SUMS OF SQUARES ON THE HYPERCUBE

GRIGORIY BLEKHERMAN, JOÃO GOUVEIA, AND JAMES PFEIFFER

Abstract

Let X be a finite set of points in \mathbb{R}^{n}. A polynomial p nonnegative on X can be written as a sum of squares of rational functions modulo the vanishing ideal $I(X)$. From the point of view of applications, such as polynomial optimization, we are interested in rational function representations of small degree. We derive a general upper bound in terms of the Hilbert function of X, and we show that this upper bound is tight for the case of quadratic functions on the hypercube $C=\{0,1\}^{n}$, a very well studied case in combinatorial optimization. Using the lower bounds for C we construct a family of globally nonnegative quartic polynomials, which are not sums of squares of rational functions of small degree. To our knowledge this is the first construction for Hilbert's 17th problem of a family of polynomials of bounded degree which need increasing degrees in rational function representations as the number of variables n goes to infinity. We note that representation theory of the symmetric group S_{n} plays a crucial role in our proofs of the lower bounds.

1. Introduction

Certifying that a polynomial p is nonnegative on a finite set X in \mathbb{R}^{n} is an important problem in optimization, as certificates of nonnegativity can often be leveraged into optimization algorithms. One frequently used certificate is writing p as a sum of squares of polynomials modulo the vanishing ideal $I(X)$ of X. These certificates lead to semidefinite relaxations for the problem of optimizing a polynomial on $X[8,15]$. For instance, when X is the hypercube $\{0,1\}^{n}$, maximizing a quadratic polynomial on X specializes to many famous combinatorial optimization problems such as MAXCUT. Sums of squares certificates provide a way of automatically constructing semidefinite relaxations for these problems. The celebrated Goemans-Williamson relaxation algorithm, for instance, can be seen as such a sum of squares relaxation [1, Chapter 2 and 3], [4, 14].

In general, one might be required to use polynomials of high degree to certify that p is nonnegative on X. Since Hilbert's 17th problem, it is classical in real algebraic geometry to certify nonnegativity of a polynomial by writing it as a sum of squares of rational functions, instead of polynomials. This can be reformulated as follows:

Given p find a sum of squares h, such that $p h$ is a sum of squares modulo $I(X)$.
When $X=\mathbb{R}^{n}$, the existence of such certificates for any nonnegative polynomial corresponds to Hilbert's 17th problem, and was answered affirmatively by Artin. For a general semialgebraic set the existence of such certificates is guaranteed by Stengle's Positivstllensatz, which was later refined by Schmüdgen, Putinar and Jacobi. See for example [14, 16] for an in-depth discussion of these topics. We are interested in showing degree bounds on the

The authors were partially supported on this project as follows: GB by the Sloan Research Fellowship and NSF grant DMS-DMS-1352073, JG by 'Centro de Matemática da Universidade de Coimbra' and 'Fundação para a Ciência e a Tecnologia', through European program COMPETE/FEDER; and JP by NSF grant DMS-1115293.
degree of the multiplier h. There are known general upper bounds coming from real algebraic geometry for rational function certificates on any real semialgebraic set $X[12,13,18]$. However, they result in bounds which are multiple towers of exponentials. We are not aware of any general lower degree bounds, even for Hilbert's 17th problem. For some specific small cases see [7].

For the case when X is a finite set of points, one of our main results is an elementary uniform upper bound on the degree of the multiplier h, in terms of the Hilbert function of X and the degree of p. Our second main result is showing this bound is tight for the case of quadratic functions on the hypercube $C=\{0,1\}^{n}$. We leverage the tightness of the bound on C into a construction of a globally nonnegative polynomial p of degree 4 in n variables such that $p h$ is not a sum of squares for all sums of squares h of degree at most $2\lfloor n / 2\rfloor-4$. While this bound can very likely be improved, to our knowledge this is the first construction for Hilbert's 17th problem of a polynomial of bounded degree, which needs multipliers h of increasing degree as the number of variables n goes to infinity.
1.1. Background, Discussion and Main Results. Let $X \subset \mathbb{R}^{n}$ be a real variety and let $I=I(X)$ be its vanishing ideal. Let $\mathbb{R}[X]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / I$ be the coordinate ring of X. Given $f \in \mathbb{R}[X]$ we define degree of f as the lowest degree of any polynomial in the equivalence class $f+I$. Let $\mathbb{R}[X]_{\leq d}$ be the real vector space of polynomials of degree at most d in $\mathbb{R}[X]$. The Hilbert function $H_{X}(t)$ of X is defined by:

$$
H_{X}(t)=\operatorname{dim} \mathbb{R}[X]_{\leq t}
$$

i.e. the value of the Hilbert function at t simply records the dimension of the vector space of polynomial functions of degree at most t on X. It is known that for t large enough the Hilbert function becomes a polynomial, this polynomial is called the Hilbert polynomial of X. See [] for more properties and the background on the Hilbert function.

We say that $f \in \mathbb{R}[X]$ is k-sos if there exist $g_{1}, \ldots, g_{m} \in \mathbb{R}[X]_{\leq k}$ such that $f=g_{1}^{2}+\cdots+g_{m}^{2}$. The set of all k-sos polynomials will be denoted by $\Sigma(X)_{\leq 2 k}$. This set of polynomials has attracted strong attention from the optimization community in recent years, as a relaxation for the cone of polynomials nonnegative on $X[5,6,9,11]$. The reason for this is that checking whether a polynomial is k-sos is a semidefinite feasibility problem and, even better, one can use semidefinite programming to optimize a linear functional over the cone of k-sos polynomials [1, Chapters 2 and 6].

For a compact variety X, Schmüdgen's Positivstellensatz implies that any polynomial that is strictly positive on X is k-sos for large enough k. However there may be no uniform bounds on this k for all polynomials of fixed degree. This situation improves considerably if we allow sums of squares of rational functions. We say that $p \in \mathbb{R}[X]_{\leq 2 s}$ is (d, k)-rsos (rational sum of squares) if there exists non-zero $h \in \Sigma(X)_{\leq 2 d}$ such that $p h \in \Sigma(X)_{\leq 2 k}$. We will omit d and write simply that p is k-rsos for the case $d=k-s$. It follows from Stengle's Positivstellensatz that for any polynomial p nonnegative on X there is a $k \in \mathbb{N}$ for which p is k-rsos. Moreover, there is a bound on k that depends only on the degree of p and the variety X. The trade-off is that, computationally, this certificate has worse properties: while checking if a polynomial is k-rsos is still a semidefinite feasibility problem, the set of all such polynomials has no direct semidefinite description, and tools other than semidefinite programming have to be used to optimize over it. Moreover, when X is a reducible variety, a non-zero sum of squares multiplier h such that $p h$ is a sum of squares is not necessarily a
certificate of nonnegativity of p. This happens since h may vanish identically on a component of X, and on this component nonnegativity of p is not certified. Therefore, we will also be interested in the existence of strictly positive sum of squares multipliers h.

