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Abstract

It is shown thatU(3);, x U(3)g eight-quark interactions stabilize the asymmetric ground state of the well-known model with four-quark
Nambu—Jona-Lasinio and six-quark 't Hooft interactions. The result remains when the r&li@dlavour symmetry is explicitly broken by
the general current quark mass term with £ m, # m;.
0 2006 Elsevier B.V. All rights reserved.
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1. Introduction There are a number of instructive models that assume the
existence of underlying multi-quark interactions and their im-

Phenomenological parametrizations based on some simpRortance for physics of hadrons. Well-known examples include
ansatz with solid symmetry grounds are frequently used in lowthe Nambu and Jona-Lasinio (NJL) mod4), where the four-
energy QCD. One of the most common and important outputéermion interactions have been used to study dynamical break-
of this approach is to get a clue of how high-energy QCD mayng of chiral symmetr§; the instanton inspired model[8],
influence low-energy observables. Unfortunately, in spite of alWhere 2V;-quark interactions Ny is the number of quark
remarkable successes of the QCD sum rules mdttjodr chi-  flavours) offer a possible framework to discuss the(1) prob-
ral perturbation theory?], this picture is still far away from lem[9]; the potential-type quark models which are successfully
being completed. applied to the evaluation of hadronic parameféfy.

Some features of the large distance hadron dynamics can be In this Letter, we propose to extend the phenomenologically
understood in the framework of effective chiral Lagrangiansinteresting three-flavour quark model which combines the chi-
written in terms of quark degrees of freeddsi. They are ralU(3)L x U(3)r NJL-type Lagrangian with the 't Hooft six-
efficient for the description of spontaneous chiral symmetryduark determinant (NJLH), by supplying it with flavour mixing
breaking, or for the study of the quark structure of light mesonseight-quark interactions. The original NJLH Lagrangian gives
The parameters of such Lagrangians can be related to the ch@-good description of the pseudoscalar nonet, especially the
acteristics of the QCD vacuum given in form of the vacuumands’ masses and mixinf 1], and in this form the model has
expectation values of the relevant quark bilinears or gluons (iPeen widely and successfully explored at the mean-field level
they are included). In many respects this approach correspon{ﬂaz—141

to a Landau-Ginzburg-like description of the flavour dynamics. This approximation was refined by works of Reinhardt
and Alkofer[15], who used the functional integral method to

bosonize the model. This approach hinges decisively on the
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allows to calculate the contribution of the classical path already The interaction Lagrangian of the NJLH model in the scalar
at lowest order. This lowest order result sums all tree diagramand pseudoscalar channels is given by two terms
in the perturbative series in powers of the coupling constant of

the 't Hooft interactior{16]. Lo = — [(@2a@)? + @i vsraq)?]. 2
The functional treatment of the model reveals one essential 2 _ _
problem: the model has actually several classical trajectorieéH = kc(detg PLq + detg Prq). ®)

which belong to the interval of the functional integration, andne first one is the/;.(3) x Ugr(3) chiral symmetric interac-
therefore contribute to the integridl6]. If one takes them into 4, specifying the local part of the effective four-quark La-

account, the effective potential of the theory gets unboundegrangian in channels with quantum numbgfs= 0", 0~. The
from below, i.e., the system does not have a ground state.  gg|l-Mann flavour matrices.,. a =0, 1,....8. are normal-

We argue here that this drawback of the NJLH model canqq sych that th.,1,) = 28,,. The second term represents the
be removed_. The eight-quark |r_1teract|on§_added to the origit Hooft determinantal interactionf]. The matricesP, g =
nal Lagrangian reduce (under given conditions) the number 0{1:{: y5)/2 are projectors and the determinant is over flavour in-

stationary phase trajectories to one and, as a result, the thgjces, The determinantal interaction breaks explicitly the axial
ory has a stable global minimum, attributed to a spontaneoug, (1) symmetry[22] and Zweig’s rule.

