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Abstract

In this paper, we study the problem of establishing a dynamic charg-
ing schedule of electric vehicles (EVs) at a charging station, assuming
that limited power implies that only a limited number of EVs can charge
simultaneously. The only control we assume to be available to the charg-
ing station is the ability to (at any given time) turn on or off the power
supply to any EV, with this tool we want to develop a charging schedule
that will satisfy the energy demands of the EVs in their intended dead-
lines. We propose two distinct approaches to this problem: a discretized
time version, based on a greedy-like algorithm, and a continuous time
version, based on linear programming. We compare these two approaches
and numerically study the improvement they yield in the efficiency of the
charging procedure, when applied to simulated data based on real park-
ing data. Finally, we illustrate the flexibility of the models by sketching
several possible extensions.

1 Introduction

The automotive industry has, in recent years, strongly invested in the produc-
tion and marketing of electric vehicles (EVs) and hybrid electric vehicles. The
energetic efficiency and positive environmental impact have been some of the key
selling points [12]. Since these vehicles are charged directly of the electric grid,
a strong adoption of such vehicles will introduce stress in the production and
distribution of electricity. It is, therefore, not surprising that the impact of EVs
in the electric grid, and how to minimize it, has been an important early focus
of research as exemplified by [17], [9], and [5]. This perspective is a high-level
one, directed to systemic topics like energy consumption peaks, distribution
grid limitations and other grid-wide phenomena. Other important commonly
studied topic is the integration of renewable energies and its coordination with
EV charging [11], [26].
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As far as planning and managing the charging itself, many approaches have
been proposed, varying greatly in objectives and methods. Examples of that
are Clement et al. [6] that minimizes energy loss using stochastic programming
while Zhang et al. [26] minimizes waiting times at a charging station with
recurse to Markov Chains and Alonso et al. [1] using a genetic algorithm searches
for the daily optimal scheduling of EV demand to flatten the loading profile.

To introduce the work in this paper, it is relevant to mention some previous
uses of optimization in the EV charging problem. In [19], quadratic optimiza-
tion is used to minimize costs with varying electricity price while, with a more
technical point of view, [21] focuses on the behavior and limitations of batteries,
and schedules charging based on those constrains. Other authors explore differ-
ent approaches like quadratic constraint programs [23] or a mixed-integer linear
programming models [7]. While somewhat close in spirit with the problem we
treat, the planning is done taking the vehicles as a coordinated fleet and not
random individual arrivals to the system as treated in this paper.

We focus in a smaller scale energy management problem. We want to tackle
the decision process at the level of a charging station (or a set of charging
stations sharing the same power source). From that point of view, we have
a restricted source of power that allows only a certain fixed number of EVs
to charge simultaneously, and as new EV arrive to the system to charge, we
need to manage their charging schedule. We are assuming that EVs have a
fixed deadline to charge known a priori. They also have each a fixed amount of
energy required, and the only control that we are assuming the charging station
to have is the capability of switching on and off the power supply to any vehicle
at any given time.

What we want is to develop a simple decision tool that, upon the arrival of a
EV, will verify the demands on the system imposed by the EVs charging at that
moment and develop an on-off charging schedule that will accommodate them
and those of the new EV, or show it to be impossible. We also want the method
to have good dynamical properties. In other words, it has to perform well
when confronted with the multiple vehicle arrivals that will happen throughout
a typical day.

On-off charging strategies are part of the general smart charging paradigm
currently being proposed. The integration of EV charging with smart grids is
expected to allow in the near-future much more control over the load profile it
imposes on the electrical network, a very important step if EVs are to become a
significant portion of the circulating cars. There is extensive literature on on-off
strategies for charging. A significant part of it tends to focus on large-scale load
profile shaping i.e., on setting a priori charging strategies system wide as opposed
to the local problem of reacting dynamically to demand at a charging station,
as addressed by the method proposed in this paper. Examples of such studies
include probabilistically interrupting cars charging during expected peak-times
[10], [2]. Deterministic local strategies are considered in papers like [14] and [25],
but they assume a known demand throughout the day, which is not true in our
case study. In [13] an interesting dynamic method is proposed where knowledge
of the load profile is assumed but each EV is scheduled as it arrives, but once
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more the focus is on large scale systems. Finally [8] casts on-off strategies in
the more ample context of modulation strategies.