In the case X is a finite set of points in \mathbb{R}^{n}, there exist uniform degree bounds for k sos representations. The Hilbert regularity $h(X)$ of X is the smallest degree d for which $H_{X}(d)=|X|$ and, consequently, $H_{X}(t)=|X|$ for all $t \geq h(X)$. A polynomial $f \in \mathbb{R}[X]$ is uniquely determined by its values on X, so we may identify elements of $\mathbb{R}[X]$ with functions on X, an $|X|$-dimensional space. The Hilbert regularity $h(X)$ of X is the smallest degree d for which $H_{X}(d)=|X|$, i.e. $\mathbb{R}[X]=\mathbb{R}[X]_{\leq d}$ and, consequently, $H_{X}(t)=|X|$ for all $t \geq h(X)$.

For a point $v \in X$ let $\delta_{v}: X \rightarrow \mathbb{R}$ be the interpolator of $v: \delta_{v}(v)=1$ and $\delta_{v}(x)=0, \quad x \neq v$. We note that $h(X)$ is the smallest degree d such that $\delta_{v} \in \mathbb{R}[X]_{\leq d}$ for all $v \in X$. Furthermore, using interpolators we can write any $p \in \mathbb{R}[X]$ as:

$$
p=\sum_{v \in X} p(v) \delta_{v}^{2}
$$

It follows that any nonnegative polynomial $p \in \mathbb{R}[X]$ is $h(X)$-sos. It is not difficult to construct examples of finite sets X and nonnegative polynomials $p \in \mathbb{R}[X]$ of any degree, such that p is not $(h(X)-1)$-sos, i.e. we may need to go all the way up to Hilbert regularity to certify nonnegativity of p.

For the rational function representations we provide better upper bounds by using the following result.
Theorem 1.1. Let X be a finite set of points in \mathbb{R}^{n}. Let $p \in \mathbb{R}[X]_{\leq 2 s}$ be a polynomial of degree at most $2 s$ nonnegative on X. Suppose that for some $k \in \mathbb{N}$ we have

$$
H_{X}(k+s)+H_{X}(k)>H_{X}(2 k+2 s) .
$$

Then p is $(k+s)$-rsos on X, i.e. there exists $h \in \Sigma(X)_{\leq 2 k}$ such that $p h \in \Sigma(X)_{\leq 2 s+2 k}$.
The key to proving Theorem 1.1 is Lemma 2.2, which gives a way of bounding degree of multipliers via an elementary sign counting argument. An important application of the above theorem is to quadratic polynomials on the hypercube $C=\{0,1\}^{n}$. It is easy to show that $H_{C}(t)=\sum_{i=0}^{t}\binom{n}{i}$ and therefore $H_{C}(n)=2^{n}=|C|$, while $H_{C}\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)+H_{C}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)>2^{n}$. This implies that all nonnegative quadratic polynomials on the hypercube are $\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$-rsos. In fact this result is tight since we also show the following:

Theorem 1.2. Let $k=\left\lfloor\frac{n}{2}\right\rfloor$ and let $f \in \mathbb{R}[C]$ be given by

$$
f=\left(x_{1}+\cdots+x_{n}-k\right)\left(x_{1}+\cdots+x_{n}-k-1\right)
$$

Then f is nonnegative on C but f is not k-rsos.
Our proof relies on symmetries of the polynomial $\left(x_{1}+\cdots+x_{n}-k\right)\left(x_{1}+\cdots+x_{n}-k-1\right)$ and we use representation theory of the symmetric group S_{n} in an essential way. More general lower bounds for rational function representations of symmetric polynomials on the hypercube are given in Theorem 3.4 and Theorem 1.2 is a direct corollary.

From Theorem 1.2 we can derive two interesting results. First, it immediately recovers a result by Laurent [10] concerning the power of k-sos representations for relaxations of the MAXCUT problem. In fact, we significantly strengthen that result by proving that it
remains true even for rational sums of squares representations, and by proving that in this case, the bounds are optimal.

If we demand the certificates to be strictly positive, the case most pertinent to optimization, we prove in Theorem 2.5 that for the case of quadratic functions on the hypercube C the bound of Theorem 1.1 needs to be increased by at most 1 degree, and thus it is still almost optimal. If a quadratic polynomial p on C remains invariant under the substitution $x \rightarrow 1-x_{i}$, i.e. $p\left(x_{1}, \ldots, x_{n}\right)=p\left(1-x_{1}, \ldots, 1-x_{n}\right)$ then it was recently shown by Fawzi, Parrilo and Saunderson in [3] that p is actually $\left\lceil\frac{n}{2}\right\rceil$-sos, thus proving a conjecture of Laurent from [10].

We also use Theorem 1.2 to provide lower bounds for the degree of the denominators in Hilbert's 17 th problem. More precisely, we use the quadratic polynomial nonnegative on the hypercube to construct a family of globally nonnegative quartic polynomials in n variables which are not $\left\lfloor\frac{n}{2}\right\rfloor$-rsos. This is, to our knowledge, the first example of a family of polynomials of bounded degree which needs denominators of increasing degree in their representations as sums of squares of rational functions.

2. Upper Bound on Multipliers

Let $X=\left\{v_{1}, \ldots, v_{m}\right\}$ be a finite set of points in \mathbb{R}^{n}. We first show that the set of $\left(d_{1}, d_{2}\right)$-rsos polynomials is always closed.

Lemma 2.1. Fix $d_{1}, d_{2} \in \mathbb{N}$. The set of polynomials in $\mathbb{R}[X]_{\leq 2 d}$ which are $\left(d_{1}, d_{2}\right)$-rsos is closed for all d_{1}, d_{2}, and d.

Proof. One can check that $\Sigma(X)_{\leq 2 d}$ is a closed pointed convex cone in $\mathbb{R}[X]_{\leq 2 d}[1$, Chapter 4]. Suppose that $f_{i} \in \mathbb{R}[X]_{\leq 2 d}$ are $\left(d_{1}, d_{2}\right)$-rsos and converge to f. Then there exist g_{i}, h_{i} which are respectively d_{1} and d_{2}-sos and $f_{i} g_{i}=h_{i}$. We may rescale g_{i} and assume that

$$
\frac{1}{m} \sum_{j=1}^{m} g_{i}\left(v_{j}\right)=1
$$

The set of d_{1}-sos polynomials with average 1 on X is compact. Therefore a subsequence of $\left\{g_{i}\right\}$ converges to g, which is also d_{1}-sos. Then the corresponding subsequence of $f_{i} g_{i}$ converges to $f g$ and, since each $f_{i} g_{i}$ is d_{2}-sos, it follows that $f g$ is d_{2}-sos.