symmetry breakdown. It should be remarked that the stationary the new feature of the model is the inclusionof3); x

phase equations which appear in this approach are of cubic Of7 (3) x symmetric eight-quark forces, which we add to the stan-

der and have, in general, more than one admissible solutiogarq NJLH Lagrangian to obtain the stable ground state. They
We obtain inequalities for coupling constants to distinguishy e described by the terly, = £1 + L2, where

those solutions further and show that these constraints can be

finally understood as the stability criteria of the whole system., _ 8¢1[(Gi Prgm) G Pqu')]Z, (4)
We consider the most general eight-quark spin-zero interactions ~ _ _ ~

invariant under (3);, x U(3)g chiral symmetry and assume L2 = 16g2(qi PRGm) (Gm PL4j)(q; PRGK) (Gk PLG:)- ®)
that current quarks have realistic masses.# g # m;. It is The flavour indices, j,...=1,2,3=u,d, s, andg1, g» stand

shown that our result is independent both of the specific formg; the various symmetric eight-quark coupling strengths. The
of eight-quark interactions and values of current quark massesirst term £1 coincides with the OZI-violating eight-quark in-
Let us note that only one type of the eight-quark interactionggractions considered i17]. The second ternt, represents
considered are flavour mixing (the first part of the eight-quarknteractions without violation of Zweig's ruleCg, is the most
Lagrangian studied here, i.eC; in Eq. (4)) and have been general Lagrangian which describes the spin zero eight-quark
used previoushy17] in a different context, namely, to intro- jnteractions without derivatives. It is the lowest order term in
duce OZI-violating effect§18] in a NJL-type model with the - nmper of quark fields which is relevant to the case. We restrict
Ua(1) anomaly term inspired by the works of Di Vecchia and oy consideration to these forces, because in the long wave-
Veneziand19], and independently by Rosenzweig, Schechtefength [imit the higher-dimensional operators are suppressed.
and Traherj20]. Recently, by describing the properties of nu- Large N, arguments can be also used to justify this step if
clear matter with two-flavour NJL models, eight-fermion inter- yne dimensionful coupling constant§] = M~2, [kc] = M5,

actions of thel;-type have been also analyzed21]. [g1] = [g2] = M~8 count at largeN, as G ~ 1/N,, k ~

1/N)7 | g1, g2 ~ 1/N*. In this case the NJL interactior{®)
dominate ovelly andLg, at largeN,, as it should be, because
The dynamics of the model considered is determined by thezzwe'g. s rule is exact ale = 0. On the other han.d, with these
Lagrangian density counting rules the Lagrangian& aqd Lg, contribute at the
sameN, order, thus the effects coming from them are compa-

Lett=q(iy"d, —m)g + Lo+ L + Lag, (1) rable and must be considered together.

It is clear that our considerations are also relevant if the
multi-quark interactions create a hierarcfg] similar to the
hierarchy found within the gluon field correlatd4]. In this

a diagonal matrix with elements diga, , my, i), which ex- . .
licitly breaks the global chirdU, (3) x SU g (3) symmetry of case the lowest four-quark interaction forms a stable vacuum
plctty 9 L k y y corresponding to spontaneously broken chiral symmetry. The

the Lagrangian. The flavour symmetry of the model beCOmeﬁigher multi-quark interactions in the hierarchy must not de-

SJ.(B’)' 'f.m“ = ritq =i, and one gets th_e reﬁuceq symrpetrlesstroy this state, otherwise they would be as important as the

of isospin and hypercharge conservationmif = my # ;. . \ . .

Putting i, o riig % #i,, one obtains the most general atternIowest order terms. Since, however, the 't Hooft interaction,
97t 7 1Md 7 I, g P which is the next term in the hierarchy, destroys the ground

of the explicit symmetry breakc_iown in the mc_;del. ., _state[16], one cannot truncate the tower of multi-quark interac-
We suppose that quark vertices are effectively local, this be-.