The paper is organized as follows. In section 2, we propose two methods to
solve this problem: one based on its discretization and using a dispatch rule,
the other a continuous approach that uses linear programming at its core. In
section 3, we evaluate these methods. To do that we develop a simulator for
two scenarios of EV behavior and compare the efficiency of several approaches,
showing that there is a significant improvement versus a standard unbroken
charging schedule strategy. The continuous approach is further explored in
section 4, where we illustrate its flexibility by developing variations to deal with
some possible extensions of the problem. In the same section we also study the
number of charging cycles induced by both strategies, and basic strategies to
reduce it. In the last section, we present some concluding remarks.

2 Scheduling schemes

The basic building block to our schemes is a static scheduling problem: given a
number N of EVs such that vehicle i needs to charge for an amount of time Ci

and be done in time Ti, we have to find a plan where all that is satisfied without
charging more than P vehicles simultaneously at any given time, or show that
it does not exist. The idea is that we will follow this plan until the arrival of
a new EV, at which time we will interrupt the process, run the problem with
the new data and start running the new charging plan. If at any given time the
resulting problem is unfeasible, we reject the new vehicle and this EV will not
be included with the new demands that will arrive to the system in the future.
We assume no a priori knowledge of when will EVs arrive to the system, and
our goal is to define charging schedules that, in the long term, will result in the
rejection of as few EVs as possible.

We will introduce, in this section, two options for dealing with this basic
problem.

2.1 Discrete approach

In this model, we will discretize the time, and therefore consider Ci and Ti

to be integers. With this setting, the basic problem can be reinterpreted as
a job-shop scheduling problem with precedences, if we consider each “unit of
power” a machine and charging a vehicle for a unit of time a task. Vehicle i will
then contribute with Ci tasks that have to be performed in a certain order of
precedence until time Ti. This suggests the use of dispatch rules ([16] and [4]).

Recall that a dispatch rule is simply a rule to rank the priorities of all pending
tasks, so that when a machine becomes available, the highest priority pending
task will be processed. A common such rule is the slack first dispatch rule,
that order tasks by their time slacks, defined as the difference between the time
they have to be processed and the amount of time they will take to process.
These rules are used in several contexts as they have a good dynamic behaviour
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in terms of producing the least violations to the deadline constraints. We will
show that in the context of the basic problem, the slack first rule will actually
always return a feasible schedule if such schedule exists, making it a perfect
baseline to which compare other methods.

To formalize this method, we need to introduce some notation. We want to
find binary decision variables Zij ∈ [0, 1]Ti that will codify the charging schedule
by

Zij =

{
1 if vehicle i charges at instant j,
0 otherwise.

This is a valid schedule if

Ti∑
j=1

Zij = Ci, i = 1, ..., N (1)

and
N∑
i=1

Zij ≤ P, j = 1, ...,max{Ti : i = 1, ...N}. (2)

Note that the restrictions (1) guarantee that EVs charge for the exact time
needed before their deadline, while restrictions (2) guarantee that the power
used never surpasses the available power. In this context, the slack of a vehicle
is simply given by

Si = Ti − Ci, i = 1, ..., N.

The slack first method consists of charging, at any given instant, the vehicles
with the least slack. Then, decrease by 1 the Ci of the charged vehicles and
decrease by 1 the Ti of all vehicles, and repeat the procedure. This process ends
when all Ci are zero (every vehicle was charged successfully) or if, at any given
time, the slack of a vehicle becomes negative (not enough time left to charge
it). It turns out that if this method fails to find a solution then none exists.

Theorem 2.1. If there is a feasible scheduling plan satisfying (1) and (2) then
the slack first method is successful.