We now develop some results about linear functionals on $\mathbb{R}[X]_{\leq 2 d}$ that are nonnegative on k-sos polynomials. These results are based on elementary dimension counting, but they will be crucial in the proof of Theorem 1.1 as we will be able to show non-existence of a certain separating linear functional. Let $\ell: \mathbb{R}[X]_{\leq 2 d} \rightarrow \mathbb{R}$ be a linear functional given as a combination of point evaluations on X :

$$
\ell(f)=\sum_{i=1}^{m} \mu_{i} f\left(v_{i}\right), \quad f \in \mathbb{R}[X]_{\leq 2 d}, \mu_{i} \in \mathbb{R}
$$

We assume that the coefficients μ_{i} are non-zero and let m_{+}and m_{-}be the number of positive and negative μ_{i} respectively, and let $Q_{\ell}: \mathbb{R}[X]_{\leq d} \rightarrow \mathbb{R}$ be the quadratic form associated to
ℓ given by

$$
Q_{\ell}(f)=\ell\left(f^{2}\right)=\sum_{i=1}^{m} \mu_{i} f^{2}\left(v_{i}\right)
$$

We can now provide a way of bounding degree of multipliers via a simple sign counting argument, that will prove to be the crucial element in the proof of Theorem 1.1.

Lemma 2.2. Let $\ell: \mathbb{R}[X]_{\leq 2 d} \rightarrow \mathbb{R}$ be given by $\ell(f)=\sum_{i=1}^{m} \mu_{i} f\left(v_{i}\right)$ with all $\mu_{i} \neq 0$. Suppose that ℓ is nonnegative on $\Sigma(X)_{\leq 2 d}$. Then $m_{+} \geq \operatorname{dim} \mathbb{R}[X]_{\leq d}$.
Proof. Let $\pi_{X}: \mathbb{R}[X]_{\leq d} \rightarrow \mathbb{R}^{m}$ be the evaluation projection of forms in $\mathbb{R}[X]_{\leq d}$ given by

$$
\pi_{X}(f)=\left(f\left(v_{1}\right), \ldots, f\left(v_{m}\right)\right), \quad f \in R[X]_{\leq d}
$$

We observe that the map π_{X} has a trivial kernel and therefore

$$
\operatorname{dim} \pi_{X}\left(\mathbb{R}[X]_{\leq d}\right)=\operatorname{dim} \mathbb{R}[X]_{\leq d}
$$

Let \bar{Q}_{ℓ} be the quadratic form on \mathbb{R}^{m} given by:

$$
\sum_{i=1}^{m} \mu_{i} x_{i}^{2}
$$

By its definition, the form Q_{ℓ} is a composition of π_{X} and \bar{Q}_{ℓ} :

$$
Q_{\ell}=\bar{Q}_{\ell} \circ \pi_{X}
$$

The form \bar{Q}_{ℓ} has m_{-}negative eigenvalues, and thus \bar{Q}_{ℓ} is strictly negative on a subspace of dimension m_{-}. Recall that the form Q_{ℓ} is positive semidefinite, which implies that \bar{Q}_{ℓ} is positive semidefinite on the image of π_{X}. Thus the image of π_{X} has codimension at least m_{-}in \mathbb{R}^{m}. Since $m_{+}+m_{-}=m$ the Lemma follows.

We are now in position to prove Theorem 1.1.
Proof of Theorem 1.1. Suppose not. By Lemma 2.1, the set of all polynomials in $\mathbb{R}[X]_{\leq 2 s}$ that is not $(k+s)$-rsos is open. Thus we can find $p \in \mathbb{R}[X]_{\leq 2 s}$ that is strictly positive on X but is not $(k+s)$-rsos. Now consider the pointed, closed convex cones $p \Sigma(X)_{\leq 2 k}$ and $\Sigma(X)_{\leq 2 k+2 s}$ in $\mathbb{R}[X]_{\leq 2 k+2 s}$. By our assumption

$$
p \Sigma(X)_{\leq 2 k} \cap \Sigma(X)_{\leq 2 k+2 s}=\{0\} .
$$

Therefore there exists a linear functional $\ell: \mathbb{R}[X]_{\leq 2 k+2 s} \rightarrow \mathbb{R}$ strictly separating the two cones: $\ell(f)>0$ for all nonzero $f \in \Sigma(X)_{\leq 2 k+2 s}$ and $\ell(f)<0$ for all nonzero $f \in p \Sigma(X)_{\leq 2 k}$.

Let $X^{\prime} \subseteq X$ be a subset of X such that point evaluations on X^{\prime} form a basis of the dual space of linear functionals $\mathbb{R}[X]_{\leq 2 k+2 s}^{*}$. We note that

$$
\left|X^{\prime}\right|=\operatorname{dim} \mathbb{R}[X]_{\leq 2 k+2 s} \text { and } \operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq d}=\mathbb{R}[X]_{\leq d} \text { for all } d \leq 2 k+2 s
$$

Therefore the separating functional ℓ can be written as

$$
\ell=\sum_{v_{i} \in X^{\prime}} \mu_{i} \ell_{v_{i}}, \quad \mu_{i} \in \mathbb{R}
$$

where $\ell_{v_{i}}$ are point evaluation functionals on points of X^{\prime}. Let p^{\prime} be the image of p under the canonical projection from $\mathbb{R}[X]$ to $\mathbb{R}\left[X^{\prime}\right]=\mathbb{R}[X] / I\left(X^{\prime}\right)$. It follows that ℓ also strictly separates $p^{\prime} \Sigma_{\leq 2 k}\left(X^{\prime}\right)$ from $\Sigma_{\leq 2 k+2 s}\left(X^{\prime}\right)$ and p^{\prime} is strictly positive on X^{\prime}. Since ℓ strictly separates the two cones we may assume without loss of generality that all coefficients μ_{i} are
non-zero. Let m_{+}and m_{-}be the number of positive and negative μ_{i} respectively. Then by Lemma 2.2 we know that $m_{+} \geq \operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq k+s}=\operatorname{dim} \mathbb{R}[X]_{\leq k+s}$.

Now define $\ell^{\prime}: \mathbb{R}\left[X^{\prime}\right]_{\leq 2 k} \rightarrow \mathbb{R}$ by

$$
\ell^{\prime}=\sum_{v_{i} \in X^{\prime}} \mu_{i} p^{\prime}\left(v_{i}\right) \ell_{v_{i}}
$$

The functional ℓ^{\prime} is nonnegative on $\Sigma_{\leq 2 k}\left(X^{\prime}\right)$, therefore, by applying Lemma 2.2, we see that $m_{-} \geq \operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq k}=\operatorname{dim} \mathbb{R}[X]_{\leq k}$, since $p^{\prime}\left(v_{i}\right)>0$ for all $v_{i} \in X^{\prime}$. Combining, we see that

$$
H_{X}(2 k+2 s)=\left|X^{\prime}\right|=m_{+}+m_{-} \geq H_{X}(k+s)+H_{X}(k),
$$

which is a contradiction.
Corollary 2.3. Let $p \in \mathbb{R}[C]_{\leq 2}$ be a quadratic polynomial nonnegative on C and let $k=\left\lfloor\frac{n}{2}\right\rfloor$. Then p is $(k+1)$-rsos.
Proof. This follows immediately from Theorem 1.1 since $H_{C}(t)=\sum_{i=0}^{t}\binom{n}{i}$.
2.1. Strictly Positive Multipliers. We observe that having a k-rsos representation of a polynomial $p \in \mathbb{R}[X]$ is not in general a certificate of nonnegativity of p. This is due to the fact that X is a reducible variety and the multiplier h may vanish on some points of X. On these points nonnegativity of p is not certified.