. L : . . tions at this level. The next natural candidate is the eight-quark
ing a frequently used approximation. Even in this essentially

simplified form the Lagrangian has all basic ingredients to de-

scribe the dynamical symmetry breaking of the hadronic vac-3 Let us note that our counting far differs from the prescription of paper
uum and find its stability condition. [17] wheregy ~ 1/N3.

2. Themode€

where it is assumed that quark fields have col@y = 3)
and flavour(Ny = 3) indices. The current quark mass, is
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term Lg, . We show that its inclusion is sufficient to stabilize the pj't = hﬁ)qbb + hﬁ)c%(fc +-ee (12)
ground state. )
The coefficientsh;’?__ depend on the coupling constants «,
3. Theeight-quark term at work g1, g2 and quark masses, . The higher index coefficients..
are recurrently expressed in terms of the lower ones. The one-
The many-fermion vertices of Lagrangidhys can be pre- index coefficients:, are the solutions of the following system
sented in the bilinear form by introducing the functional unity of cubic equations
[15] in the vacuum-to-vacuum amplitude of the theory. The 3
specific details of this bosonization procedure are given in oun\, + Gh, + — Agpchphe
recent workf16]. The new interaction ternig,, which we add a1 32 P
now to the effective quark Lagrangian, does not create addi- + ?hahg + Edabedcdehbhchd =0. (12)
tional problems, and the method can be simply extended tothe ™ ] .
present case. This is why we take as a starting point the corrdN€ trivial solutionz, = 0, corresponds to the perturbative vac-
sponding functional integral already in its bosonized form uum A, = 0. There are also non-trivial ones. In accordance
with the pattern of explicit symmetry breaking the mean field

zZ =/Dq Dg HD% Hp¢a exp(i / d*x £,(G,q. 0, ¢)> A, can have only three hon-zero components at most with in-
u P dicesa = 0, 3, 8. It means that in general we have a system of

+o0 only three equations to determihgi, = diag(h,,, hy, hy)
. 4 .
x / [12s.[[Ppa exp(l /d XLr(o, ¢, Ass, P>)’ Ghy + Ay + fghahs + Sha(hG +h5 +hZ) + %43 =0,
a a
% ©)  § Gha+ Aa+ fghuhs + Sha(h? + h3 + h?) + £h3 =0,
where Ghy + As + fshyhg + 8hy(hZ + b5 + h?) + 203 =0.
qué(iyuaﬂ—m—a—i)@d))q, (7) . . . (13)
G, , 5 Our aim now is to show that parameters can be fixed in such
Ly =5a(0a + Ag) + paPa + E(S“ + p5) a way that this system will have only one real solution. We start
K« 21, - o2 by summing the first two equations, which leads to the cubic
+ 3—2Aabcsa (spsc — 3pppe) + E(S“ +p5) equation
2
+ %[dabedcde(sasbscsd + 2545bpe Pd + PaPbPePa) x3 +tx=b,
+ 4facefbdesasbpcpd]~ 8 = <8G + fhs + yz(gl +3g2) + 2g1h§),
g1+ g2 2

It is worth to observe that we did not use any approximations to 8

S (Au+ Ag)
obtain this result. =

Let us explain our notations. The bosonic fietgsand ¢, 81182

are the composite scalar and pseudoscalar nonets which witherex = h, +hg, y =hy, — hq.
be identified later with the corresponding physical states. The Note that deviations of the variabjefrom zero are a mea-
auxiliary fieldss, and p, must be integrated out from the ef- sure of isospin breaking effects due to electromagnetic forces,
fective mesonic Lagrangiaf),. We assume that =o,A,, and  as the differencé, — h; does not vanish fom, # m,. The
so on for all bosonic fields, ¢, s, p. The quarks obtain their functionz(y, i) has a minimum (ifgy > 0 andgy + 3g2 > 0)
constituent masses = m, A, = diag(m,, my, my;) due to dy- aty =0 andh; = —«/(8g1), thus the inequality > 0 always
namical chiral symmetry breaking in the physical vacuum stateholds for coupling constants fixed by
A, = mg, — mg,. The totally symmetric constant,,. are re-