Proof. It is enough to prove that any feasible solution can be transformed into
a slack first feasible solution. Let Z be a feasible solution and let j be the first
instant where we are not charging the P least slack vehicles. Let i1 and i2 be
respectively the EV with the largest slack that is charging (Zi1j = 1) and the
EV with the least slack that is not charging (Zi2j = 0). Let Si be the set of
instants from j to Ti on which EV i is not charging. We know by hypothesis
that |Si1 | ≥ |Si2 | hence there exists l ∈ Si1 \ Si2 and we have two possibilities:

1. There exists l > j for which Zi1l = 0 and Zi2l = 1. In this case we can
simple change all values Zi1j , Zi1l, Zi2j and Zi2l and that will not affect
any of the constrains.
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2. There exists l > Ti2 for which Zi1l = 0. If there are least than P EVs
being charged in l then we can just delay the charging of vehicle i1 to
instant l and use the freed slot at time j to charge EV i2, so we just need
to worry about what happens if P vehicles are charging at instant l. Let
j < t < l be an instant where Zi1t = Zi2t = 1 (it must exist, otherwise we
would have been in case 1). There must be a vehicle i3 that is charging
in l but not in t, so we can cyclicly change between the EVs schedules,
making i2 charge at j, i1 and i3 at t and i1 at l. These changes in time
slots again do not change constrain satisfaction.

We just saw that we can always fix a slack reversal without losing feasibility,
so doing it repeatedly we will end up with a slack first compatible schedule,
proving the result.

Note that the slack first scheduling procedure is actually very fast (it runs

in O
(∑K

i=1 Ti

)
) if the discretization units are not too small.

2.1.1 Example

To illustrate the procedure, suppose we have 6 EVs with available time and
charge demands of T = (17, 18, 22, 22, 24, 25) and C = (13, 8, 19, 8, 4, 16), re-
spectively. Additionally, assume that the available power only allows us to
charge 3 EVs simultaneously (P = 3). The slack first method will return the
scheduling indicated in Figure 1.

Figure 1: Charging schedule for the slack first method.

2.2 Continuous approach

While the discrete approach is elegant and provides a very good baseline for
testing scheduling methods, it has several drawbacks. First, it would either
require the chosen units of time discretization to be small, which would make the
scheduling process cumbersome, or it would force to round the data, introducing
error. Second, and most important, it is not a very flexible scheme. We have
very little leeway in the scheduling plan attained, so if we want to extend the
procedure to confront slightly more sophisticated aspects of the problem, we
need something else. This motivates the introduction of a linear programming
based approach to the basic problem.
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The main idea will be to divide time in few intervals, with each time interval
being the time when a certain fixed subset of vehicles are available to charge.
We will then try to determine the percentage of time in each fixed interval on
which a given EV is charging. To formalize this idea assume that T1 ≤ · · · ≤ TN ,
i.e. the EVs are in ascending order of available time to charge. Our decision
variables will be zij , 1 ≤ j ≤ i ≤ N , and represent the percentage of time in
interval [Tj−1, Tj ] (where T0 is defined as 0) in which vehicle i is charging.

We then obtain the LP feasibility problem of finding z such that:

N∑
i=j

zij ≤ P, j = 1, ..., N ; (3)

i∑
j=1

zij(Tj − Tj−1) = Ci, i = 1, ..., N ; (4)

zij ∈ [0, 1], i = 1, ..., N, j = 1, ..., i. (5)

Here, constrains (3) guarantee that the power limits are respected, while con-
strains (4) force every vehicle to be fully charged. This approach grants us a
great deal of flexibility, since we can introduce many different types of objective
function to pick among feasible solutions the more desirable ones, or add all
kinds of different constrains to deal with different types of scenarios like energy
costs variations or layered client types. This shows a potential advantage of
this type of method against pure queuing methods (used, for example, in [18]).
Some of these ideas will be explored later in this paper.

This LP method is, however, still incomplete: knowledge of the percentages
zij does not immediately translate to a scheduling. So we need to introduce a
conversion method that will tell us in which moments should we switch on or
off each of the EVs.