Therefore we are interested in showing existence of strictly positive sum of squares multipliers. More specifically we will be interested in multipliers h of the form

$$
h=1+\sum q_{i}^{2}, \quad q_{i} \in \mathbb{R}[X]_{\leq k} .
$$

We note that, up to multiplication by a positive constant, such sums of squares correspond precisely to the interior points of the cone $\Sigma(X)_{\leq 2 k}$. We will concentrate on the case of a quadratic polynomial nonnegative on a subset X of the hypercube C. We first show that the bound of $d=\left\lfloor\frac{n}{2}\right\rfloor$ suffices also for any strictly positive quadric $p \in \mathbb{R}[X]_{\leq 2}$.

In the proof we will make use of Cayley-Bacharach duality. From the point of view of algebraic geometry the hypercube C is a 0 -dimensional transverse complete intersection of n quadratic polynomials. Intuitively we expect that polynomials in $\mathbb{R}[C]_{\leq t}$ vanishing on X form a linear subspace L_{X} of $\mathbb{R}[C]_{\leq t}$ of codimension equal to the size $|\bar{X}|$ of X. In the language of algebraic geometry we say that in this case points of X impose independent conditions on polynomials of degree at most t. However, this does not necessarily occur, and the failure of X to impose independent conditions on polynomials of degree at most t is defined as the difference $|X|-\operatorname{codim} L_{X}$. There is a general duality which equates the dimension of the vector space of polynomials of degree at most t vanishing on X with the failure of the complementary subset \bar{X} to impose independent conditions on polynomials of at most complementary degree. We refer the reader to [2] for more details.

Theorem 2.4. Let $d=\left\lfloor\frac{n}{2}\right\rfloor$ and let X be a subset of C. If $p \in \mathbb{R}[X]_{\leq 2}$ is a quadratic polynomial that is strictly positive on X then there exists h in the interior of $\Sigma(X)_{\leq 2 d}$ such that $p \cdot h$ lies in the interior of $\Sigma(X)_{\leq 2 d+2}$.
Proof. Suppose not. Then the pointed convex cones $p \Sigma(X)_{\leq 2 d}$ and $\Sigma(X)_{\leq 2 d+2}$ can be weakly separated. Therefore there exists a linear functional $\ell \in \mathbb{R}[X]_{\leq 2 d+2}^{*}$ such that $\ell(s) \geq 0$ for all
$s \in \Sigma(X)_{\leq 2 d+2}$ and $\ell(s) \leq 0$ for all $s \in p \Sigma(X)_{\leq 2 d}$. We can write

$$
\ell=\sum_{v_{i} \in X} \mu_{i} \ell_{v_{i}}, \quad \mu_{i} \in \mathbb{R}
$$

Let X^{\prime} be the subset of X corresponding to non-zero coefficients μ_{i}. Let p^{\prime} be the image of p under the canonical projection from $\mathbb{R}[X]$ to $\mathbb{R}\left[X^{\prime}\right]=\mathbb{R}[X] / I\left(X^{\prime}\right)$. It follows that ℓ also separates $p^{\prime} \Sigma\left(X^{\prime}\right)_{\leq 2 d}$ from $\Sigma\left(X^{\prime}\right)_{\leq 2 d+2}$ and p^{\prime} is strictly positive on X^{\prime}.

Let m_{+}and m_{-}be the number of positive and negative μ_{i} respectively. Using Lemma 2.2 we see that $m_{+} \geq \operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq d+1}$. On the other hand we may define $\ell^{\prime}: \mathbb{R}\left[X^{\prime}\right]_{\leq 2 d} \rightarrow \mathbb{R}$ by

$$
\ell^{\prime}(q)=\ell\left(p^{\prime} q\right), \quad \ell^{\prime}=\sum_{v_{i} \in X^{\prime}} \mu_{i} p^{\prime}\left(v_{i}\right) \ell_{v_{i}}
$$

Since p^{\prime} is strictly positive on X^{\prime} and ℓ^{\prime} is nonpositive on squares we can apply Lemma 2.2 to see that $m_{-} \geq \operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq d}$.

We now claim that

$$
\begin{equation*}
\operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq d}+\operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq d+1}>\left|X^{\prime}\right| \tag{1}
\end{equation*}
$$

Let \bar{X}^{\prime} denote the complement of X^{\prime} in C. Using Cayley-Bacharach duality [2, Theorem CB6], we see that $\left|X^{\prime}\right|-\operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq d}=\operatorname{dim} \mathbb{R}[C]_{\leq n-d-1}-\operatorname{dim} \mathbb{R}\left[\bar{X}^{\prime}\right]_{\leq n-d-1}$. We observe that $d+1>n-d-1$ and we must have $\operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq d+1}>\operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq n-d-1}$, otherwise $\operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq d+1}=\operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq d}=\left|X^{\prime}\right|$ and (1) is proved. Thus we have
$\operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq d+1}+\operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq d}-\left|X^{\prime}\right|=\operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq d+1}+\operatorname{dim} \mathbb{R}\left[\bar{X}^{\prime}\right]_{\leq n-d-1}-\operatorname{dim} \mathbb{R}[C]_{\leq n-d-1}>$ $\operatorname{dim} \mathbb{R}\left[X^{\prime}\right]_{\leq n-d-1}+\operatorname{dim} \mathbb{R}\left[\bar{X}^{\prime}\right]_{\leq n-d-1}-\operatorname{dim} \mathbb{R}[C]_{\leq n-d-1} \geq 0$.

This finishes the proof of the claim, and now we observe that since $m_{+}+m_{-}=\left|X^{\prime}\right|$ we have reached a contradiction.

We now show that if $p \in \mathbb{R}[X]_{\leq 2}$, is nonnegative on $X \subseteq C$ then there are interior sum of squares multipliers of degree at most $\left\lfloor\frac{n}{2}\right\rfloor+1$, i.e. we may need to increase the degree by 1 in order to certify nonnegativity of a quadric. It is not clear to us whether this is truly necessary, or perhaps there exist interior sum of squares multipliers of degree at most $\left\lfloor\frac{n}{2}\right\rfloor$.

