANK and the feasibility of the above system
was argued in the discussion before the proposition. The scalars in the system come
from a rank factorization of M which can be done in polynomial time. �



10 JOÃO GOUVEIA, RICHARD Z. ROBINSON, AND REKHA R. THOMAS

The number of variables in the above semialgebraic system depends only on k
and not on the size of the input matrix M . In [16], Renegar showed that the
feasibility of a system of m polynomial inequalities and equalities in ` variables
with degree at most j can be determined in time (mj)O(`). Here, Renegar used
the Blum-Shub-Smale model of complexity for computing with real numbers, so
the only requirement on the coefficients of the polynomials is that they are real
numbers. We use this to get a complexity result for MIN PSD RANK.

Theorem 4.6. Using the Blum-Shub-Smale model of complexity, the problem MIN

PSD RANK can be solved in time (pq)O(d2.5) where p × q is the dimension of the

input matrix M and d =
(
k+1
2

)
is the rank of M . In particular, for fixed rank, the

problem MIN PSD RANK can be solved in polynomial time.

Proof. First, we consider the problem formulated in Proposition 4.5. This problem
can be formulated as the existence of a solution to a system of d2 + 2k(p + q)
polynomial equalities and inequalities in 2d2 variables with each polynomial having
degree less than or equal to k. By applying [16] and noting that d ∼ k2, we see that

this problem can be solved in time (pq)O(d2.5). We conclude by noting that MIN
PSD RANK can be reduced to the above problem in time polynomial in pq. �

In [18], Vavasis showed that EXACT NMF is NP-Hard. The corresponding ques-
tion for MIN PSD RANK is still open. We can consider the more general problem:
given a nonnegative p×q matrix M and a number k, determine if rankpsd (M) ≤ k.
For the analogous problem with nonnegative rank, Moitra [14] showed an algorithm

that runs in time (pq)O(k2). Theorem 4.6 can be seen as a restricted psd analog of
Moitra’s result.
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