2.2.1 From LP solution to charging schedule

We will create our charging scheduling sequentially for each interval [Tj−1, Tj ],
j = 1, ..., N . Assume for simplicity that we are working in the interval [0, 1]. One
way to visualize the conversion is to think of the available energy at that interval
as a bar with length P , subdivided in P sections of length 1. We then mark in it
blocks of length zij , one for each vehicle that charges during that interval. Let
the block corresponding to some vehicle i be the interval [a, b] ⊆ [0, P ]. If a and
b have the same integer part (the interval is contained in a single subdivision of
the bar) we will charge vehicle i in the time interval [fr(a), fr(b)] (where fr(x)
stands for the fractional part of a x). If a and b have different integer parts
(the interval is divided between two subdivisions of the bar), we will charge the
vehicle i in the time intervals [0, fr(b)] and [fr(a), 1].

The geometric interpretation of this conversion makes it clear that if the zij
are feasible for the LP, then there will never be more than P vehicles charging
at any given time. The method is also fast and easy to implement. If there are
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no more than P vehicles in the system, we just charge them all from the start,
and not run the conversion.

2.2.2 Example

Let us get back to the situation in Example 2.1.1, where we had six EVs charg-
ing. Running the LP feasibility problem for that data we get the (non-unique)
solution presented in Figure 2.

0 17 18 22 24 25

EV1

EV2

EV3

EV4

EV5

EV6

76, 47%

41, 18%

88, 24%

23, 53%

0, 00%

70, 59%

100, 00%

0, 00%

0, 00%

0, 00%

0, 00%

100, 00%

100, 00%

50, 00%

50, 00%

100, 00%

100, 00% 0, 00%

Figure 2: Percentages of activity at each interval.

We can see, for example, that only one vehicle (EV1) charges at the second
interval in this particular solution already pointing to some inefficiencies in the
method as is. Let us now apply the conversion method described in 2.2.1. We
will start by visualizing its application in the first time interval ([0, 17]). Figure 3
shows the bar of length 3, the maximum power we are considering, subdivided
as previously described, and the resulting schedule for each EV. Initially, it is
showed on a 0 to 1 scale, and after that, already converted to the [T0, T1] time
segment. Here it is visible that only 3 EVs charge simultaneously.

Figure 3: Conversion of the first interval.

Extending this to the other four intervals and gathering the respective re-
sults, we obtain the final schedule pictured in Figure 4.
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Figure 4: LP approach scheduling.

2.2.3 Sequential optimization

As seen above, the use of an LP feasibility problem has some drawbacks. For one,
the feasible point found is highly dependent on the algorithm used to solve the
LP but, more importantly, it can lead to time waste as we saw in the example,
where at some points there were EVs waiting while free power was available.
We want to avoid that by pushing all charging to be as early as possible, so
that if new vehicles arrive, we will have as much free power going forward as
possible. The more direct way to do this is to do it sequentially, interval by
interval.

For the j-th interval, we would solve the LP maximizing the objective func-
tion fj(z) =

∑N
i=1 zij , attaining some maximum f∗

j−1. We would then add the
restriction

N∑
i=1

zij−1 ≥ f∗
j−1 − εtolerance (6)

to the LP, and proceed to optimize the objective function fj+1(z) =
∑N

i=1 zij+1

and so on. The εtolerance introduced is simply an artifact to deal with numerical
instability. Applying this method to the previous example we get the scheduling
in Figure 5.

Figure 5: Sequential LP approach scheduling.

We can see that in the interval [0, 22] there are always three EVs charging
at each given time, and it results in better overall performance (EV5 is fully
charged at t = 22 instead of t = 24 as was happening in the original feasibility
approach). This method has some disadvantages: we have to solve several LPs
instead of just one, and we have some error build up form interval to interval
that demands great care in implementation. To work around these issues we will

8



now present a compromise solution, that preserves some of the good qualities
of this approach but avoids its pitfalls.

2.2.4 Global optimization

To address this need to push charging to as early as possible but still solve
a single LP, we will introduce an objective function that gives less weight to
energy charged in later intervals than to that charged in the early ones. A
simple possible function is given by

f(z) =

K∑
i=1

i∑
j=1

1

2i
zij(Tj − Tj−1).