(14)

2

lated to the flavour determinant, and equal to G> i(ﬁ) _ (15)
1 81 16

Aabe = i €ijk€mnl Pa)im (Ap) jn ek () In this case the cubic equation has for any given valuejast

The eight-quark interactions change drastically the semione real root
classical asymptotics of the functional integral oygrp, in b 1/3 1/3
(6), as compared to the case, when g» = 0. To see this *@) = (5 +«/5> + (E - «/B) ,
one should first find all real stationary phase trajectarfés-

sq(0, @), pSt= pa(o, $) given by the equations D= (5)3 + (é)z (16)
L, 0 oL, _0 10 3 2/
s, pa (10) Sinceb < 0 (provided thatA, + A, > 0), this function is nega-

We seek these solutions in form of expansions in the externd]®: Its minimum is located at the poigt=0, h, = —«/(8g1),
mesonic fieldsa, , ¢ and the surface = 0 is an asymptotic one tqy, .

Subtracting the second equation from the first one we obtain
sastz hq + hﬁab NS opoe + h? Ppe + -+ -, a quadratic equation with respect.toIts solutions are given

abc abc
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by 0.2
-1 K
x@ =+| ——=—|8G — Zhy +2g1h?
8(A, — A9\ TV

+y%(g1+ g2) + f : a7n = o
Since we only allow real solutions, the following inequality P
must hold 0.1

K 2 2 8
8G—§hs+281hs +y°(g1+g2) < ;(Ad_Au)' (18) 0.2

» _ 0 0.0002  0.0004 0.0006 0.0008

For definiteness, we suppose thgt — A, > 0. This assump- y

tion represents one of two possible alternatives. Our final math-
ematical conclusions do not depend on the choice made. Hovffig. 1. The labelx stands for the curves;)(hs, y) plotted as function of
ever, it is not obvious which of them should be required phys~ at fixed z; = —0.03 Ge\A. The bell-shaped curve corresponds to the two
ically. Next, the functionf (hs) = 8G — hy /2 + 2g1h§ =0, branches of;y), its peak is located atnax(hs) = 8.8 x 1074 Ge\B. The thick
. - o 2 . line indicates the negative branch of cumyg, and also the curve(y), which

since the ml_mmum valugmin = 8G —«x“/(32g1) > Ointhe pa- are degenerate at this scale, the upper line is the positive brangh, offhe
_rameter region of15). Therefore,y ranges Over.the half-open two branches ofi(3, meet aty ~0.14 Ge\8, outside the indicated range in
interval 0< y < ymax(hs). The lower bound = 0 is an asymp-  the plot. The real solution of the syste(tB) is indicated by the poinP. The
totic surface for the function(2). The upper boundmax(’s) corresponding parameters afe= 6.1 GeV2, g1 = g» = 4 x 10° GeV8,
is the unique real solution of the equatiof(gs + go) + ¥ =-705GeV™> A, =313 MeV, 4, =318 MeV, 4; =345 MeV.
vf(hs) +8(A, — Ag) = 0. It follows thatymax o< (Ag — Ay),
i.e., the electromagnetic forces which are responsible for the 0.4
isospin symmetry breaking determine the length of the seg-
ment [0, ymax], Which is relatively small as compared with
intervals determined by the strong interaction. As a conse-
guence a negative branch of the functiog) grows rapidly
with y from —oco at y =0 up to O aty = ymax. On the con- =
trary, functionsxy)(y) and x3)(y) (see Eq.(19) below) re- é\
main almost unchanged in the intervakOy < ymax, because
here the strong driving forces totally cover electromagnetic ef- -0.2
fects.