Theorem 2.5. Let $d=\left\lfloor\frac{n}{2}\right\rfloor$ and let X be a subset of C. If $p \in \mathbb{R}[X]_{\leq 2}$ is a non-zero quadratic function nonnegative on X, then there exists h in the interior of $\Sigma(X)_{\leq 2 d+2}$ such that $p \cdot h \in \Sigma(X)_{\leq 2 d+4}$.

Proof. It is equivalent to show that any linear functional in $\mathbb{R}[X]_{\leq 2 d+4}^{*}$ which separates $p \Sigma(X)_{\leq 2 d+2}$ and $\Sigma(X)_{\leq 2 d+4}$ is identically zero on $p \Sigma(X)_{\leq 2 d+2}$. Let $\bar{\ell}$ be such a functional. We can write

$$
\ell=\sum_{v_{i} \in X} \mu_{i} \ell_{v_{i}}, \quad \mu_{i} \in \mathbb{R}
$$

Let $V \subsetneq X$ be the variety of p in X and let $X^{\prime}=X \backslash V$. Let p^{\prime} be the image of p under the canonical projection from $\mathbb{R}[X]$ to $\mathbb{R}\left[X^{\prime}\right]=\mathbb{R}[X] / I\left(X^{\prime}\right)$. Let $\ell^{\prime} \in \mathbb{R}\left[X^{\prime}\right]_{\leq 2 d+2}^{*}$ be the linear functional given by

$$
\ell^{\prime}=\sum_{v_{i} \in X} \mu_{i} p\left(v_{i}\right) \ell_{v_{i}}=\sum_{v_{i} \in X^{\prime}} \mu_{i} p^{\prime}\left(v_{i}\right) \ell_{v_{i}} .
$$

We claim that ℓ^{\prime} separates $p^{\prime} \Sigma\left(X^{\prime}\right)_{\leq 2 d}$ from $\Sigma\left(X^{\prime}\right)_{\leq 2 d+2}$. Indeed for any $q \in \Sigma(X)_{\leq 2 d}$ we have

$$
\ell^{\prime}\left(p^{\prime} q\right)=\ell\left(p^{2} q\right) \geq 0
$$

while for any $q \in \Sigma\left(X^{\prime}\right)_{\leq 2 d+2}$ we have

$$
\ell^{\prime}(q)=\ell(p q) \leq 0 .
$$

By Theorem 2.4 it follows that ℓ^{\prime} must be identically zero, which implies that ℓ is defined only in terms of evaluations on points of V. Thus ℓ vanishes identically on $p \Sigma(X)_{\leq 2 d+2}$.

3. Lower Bound on Multipliers

In this section we prove the lower bound on the degree of rational function representations for polynomials on the hypercube. We deal with S_{n}-invariant polynomials which vanish on a level $T=\left\{x \in C: \sum x_{i}=t\right\}$ of the hypercube $C=\{0,1\}^{n}$. Such functions come up naturally in combinatorial optimization, where we are counting objects subject to some symmetric restrictions; see Section 4.1. We will show that such functions do not have rational sums of squares representations with multipliers of low degree.

It will simplify the notation to use subsets of $[n]$ as exponents: $x^{\{1,4\}}=x_{1} x_{4}$. The vector space $\mathbb{R}[C]$ of functions on the hypercube has a basis $\left\{x^{m}: m \subseteq[n]\right\}$ of squarefree monomials. Thus we can write any function $f \in \mathbb{R}[C]$ as $f=\sum_{m \subset[n]} c_{m} x^{m}$, and we have $\operatorname{deg}(f)=\max \left\{|m|: c_{m} \neq 0\right\}$. We define $\mathbb{R}[C]_{d}$ to be the collection of homogeneous degree- d functions, and $\mathbb{R}[C]_{\leq d}=\oplus_{i=0}^{d} \mathbb{R}[C]_{i}$ the collection of functions of degree at most d.

We also need to discuss the notion of divisibility in a coordinate ring. For instance, we may have $f, g, h \in \mathbb{R}[X]$ with $f=g h$ but $\operatorname{deg}(f)<\operatorname{deg}(g)+\operatorname{deg}(h)$; in the case of the hypercube, $x \cdot x=x$. To fix this, for $f, g \in \mathbb{R}[X]$, we say that g properly divides f if there exists $h \in \mathbb{R}[X]$ such that $f=g h$ and $\operatorname{deg}(f)=\operatorname{deg}(g)+\operatorname{deg}(h)$. We will also say that g properly divides f to order m if g^{m} properly divides f, but g^{m+1} does not.

We note that the symmetric group S_{n} acts on $\mathbb{R}[C]$ by permuting the variables directly: (123) $x_{1}=x_{2}$. To start, we decompose $\mathbb{R}[C]$ into irreducible S_{n}-modules. We introduce the necessary background in representation theory of the symmetric group below. For further information see the introduction by Sagan [17], whose notation we adopt here.
3.1. Representation theory of S_{n}. A partition of a positive integer n is an ordered tuple $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ of positive integers such that $\lambda_{1} \geq \ldots \geq \lambda_{k}$, and $\lambda_{1}+\ldots+\lambda_{k}=n$. Corresponding to each partition is its diagram, where we draw k rows of boxes, with λ_{i} boxes in the i th row. For example, the partition $(4,2)$ of $n=6$ has the following diagram:

A tableau of shape λ is an assignment of numbers $\{1, \ldots, n\}$ to the boxes in the diagram of λ. A standard tableau has strictly increasing rows and columns. Here is an example of a tableau and a standard tableau of shape $(4,2)$:

A tabloid is an equivalence class of tableaux, where we identify two tableaux if the fillings of their rows are the same as subsets of $\{1, \ldots, n\}$.

Figure 1. A tableau and a standard tableau of shape $(4,2)$.
For a tableau T and an element $\sigma \in S_{n}$, let σ act on T by permuting the numbers in T. Then the action of S_{n} can be extended to tabloids and formal linear combination of tabloids. Formal linear combinations of tabloids of shape λ form the permutation module M^{λ}.

Let C_{T} be the column group of T; that is, the subgroup of S_{n} fixing the columns of T. Now we can define the polytabloid $e_{T}=\sum_{\sigma \in C_{T}} \operatorname{sign}(\sigma) \cdot[\sigma(T)]$, where $[\sigma(T)]$ is the tabloid equivalence class of $\sigma(T)$. Now, define the Specht module S^{λ} :

$$
S^{\lambda}:=\operatorname{span}\left(\left\{e_{T}: T \text { is a standard tableau of shape } \lambda\right\}\right),
$$

which is a submodule of M^{λ}. Irreducible representations (irreducible S_{n}-modules) of S_{n} are precisely given by the Specht modules S^{λ}, where λ is a partition of n.
3.2. Functions on the hypercube C and S_{n}-representations. Recall that S_{n} acts on $\mathbb{R}[C]$ by permuting the variables. In the following we treat $(n, 0)$ as an alias for the partition (n) to simplify our notation. We now define an isomorphism between tabloids and monomials. For $k \leq n / 2$ let $M^{(n-k, k)}$ and $S^{(n-k, k)}$ denote the permutation and the Specht modules respectively, corresponding to the partition $(n-k, k)$.