Computational experiments show that the results attained are in general very
close to the ones given by the sequential approach (as will be visible in the
Table 1 of the section 3.3). Applying it to the running example, for example,
gives rise to the precise same solution as was obtained in Figure 5 using the
sequential approach. This method is faster, since only one LP is ran, and proves
to be much more stable than the previous one. In the numerical experiments
both alternatives will be applied to the generated data but, since no advantages
result from the sequential approach, regarding the study of some extensions of
the models in section 4 the global approach will be adopted preferentially to the
sequential method.

3 Numerical experiments

We now have several ways to tackle the basic problem. However, we are in-
terested in solving not a single instance of that problem but the sequence of
problems that will be generated as new EVs arrive to the system and attempt
to charge. Recall that every time that happens, a new scheduling problem is
generated. A feasible solution, if found, will be implemented, while if the prob-
lem is unfeasible the new vehicle will be turned down. We want to make sure
that we will be able to satisfy as much of the energy demand as possible, and
that will be our main criterion for comparison.

Before we engage into more detail, some aspects about the context of the
problem should be clarified or, in some cases, reviewed. Regarding the type o
vehicles considered, we will assume that they can be pure electric or hybrids
but are slow charging. The moments at which they arrive are unpredictable
and, therefore, each charging plan only takes into account the requirements of
the EVs already on the system. These intend to mimic the expected usage in a
urban public charging station, or a set of such stations connected to a common
transformer station, the relevant cases for the project mobiOS from which this
study emerged.
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3.1 Uninterrupted charging schedule

In order to have a baseline to compare to the performance of our methods, we
have to introduce a simple, easy to implement scheduling technique making no
use of the on-off switches. This will simply consist of, upon arrival of an EV
to the system, see when will some power be available to charge the vehicle, and
if after that moment there will be enough time until its deadline to attain full
charge. If so, proceed with that plan, if not, reject the EV. This is a very natural
charging scheme and, without using interruptions, the best possible fitting our
framework.

3.2 Data generation

Due to the scarcity of usable real world data on the variation of charging demand
during a day, we designed a simulator that will randomly generate vehicles,
and give each an arrival time, a charging need and a deadline. We will use
it to generate a fixed number n of vehicles per day, for as many days as we
want (typically we will generate a demand profile for a period of 365 days, to
simulate a year of data). In order to be able to compare between the discrete
and continuous approaches, we will use the minute as the discretization unit of
time, and generate all data with an integer number of minutes.

We propose two different simulator models.

3.2.1 Model A

The first model proposed is a simple control model, where we just pick for each
car an arrival time from a uniform distribution in the day, a deadline (T ) picked
uniformly random between 2 and 8 hours and the time needed to charge (C)
picked uniformly from 1 to T hours.

3.2.2 Model B

For results with more real world significance, we use parking data as a proxy to
the typical variation of charging demand during a day in a business area. To
do this we used a geo-coded mobility survey that was conducted in Coimbra,
Portugal, between October of 2008 and March of 2009 [22]. This survey tracked
the daily commute of 10000 drivers, and allows us to extract parking patterns
throughout the city. We concentrated our attentions in a particular commercial
and business focused area of the city with high traffic affluence.

As can be seen in Figure 6, there are clear peaks of parking at around
11am and 4pm, with a noticeable decrease between 1 and 2pm, and almost no
parked vehicles at night. To emulate this behavior we generate several types
of EV: some with arrival time given by a Gaussian centered at 9am and others
with a Gaussian centered at 2pm. For the ones arriving in the morning, we
generated their deadlines also by a Gaussian model, but allowed two behaviors:
a shorter stay (modeling the EVs leaving before 1pm) or a longer stay (modeling
the EVs staying until the end of the working hours). For the ones arriving in
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Figure 6: True number of cars in a commercial/business area of Coimbra and,
in red, the simulated data.

the afternoon, we modeled their deadlines similarly, simulating leaving at the
end of the working hours. We ignored all generated deadlines smaller than 2
hours, since in a short stay we do not expect drivers to charge their vehicles.
Charging demand was generated analogously to the previous model. Fixing the
parameters we obtain the behavior seen in Figure 6, that strongly mimics the
real world data we have in hand.