Let us consider now the third equation which yields

—_——_ —_- —_- - - - = -

-0.1 -0.05 0 0.05 0.1

hg, . h . .
(@ =+4,) - Ssy)h_’ (19) S
—(k + 8g1hs) Fig. 2. The curvesy) of Eqg. (16) (small dashed line) and(s) of Eq. (19)

where we have introduced the notation (solid line) are shown as functions af; for the parameter set dfig. 1,

at fixed y = 4.2 x 1074 Ge\3. The solution P has h, = —0.02747,
3 hy 2 hg = —0.02789,hs = —0.03 in units GeV. The vertical dashed line corre-
v(hg,y) =(g1+ 282)hs + ? (8G + g1y ) sponds toiy = —k/(8g1).
K
y2 +4A,. (20)

16 Under the assumptions made above these inequalities are obvi-
The expression under the square root is positive, if conditions ously fulfilled.
We illustrate the case in two figures. Tlredependence is
vihs,y) >0, w+8g1hs <0, (21) " shown inFig. 1 Sincex 2, is a monotonic function of in the
are fulfilled. The alternative case does not have solutions, sind@gionx < 0, 0< y < ymax at any fixed value o, the ques-

we assume that, > 0 andx < 0 (phenomenological require- tion whether the systeifi3) has one or more solutions is now
ments). Inequalitie$21) hold with , belonging to the half- reduced to a careful check of the number of intersections for

open intervalh?"” < hy < K" Hereh"® = —k/(8g1) > 0, curvesxyy andx) as functions ofi, at a fixed value ofy.
and 2™" < 0. The lower bound is a solution of the equation Actually, for this purpose one can choose any valug éom
v(hy, y) = 0. This cubic equation has only one real root whichthe interval O< y < ymax, because functions) andxs, are

is negative for almost insensitive to this value.

In Fig. 2we showxy) (i, ¥) andx ) (ks, y) as functions of
g1+2g2>0, 8G + g1y* > 0, hg, at fixedy given by the solutior? of Fig. 1 Itis quite easy to

i i _ J,max i
40, — ﬁyz -0 22) verify that the linez, = K", being the asymptote for the curve

16 given by Eq.(19), crosses the other cur¢&6)in its minimum,
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dividing it in two monotonic parts. Thus, both functions de-

crease monotonically with increasihgin the third quadrant of
the Cartesian coordinates system formed by thedine A"

and the axis of abscissas. The curves have only one intersection,(

which corresponds to an unique solution of the systeg)

The fact that the cubic equatio(%3) have only one set of

real roots over a certain range of values of parameiers, g1,

NS ei [ ool 0))
j=1

h— 0), (27)

wheren is the number of real solutior(sS!, pSH) of Eq. (10).
The information about the vacuum state is contained in the
effective potential of the theory. To obtain it let us consider the

g2, Ai is crucial for the ground state of the theory: it makes thejinear term in they, field. The resulting contribution, as it fol-

vacuum globally stablé.
Unfortunately, we merely can find the solutioh,, i, i)

icall f he simpl ith th fl L
numerically, apart rom the simp est case with the octet aVOUFZ - exp(i / d4x Zh[(zj)aa L. )
j=1

symmetry, where current quarks have equal magses my =

my, and the systertil3) reduces to a cubic equation for only one

variableh, = hy = hy

K 4A
W+ —h?>+ —h,+ — =0,

wt et gt g,
with 1 = g1 + (2/3)g2. Making the replacement, = i, —
«/(361), one obtains fron(23)

(23)

Eg + t/ﬁu == b,, (24)
where
. 4G K \?
t==—==—) |.
3 A 24\
A« [G 2/ k \*] A
V=-d—|—-Z{=—) |-=} 25
3{3&[A 3(24x>] A} (25)

It is clear now that this cubic equation has one real roat,
0,i.e.,

2
% > (2%) . (26)

In this particular case the proof of existence and uniqueness &f

lows from Eq.(27), is
(28)