Define $\phi_{k}: M^{(n-k, k)} \rightarrow \mathbb{R}[C]$ by $\phi_{k}\left(\left[m^{c}, m\right]\right)=x^{m}$, and extend ϕ_{k} linearly. For example, $\phi_{3}([12345,678])=x_{6} x_{7} x_{8}$. The image of ϕ_{k} is the subspace $\mathbb{R}[C]_{k}$ of homogeneous functions of degree k. We also have $\mathbb{R}[C]_{k} \cong \mathbb{R}[C]_{n-k}$ as S_{n}-modules, since we can take complements in the exponent: if $n=6$, then $x_{1} x_{2} \in \mathbb{R}[C]_{2} \leftrightarrow x_{3} x_{4} x_{5} x_{6} \in \mathbb{R}[C]_{4}$.
Proposition 3.1. The S_{n}-module $\mathbb{R}[C]$ decomposes into $n+1-2 k$ copies of $S^{(n-k, k)}$, for $0 \leq k \leq \frac{n}{2}$.

Proof. By Young's rule (Theorem 2.11.2 in [17]), $M^{(n-k, k)}$ splits into direct sum of $S^{(n-i, i)}$ for $0 \leq i \leq k$, each coming with multiplicity 1 . By the above, if $k \leq n / 2, \mathbb{R}[C]_{n-k} \cong \mathbb{R}[C]_{k} \cong$ $M^{(n-k, k)}$. If n is odd, then

$$
\begin{aligned}
\mathbb{R}[C] & =\bigoplus_{0 \leq k<n / 2}\left(\mathbb{R}[C]_{k} \oplus \mathbb{R}[C]_{n-k}\right) \\
& \cong 2 \bigoplus_{0 \leq k<n / 2} M^{(n-k, k)} \\
& \cong 2 \bigoplus_{0 \leq k<n / 2}\left(\bigoplus_{i=0}^{k} S^{(n-i, i)}\right) \\
& \cong 2 \bigoplus_{i=0}^{\lfloor n / 2\rfloor}\left(\frac{n-1}{2}-i+1\right) S^{(n-i, i)}
\end{aligned}
$$

which gives the result. For even n just add the single copy of $\mathbb{R}[C]_{n / 2} \cong M^{(n / 2, n / 2)}$.

Proposition 3.1 gives the decomposition of $\mathbb{R}[C]$ into irreducible submodules. To analyze a specific function $f \in \mathbb{R}[C]$, we now give an explicit decomposition of $\mathbb{R}[C]$. We choose a slightly idiosyncratic description which will be useful for our purposes. Fix $t \in \mathbb{R}$ and let $\ell=t-\sum x_{i}$. Recalling that $S^{(n-k, k)} \subset M^{(n-k, k)}$, define $H_{k 0}=\phi\left(S^{(n-k, k)}\right) \subseteq \mathbb{R}[C]_{k}$. Since ϕ is an S_{n}-module isomorphism, we have $H_{k 0} \cong S^{(n-k, k)}$. Then for $i=1, \ldots, n-2 k$, define $H_{k i}=\left(t-\sum_{j} x_{j}\right)^{i} \cdot H_{k 0}$. Note that no element of $H_{k 0}$ is properly divisible by ℓ.
Theorem 3.2. $\mathbb{R}[C]$ has the following decomposition into irreducibles:

$$
\mathbb{R}[C]=\bigoplus_{k=0}^{\lfloor n / 2\rfloor}\left(\bigoplus_{i=0}^{n+1-2 k} H_{k i}\right)
$$

This decomposition respects degree: for any d,

$$
\mathbb{R}[C]_{\leq d}=\bigoplus_{k+i \leq d} H_{k i}
$$

Proof. By Proposition 3.1, the above decomposition contains the correct number of each irreducible S_{n}-module. Therefore, it remains to show that the summands are linearly independent.

By Corollary 2.11 in [19], the map $U: \mathbb{R}[C]_{k} \rightarrow \mathbb{R}[C]_{n-k}$ given by $U(f)=\left(\sum x_{j}\right)^{n-2 k} f$ is a bijection. Therefore, the map $U^{\prime}: \mathbb{R}[C]_{k} \rightarrow \mathbb{R}[C]_{\leq k+i}$ given by $f \mapsto\left(t-\sum x_{j}\right)^{i} f$ is injective for $i \leq n-2 k$, by consideration of the top degree terms of $U^{\prime}(f)$. Since $H_{k i}=U^{\prime}\left(H_{k 0}\right)$, we have that $\operatorname{deg}(f)=k+i$ for each nonzero $f \in H_{k i}$; in particular, $H_{k i} \neq 0$. Since S_{n} acts trivially on $\left(t-\sum_{j} x_{j}\right)^{i}$, we have $H_{k i} \cong H_{k 0}$. By irreducibility, we know that vectors in $H_{k i}$ and $H_{k^{\prime} i^{\prime}}$ are linearly independent if $k \neq k^{\prime}$. It remains to consider $H_{k i}$ for varying i; but since each nonzero $f_{i} \in H_{k i}$ has degree exactly $k+i$, these are linearly independent as well.

The expression for $\mathbb{R}[C]_{\leq d}$ now follows from the linear independence of the modules $H_{k i}$.

We now show that proper divisibility holds for functions of low degree vanishing on a level T, i.e. on the subset of the hypercube where the sum of coordinates is equal to a fixed number t.

Lemma 3.3. Let $T=\left\{x \in C: \sum_{i} x_{i}=t\right\}$, for fixed $t \in\{0, \ldots, n\}$. Suppose $f \in \mathbb{R}[C]_{\leq d}$, and f vanishes on T. If $d \leq t \leq n-d$, then f is properly divisible by $\ell=t-\sum x_{i}$.
Proof. Let V be the S_{n}-submodule of $\mathbb{R}[C]_{\leq d}$ consisting of polynomials that are properly divisible by ℓ and let

$$
W=H_{00} \oplus \ldots \oplus H_{d 0} \cong S^{(n)} \oplus \cdots \oplus S^{(n-d, d)}
$$

By Theorem 3.2 we have $\mathbb{R}[C]_{\leq d}=V \oplus W$. Let $U \subset W$ be the S_{n}-submodule of polynomials vanishing on T. Since W contains exactly one copy of each irreducible submodule of $\mathbb{R}[C]_{\leq d}$ it suffices to show that $U=0$. Since the $H_{i 0}$ are nonisomorphic irreducible S_{n}-modules, it follows that

$$
U=\bigoplus_{i \in I} H_{i 0}
$$

where I is a subset of $\{0, \ldots, d\}$. Now we claim that polynomials in $H_{i 0}$ do not identically vanish on T for all $0 \leq i \leq d$. Since $H_{i 0}$ is an irreducible S_{n}-module it suffices to exhibit a single polynomial $p \in H_{i 0}$ not vanishing on T.