3.3 Results

All tests were done using MATLAB 7.9.0 R2009b. In Figures 7 and 8, we present
the results obtained with different scheduling methods for the percentage of
energy delivered in a year as we vary the number of cars arriving each day. In
Figure 7, we are considering Model A, with a power limit P = 15, while in
Figure 8 we consider Model B, with a power limit P = 25.

Figure 7: Percentage of delivered energy - Model A with P = 15.

The methods we tried were the uninterrupted method introduced as a base-
line, the discrete slack-first method and the three versions of the continuous
approach: one using only the feasibility problem, other with the global objec-
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Figure 8: Percentage of delivered energy - Model B with P = 25.

tive function introduced and, finally, the sequential perspective (which was not
included in the Figures 7 and 8 but is in Table 1). We can see in the results
that the proposed approaches consistently improve upon the base uninterrupted
method. Moreover, the discrete and the global optimization methods are almost
indistinguishable in term of results, while the feasibility approach lags behind
in the Model A simulation. In general we can see that, depending on the pa-
rameter settings, we attain gains of up to 20 percentage points. Particularly
worthy of notice is that the application of the best performing methods as an
alternative to the uninterrupted one allows, in Model B, an increase from 40 to
70 daily clients, without compromising a perfect satisfaction of all demand, a
75% increase in the capacity of the system.

We have chosen percentage of energy supplied as the evaluation criteria,
as a proxy for economic return. However, the picture would remain almost
precisely the same if we had instead considered percentage of cars accepted into
the system, as can be seen in Table 1. Also seen in the table are the results
for the sequential method, omitted from the graphs. One can see there that
the sequential approach has no benefits over the global approach in terms of
practical performance therefore, since the computational cost and numerical
sensitivity of the sequential approach are much higher, we will always omit it
from further analysis.

For more insight on this improvement, we focused on Model B and varied
both the number of daily arrivals and the power constrains. We then simulated
a year for each combination and applied the uninterrupted and the slack first
discrete method to the data recording the efficiency of each. We omit the global
continuous approach since its results follow closely to the discrete results. The
obtained numbers for the discrete approach are represented chromatically in
Figure 9.

Also visible in that figure is a black line highlighting the boundary of full sat-
isfaction of demand in the discrete approach, and a green line representing the
same for the uninterrupted approach. We can see a large range of parameters in-
side the two lines, corresponding to settings where changing from uninterrupted
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Uninterrupted Global Opt. Slack Sequential Opt.
n % cars / % en. % cars / % en. % cars / % en. % cars / % en.

30 100/100 100/100 100/100 100/100
40 99.9/99.9 100/100 100/100 100/100
50 98.6/98.2 100/100 100/100 100/100
60 95.7/94.5 100/100 100/100 100/100
70 91.3/89.0 99.9/99.9 99.9/99.9 99.9/99.9
80 86.3/83.1 98.2/98.4 98.2/98.4 98.1/98.3
90 80.9/77.3 91.3/92.4 91.0/92.2 90.7/92.0

100 76.2/72.3 83.1/84.8 82.7/84.5 82.6/84.3
110 71.4/67.0 76.3/77.7 75.8/77.3 76.0/77.2
120 67.3/62.8 71.3/72.2 70.9/71.8 70.9/71.8
130 63.1/58.9 66.5/67.1 66.3/66.8 66.3/66.8
140 59.9/55.6 63.0/63.0 62.7/62.7 62.7/62.7
150 56.6/52.4 59.3/59.1 59.0/58.7 59.0/58.7

Table 1: Comparison of results for Model B P = 25 in terms of percentage of
cars accepted and energy supplied for the uninterrupted, global optimization,
slack heuristic and sequential methods.

Figure 9: Slack-first results as P and n vary - Model B.

to one of the proposed alternatives will lead to full satisfaction of demand.