This part of the Lagrangian is responsible for the dynamical
symmetry breaking in the multi-quark system and taken to-
gether with the corresponding part from the Gaussian integra-
tion over quark fields in Eq(6) leads us to the gap equations
(for each of quark’s flavours=u, d, s),

n
YR 4 i go(m?) =0,

52 (29)

j=1

where Jo(ml-z) is the tadpole quark loop contribution with a
high-momentum cutoffA

2
Jo(m?) =A2_m,?|n<1+ A—z) (30)
m;

Using standard techniqug25], we obtain from the gap-
equations the effective potentiél(m;) as a function of the
constituent quark masses which corresponds, in general, to
the case withn real roots. Here it is more convenient to use
(hy, hg, hy) as independent variables, with massedeing de-
termined by Eqs(13). In particular, if the parameters of the
odel are fixed in such a way that E¢$3) have only one real

the solution is straightforward. Let us also note that the solutiorg°!ution. the effective potential (up to an unessential constant,

found above for the general case deviates not much from t

case with octet symmetry, i.e., we have approximatgly~
hd ~ hs.

4. Effective potential

nwhich is omitted here) is

1 3
Ulhaha.hs) = 7 (4(;115 + khyhahy + % (h?)% + 3g2h;‘>

_ }(v(mg) + v(mgzl) + U(msz))’

: (3D

Since the system of equatiofi) can be solved, we are able Whereh? =hZ + h3 + h2, h# = hjt + hj + h}, and

to obtain the semi-classical asymptotics of the integral eyer 2
pa in (6). One has the following result which is valid at lowest v(mlz) — ch [mizjo(mlz) + A4In<1+ ﬂ)}
8w A2

order of the stationary phase approximation:

Zlo, ¢, A]

+00
= / HDSHHDpanp<i/d4x£,(o,¢,A;s,p))

4 et us recall that putting; = go = 0, one obtains fronf13) the system
of quadratic equations to finbd,, iy, hs. It has been shown ifiL6,25] that

such equations have two real solutions (for a physical set of parameters) in tl

U (3) case and three real solutions in 8d(2) x U(1) case. This is exactly
the underlying reason for the vacuum instability.

(32)

In the specific and limited case where one deals with the
octetUJ(3) symmetric model andi; = 0 the effective poten-
tial U (m) is an even function ofiz for x = 0 and its plot has
the standard form of the double well (“Mexican hat”) with two
symmetric minima, atr = +mmjin, and one local maximum, at
m = 0. The 't Hooft interaction£ # 0) makes this curve asym-
metric: if k < 0, the minimum located at positive valuesof
gets deeper as compared with the other minimum at negative
Recoming therefore the global minimum for the whole effective
potential. It corresponds to the stable ground state of the system
with spontaneously broken chiral symmetry.
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To appreciate the correlation found between the number of (2) The so ensured stability of the ground state is crucial for
critical points and stability let us consider the sagh&3) sym-  applications of the model to the study of cases in which cor-
metric model in the range with three real roots. In this case  rections (radiative, temperature, density, and so on effects) may

3 gualitatively change the structure of the theory, e.g., by turn-

Zh'(/) __ K (33) ing minima in the effective potential into maxima. Presently the
12)° U (3)L x U(3) g chiral symmetric NJL model with the six-quark

't Hooft interactions is frequently used for that. The eight-quark

and we find extension of the model considered here is needed for well-

K 3N [ ) . m2 founded calculations in this field. N

V(m) = " 16012[”1 Jo(m®) + A In<1+ ﬁ)] (34) (3) The eight-quark interactions are an additional (to the
't Hooft determinant) source of OZl-violating effects. They

As opposed td/(m) the potential with three real roots, de- are of the same order, fai ~ 1/N2. It is important to take
scribed by the functiot¥ (m) has at most a metastable vacuum, them into account from the phenomenological point of view:

for k/A > 0. If k/A < O, the effective potential does not have the details of OZI-violation are still a puzzle of nonperturbative
extrema in the regiom > 0. In both cases the theory related QCD[26].
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