To see this, let q be the standard tableau of shape $(n-i, i)$ where the first row contains $\{1, \ldots, n-i\}$ and the second row contains $\{n-i+1, \ldots, n\}$. Let $\hat{x} \in C$ be given by

$$
\hat{x}=e_{n-t+1}+\cdots+e_{n},
$$

where e_{j} denotes the j-th standard basis vector. Since $i \leq t \leq n-i$, the support of \hat{x} contains the second row of q and does not contain any of the first i entries of the first row of q. Consider $p=\phi\left(e_{q}\right), p \in H_{i 0}$, where e_{q} is the polytabloid corresponding to q. It follows that $p(\hat{x})=1$, since only the monomial $\phi(q)$ is nonzero on \hat{x} in $\phi\left(e_{q}\right)$ and $\phi(q)(\hat{x})=1$. See Figure 2 for an example.

$$
\begin{aligned}
q & =\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 8 & 9 & & \\
\hat{x} & =(0,0,0,0,0,0,1,1,1) \\
p=\phi\left(e_{q}\right) & =x_{8} x_{9}-x_{1} x_{9}-x_{8} x_{2}+x_{1} x_{2}
\end{array}
\end{aligned}
$$

Figure 2. A standard tableau q with sorted rows, and the associated vector \hat{x}. Here $n=9, i=2, t=3$. We have $p(\hat{x})=1$.

Now we can prove our main result on lower bounds for the degree of denominators in $\mathbb{R}[C]$.
Theorem 3.4. Suppose $f \in \mathbb{R}[C]_{\leq t}$ with $t \leq n / 2$ is an S_{n}-invariant polynomial and f is properly divisible by $\ell=t-\left(x_{1}+\cdots+x_{n}\right)$ to odd order. Then f is not $\left(d_{1}, d_{2}\right)$-rsos for $d_{1} \leq \min \left\{\frac{n-\operatorname{deg} f}{2}, t\right\}, d_{2} \leq t$.
Proof. Suppose that $f \sum g_{i}^{2}=\sum h_{j}^{2}$ with $g_{i} \in \mathbb{R}[C]_{\leq d_{1}}, g_{i} \neq 0$ and $h_{j} \in \mathbb{R}[C]_{\leq d_{2}}$. Let $g=\sum g_{i}^{2}$ and $h=\sum h_{j}^{2}$. Without loss of generality we may assume that g and h are S_{n}-invariant polynomials, otherwise we may replace them by their S_{n}-symmetrizations.

Since $d_{2} \leq t$ by Lemma 3.3 we can write $h_{j}=\ell^{a_{j}} q_{j}$ with $\operatorname{deg} q_{j}=\operatorname{deg} h_{j}-a_{j}$ and q_{j} not vanishing on all of T. Therefore, after symmetrizing $h=\sum \ell^{2 a_{j}} q_{j}^{2}$ we see that $h=\ell^{2 a} q$ where $a=\min a_{j}$ and q is an S_{n}-invariant polynomial, $\operatorname{deg} q=\operatorname{deg} h-2 a$, and q is strictly positive on T.

Similarly, since $d_{1} \leq t$ we argue that $g=\ell^{2 b} r$, where r is an S_{n}-invariant polynomial strictly positive on T, and $\operatorname{deg} r=\operatorname{deg} g-2 b$. Finally, $f=\ell^{c} p$ where c is odd and p is an S_{n}-invariant polynomial not identically zero on T with $\operatorname{deg} p=\operatorname{deg} f-c$. Combining, we see that

$$
\ell^{2 b+c} p r-\ell^{2 a} q=0
$$

Let $\alpha=\min \{2 a, 2 b+c\}$. By factoring out ℓ^{α} in the equation above we obtain

$$
\ell^{\alpha} s=0
$$

for an S_{n}-invariant polynomial $s \in \mathbb{R}[C]$ of degree strictly less than n since $d_{1} \leq \min \left\{\frac{n-t}{2}, t\right\}$ and $d_{2} \leq t$. Since q and r are strictly positive on T and p is not identically zero on T, it follows that s does not vanish on T. Thus s is a non-zero symmetric polynomial in $\mathbb{R}[C]$ vanishing on $C \backslash T$. Therefore $s=\beta \chi_{T}$ for some constant $\beta \neq 0$, where $\chi_{T} \in \mathbb{R}[C]$ is the polynomial vanishing on $C \backslash T$ and equal to 1 on T. However, it is not hard to check that $\operatorname{deg} \chi_{T}=n$ for any level T and therefore we arrive at a contradiction.

Corollary 3.5. Fix $t \leq n / 2$ and let $f \in \mathbb{R}[C]_{\leq t}$ be an S_{n}-invariant polynomial. Suppose that f is properly divisible by $\ell=t-\left(x_{1}+\cdots+x_{n}\right)$ to odd order. Then f is not d-sos for $d \leq t$.

Proof. Apply Theorem 3.4 with $d_{1}=0$.
Theorem 1.2 also follows immediately:
Proof of Theorem 1.2. Apply Theorem 3.4.

4. Applications

We give two applications of our results. Section 4.1 deals with the MAXCUT problem on K_{n}, and is an application to combinatorial optimization. Section 4.2 deals with lower degree bounds in Hilbert's 17th problem.
4.1. The maxcut problem. A cut in a graph arises from a partition of the vertices into two sets S_{1}, S_{2}, the cut being the collection of all edges from S_{1} to S_{2}. Note that switching S_{1} and S_{2} gives the same cut. We write $C=\left[S_{1}, S_{2}\right]=\left[S_{2}, S_{1}\right]$, and let $|S|=$ the number of edges from S_{1} to S_{2}. A maximal cut is a cut maximizing $|S|$.

In the complete graph K_{n}, the maximal cuts come from any partition of $[n]$ into two sets of $n / 2$ vertices when n is even, or $(n \pm 1) / 2$ when n is odd. We note that a point $v \in C$ naturally defines a cut $S^{v}=\left[S_{1}, S_{2}\right]$ via $S_{1}=\left\{i \mid v_{i}=0\right\}$ and $S_{2}=\left\{i \mid v_{i}=1\right\}$.