4 Extensions

In this section we describe two examples of how to use the flexibility of the LP
formulation to increment the model and adapt it to more complicated situations.
These are simple illustrations, but highlight the capability of this approach to
support more sophisticated refinements.
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4.1 Reduction of the number of charging cycles

It is well known that battery wear is dependent of the number of charging cycles
( [3] and [15]). Breaking a charging cycle in intervals, may therefore decrease
battery life. There is, to our knowledge, no conclusive study done with regards
to the impact of smart charging to battery live, but some preliminary work in
[24] seems to suggest that it might not be too high. It could still be useful,
however, to study the typical number of charging cycles that our algorithm
imposes, and to try to reduce it when it is high.

4.1.1 Discrete approach

In the discrete approach, one could attempt to formulate an integer program-
ming with the number of charging cycles as an objective, but the resulting
problem would be too computationally expensive to be solved in real time in
average sized systems. An alternative is to employ a post-processing heuristic.

The idea will be to apply the scheduling strategy developed in section 2.2.1
for the continuous approach to readjust the discrete schedule attained by the
slack first algorithm: Let TO be the sorted vector of the available charging
times, the schedule obtained via slack first is divided in several subintervals,
from 0 to TO(1) and TO(i−1) to TO(i) with i = 2, ..., N . For each subinterval,
we know the number of time units each EV will charge, so we reorganize the
schedule by starting the first EV and, when its finished, we immediately start
the second one. If there is not enough time to charge the whole amount, the
missing charge will be added at the start the same time interval. The process is
then repeated for the rest of the vehicles. This way, we ensure that the number
of charging cycles for the i-th EV is not superior to 2× i.

4.1.2 Continuous approach

Regarding the reduction of charging cycles, no extension was developed using
the continuous approach. Despite that, it’s important to mention that the
optimization method (and even the solver) have a big influence on this metric.
As expected the simplex method gives better results than the interior point
method, since the latter reaches an optimal solution inside the feasible region,
leading to a more even distribution of energy throughout time that forces more
interruptions. Below we quantify this impact.

4.1.3 Results

The data used was the same as the one previously generated using Model B
and the tests were, once again, conducted in MATLAB. The options analysed
in this section are global optimization with both simplex and interior point
method (I.P.), the slack first heuristic and the mentioned post-processing rule.

As expected, the average number of charging cycles grows with the increase
of demand. However, when the system begins to reject EVs due to overload (n
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Figure 10: Average number of charging cycles according to each approach for
P = 25.

bigger than 80), the numbers tend to stabilize. Through Figure 10, it is also vis-
ible the improvement provided by the post-processing heuristic and the positive
impact that the simplex method has when applied to the global optimization
alternative. Note that the other two criteria, energy supplied and successfully
charged EVs, showed no significant differences for the several alternatives stud-
ied.

4.1.4 Discrete approach interval size

Another possible way of reducing the number of charging cycles in the discrete
approach, is to increase the size of the smallest indivisible unit of time consid-
ered. In the previous tests, we always took it to be one minute, meaning that
only once every minute would the system be able to change the charging status
of any EV. By increasing that number, we are slightly reducing the amount of
usable charging time for any EV, but we are forcing larger minimal charging
cycles. The results of this trade-off are visible in Table 2. For theses computa-
tions we used the simulated Model B data for a year with both 80 and 100 cars
per day and power P = 25.

4.2 Tiered client system - energy reserve

Assuming one wants to have a class of priority premium clients, one could
achieve this is by reserving some quantity p of the available power P to be used
only by the premium clients. If we assume the non-premium clients are the first
M of the N EVs wanting to charge in the original LP formulation (see section
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n=80
Interval Size (minutes) 1 5 10 15 20 25 30

% energy supplied 98.4 98.1 97.6 96.9 96.2 95.5 94.6
Av. number of cycles 17.7 4.9 3.2 2.6 2.3 2.1 1.9

n=100
Interval Size (minutes) 1 5 10 15 20 25 30

% energy supplied 84.5 83.6 82.6 81.5 80.6 79.7 78.8
Av. number of cycles 22.0 5.5 3.3 2.6 2.2 2.0 1.9

Table 2: Impact of the interval size on the performance of the slack method for
n = 80 and n = 100 in Model B.

2.2) we just have to modify the problem by adding the constrain

N∑
i=j

zij ≤ P − p, j = 1, ...,M. (7)

This adds no difficulty to the original LP problem. We simulated this approach
using Model B, assuming 20% of the cars to be premium, n = 80 and P = 20.
We are interested in the efficiency obtained in the two classes of clients as we
vary p. The result can be seen in Figure 11.

Figure 11: Percentage of charged EVs for n = 80 (with 20% premium), P = 20
and different values of p (as a percentage of P ).

4.3 Delay penalties

We could also allow the violation of the deadlines, with the trade-off of paying
some penalty compensation. This can easily be implemented by adapting our
model into a mixed integer linear program. The basic idea is that for each vehicle
i we can add a potential delay di. When considering our time subintervals we
would consider, not only the values Ti but also the values Ti + di. Therefore
instead of N variables zij for each vehicle i, we would get 2N such variables at
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most. For a vehicle i, let Ii be the set of j so that zij represents an interval
before Ti, and let Ji be the set of j so that zij represents an interval between
Ti and Ti + di. We will introduce a binary decision variable wi that is set to 1
if we need to use the delay. Considering T (the vector with size N of all Ti and
Ti + di sorted entries), we can then modify the original LP constrains to

N∑
i=1

zij ≤ P, j = 1, ..., N ; (8)

N∑
j=1

zij(T j − T j−1) = Ci, i = 1, ..., N ; (9)

wi ≥ zij , j ∈ Ji, i = 1, ..., N ; (10)

zij ∈ [0, 1], i = 1, ..., N, j = 1, ..., N ; (11)

wi ∈ {0, 1}, i = 1, ..., N. (12)

If we associate a cost qi to a violation of the deadline of car i we would then
have to solve the MILP of minimizing

∑N
i=1 qiwi. Note that a mixed integer

linear program is notoriously harder than a pure LP, but since these problems
are solved only once per EV arrival, a solution time in the order of seconds is
good enough. Since the problems we are considering are not too large, this is
perfectly attainable with an off-the-shelf MILP solver.

4.4 Minimizing energy costs

As mentioned earlier, a typical question in scheduling EV charges (generally in a
larger setting like fleet management) is that of minimizing the cost of the energy
supplied (whether its focused only on the electricity costs [20], [7] or not [23]).
If we can predict in advance how will the prices vary during the day, one can
discretize the price function and feed it directly to the LP formulation. Every
time we have to solve our base scheduling problem we would then minimize the
price of energy supplied, while keeping the original constrains.

5 Conclusion

The main contribution of this paper is the proposal of on-off schemes for dealing
with the problem of scheduling EV charging in the presence of restricted power
capacity. The case we are interested to address is that of a charging station
with limited power that has to satisfy an uncertain daily demand, as is the case
of a public charging station. As EVs gain acceptance, their charging will cause
stress in power supplies, so this is a problem that needs to be addressed. This is
also true for corporations converting their existing fleets to electric vehicles, that
have their own facilities on which to charge them. Optimizing their charging
schedules can lower the power needs of such a facility.
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In this paper, we propose two models, one discrete and one continuous, that
take advantage of the capability of interrupting the charging of an EV and we
carry on numerical tests with simulated data based on real parking data that
suggest a significant improvement in efficiency. These methods are simple, fast
and easy to implement. The continuous method in particular is very well suited
for customization, a fact that we illustrate by developing extensions of it to deal
with several additional complexity layers in the model. The discrete model,
being a dispatch heuristic, lacks an objective function that can be adjusted, so
it is less versatile, but is simpler to implement and very fast, so maybe better
for a more straightforward implementation.

The direct applicability of this work has some limitations, since we used
several simplified assumptions: the linearity of charging with respect to time is
not verified in practice, so charging demand is in reality more nuanced than the
“charging time needed” simplified model of demand used here. Furthermore,
the battery wear that could potentially be caused by more frequent energy
supply interruptions needs further study, and we only tried to address this
problem by controlling and reducing the number of charging cycles induced by
the methods. We feel that even with these simplifications, the models proposed
and the accompanying analysis makes a good case for the big impact of these
types of schedulings on instances of EV charge planning with limited available
power and suggests that even in a more realistic framework they can potentially
be very useful.
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