Let n be odd, Let $k=\left\lfloor\frac{n}{2}\right\rfloor$ and let $q \in \mathbb{R}[C]$ be given by

$$
q=\left(x_{1}+\cdots+x_{n}-k\right)\left(x_{1}+\cdots+x_{n}-k-1\right) .
$$

We note that for all $v \in C$ we have $q(v)=\left|S^{v}\right|$.
Note that the q defined above is the same polynomial as in Theorem 1.2. This allows us to reprove and strengthen a result of Laurent. In [10], Theorem 4, it is shown that the Lasserre rank of the cut polytope of K_{n}, for n odd, is at least $\frac{n+1}{2}$. This implies that there exists a quadratic polynomial $q \in \mathbb{R}[C]_{\leq 2}$ such that q is not $\frac{n-1}{2}$-sos. In fact the proof by Laurent established this for the same q as above. However from Theorem 1.2 we know that in fact q is not $\frac{n-1}{2}$-rsos. Further, it was conjectured in [10] that the Lasserre rank is precisely $\frac{n+1}{2}$ in this case. This is equivalent to saying that any nonnegative quadratic $q \in \mathbb{R}[C]_{\leq 2}$ that can be written as $q(x)=q_{0}+\sum_{i \neq j} q_{i j} x_{i} x_{j}$ is $\frac{n+1}{2}$-sos. While we are not able to show this conjecture, it follows from Corollary 2.3 that any quadratic $q \in \mathbb{R}[C]_{\leq 2}$ is $\frac{n+1}{2}$-rsos, and from Theorem 2.5 that even if we demand positive multipliers, $\frac{n+3}{2}$-rsos is enough.
4.2. Globally nonnegative function with large multipliers. We finish with an application to Hilbert's 17th problem.

Theorem 4.1. Let $k=\left\lfloor\frac{n}{2}\right\rfloor$. There exists a polynomial p of degree 4 nonnegative on \mathbb{R}^{n} which is not k-rsos in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

Proof. Let $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be given by

$$
f=\left(x_{1}+\cdots+x_{n}-k\right)\left(x_{1}+\cdots+x_{n}-k-1\right)
$$

By Corollary 1.2 we know that f is not k-rsos in $\mathbb{R}[C]$. Using Lemma 2.1 with $X=C$ it follows that $f+\epsilon$ is not k-rsos in $\mathbb{R}[C]$ for all sufficiently small $\epsilon>0$. Let $f^{\prime}=f+\epsilon$ for a fixed such ϵ.

Let $r=\sum_{i=1}^{n}\left(x_{i}^{2}-x_{i}\right)^{2}$. For sufficiently large $\lambda>0$ the polynomial $p=f^{\prime}+\lambda r$ is strictly positive on \mathbb{R}^{n}. Suppose that p is k-rsos in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$: we have $p h=g$ with $(k-2)$-sos non-zero polynomial h, and k-sos polynomial g.

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}$ let C_{α} be the hypercube given by equations $\left(x_{i}-\alpha_{i}\right)\left(x_{i}-\alpha_{i}-\right.$ $1)=0$. By Lemma 2.1 it follows that p is not $(k-1, k)$-sos in $\mathbb{R}\left[C_{\alpha}\right]$ for all α sufficiently close to 0 , since by linear change of variables it suffices to consider a small perturbation of p in $\mathbb{R}[C]$. However, there exist α arbitrarily close to 0 such that $h \not \equiv 0$ in $\mathbb{R}\left[C_{\alpha}\right]$. This is a contradiction since it follows that p is k-rsos in $\mathbb{R}\left[C_{\alpha}\right]$ for such α.

References

[1] Grigoriy Blekherman, Pablo A. Parrilo, and Rekha R. Thomas. Semidefinite optimization and convex algebraic geometry, volume 13 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), 2012.
[2] David Eisenbud, Mark Green, and Joe Harris. Cayley-Bacharach theorems and conjectures. Bulletin of the AMS, 33(3):295-324, 1996.
[3] Hamza Fawzi, Pablo Parrilo, and James Saunderson. Sparse sum-of-squares certificates on finite abelian groups. http://arxiv.org/abs/1503.01207, 2015.
[4] Michel Goemans and David Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach., 42(6):1115-1145, 1995.
[5] João Gouveia, Monique Laurent, Pablo A. Parrilo, and Rekha R. Thomas. A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs. Math. Program., 133(1-2, Ser. A):203-225, 2012.
[6] João Gouveia, Pablo A. Parrilo, and Rekha R. Thomas. Theta bodies for polynomial ideals. SIAM J. Optim., 20(4):2097-2118, 2010.
[7] Feng Guo, Erich Kaltofen, and Lihong Zhi. Certificates of impossibility of Hilbert-Artin representations of a given degree for definite polynomials and functions. In ISSAC ${ }^{1} 12$ Proceedings of the 37 th International Symposium on Symbolic and Algebraic Computation, pages 195-202. ACM, 2012.
[8] Jean B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM J. Optim., 11(3):796-817, 2000/01.
[9] Jean B Lasserre. An explicit equivalent positive semidefinite program for nonlinear 0-1 programs. SIAM Journal on Optimization, 12(3):756-769, 2002.
[10] Monique Laurent. Lower bound for the number of iterations in semidefinite hierarchies for the cut polytope. Math. Oper. Res., 28(4):871-883, 2003.
[11] Monique Laurent. Semidefinite representations for finite varieties. Mathematical Programming, 109(1):126, 2007.
[12] Henri Lombardi. Une borne sur les degrés pour les théorèmes des zéros réel effectif. In Real Algebraic Geometry, Proceedings, Rennes 1991, volume 1524 of Lecture Notes in Mathematics, pages 323-345. Springer-Verlag, 1992.
[13] Henri Lombardi, Daniel Perrucci, and Marie-Françoise Roy. An elementary recursive bound for effective Positivstellensatz and Hilbert's 17th problem. http://arxiv.org/abs/1404.2338, 2014.
[14] M. Marshall. Positive Polynomials and Sums of Squares. Mathematical surveys and monographs. American Mathematical Society, 2008.
[15] Pablo A Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical programming, 96(2):293-320, 2003.
[16] A. Prestel and C.N. Delzell. Positive Polynomials: From Hilbert's 17th Problem to Real Algebra. Springer Monographs in Mathematics. Springer, 2001.
[17] Bruce E. Sagan. The symmetric group, volume 203 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2001. Representations, combinatorial algorithms, and symmetric functions.
[18] Joachim Schmid. On the degree complexity of Hilbert's 17 th problem and the Real Nullstellensatz. PhD thesis, University of Dortmund, Germany, 1998. Habilitation thesis.
[19] Richard P. Stanley. Variations on differential posets. In Invariant theory and tableaux (Minneapolis, MN, 1988), volume 19 of IMA Vol. Math. Appl., pages 145-165. Springer, New York, 1990.

Grigoriy Blekherman, School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332-0160 USA

E-mail address: greg@math.gatech.edu
João Gouveia, CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal

E-mail address: jgouveia@mat.uc.pt
James Pfeiffer, Department of Mathematics, University of Washington, Seattle, WA 98195

E-mail address: jamesrpfeiffer@gmail.com

