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Abstract

Decisions in society resulting from negotiation among two parties are
often inefficient (in terms of Pareto efficiency) as the parties fail to iden-
tify an agreement that would make both better off. A third party me-
diating the negotiation can increase the chances of reaching a Pareto
efficient alternative. However, in most practical situations the mediator
does not have a precise model of the parties’ preferences, and therefore
cannot identify which alternatives are efficient. This paper assesses the
performance of decision rules that a mediator can apply in multi-issue
bilateral Negotiation Analysis given ordinal information about the im-
portance of the issues and the value of the potential alternatives in each
issue. We assume the preferences of the parties can be modelled by an
additive multiattribute value function, but without assuming the precise
parameters of this model are known. We study three mediation criteria:
maximizing the sum of the values, maximizing the product of the ex-
cesses, or maximizing the minimal proportion of potential. Monte-Carlo
simulation is used to assess how good the alternative chosen by each de-
cision rule is, and to provide guidelines about the use of these rules in a
context of selecting a subset of promising alternatives.

1 Introduction

Most decisions in society result from some type of formal or informal negotia-
tion: we are all negotiators (Fisher et al., 1992). It is possible to distinguish
between two types of negotiation: distributive negotiation and integrative nego-
tiation (see, e.g., Walton and McKersie, 1965). In distributive (or “win-lose”)
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negotiations the purpose is typically the division of a single resource and the
negotiators’ main concern is to obtain the largest possible piece of the pie. In
integrative (or “win-win”) negotiations it is assumed that the integration of re-
sources and capabilities of the parties can create more value to both. This is
possible because such negotiations include multiple issues (e.g., price, quality,
deadline, warranty) that are valued differently by the parties. This paper is
focused on multiple-issue negotiation among two parties (integrative bilateral
negotiation).

According to Thompson (2001), a major negotiation sin is “leaving money
on the table”, which occurs when negotiators fail to identify win-win potential.
For instance, the parties have reached an agreement but there existed a differ-
ent alternative that would be better for both. An alternative is called Pareto
efficient if there exists no other alternative that is better for at least one of the
parties without making the other party worse off.

This paper fits into Raiffa’s externally prescriptive perspective (Raiffa et al.,
2002), according to which the objective of the analysis is to suggest how medi-
ators should act in order to help the parties in an impartial and balanced way.
In particular we are interested in supporting a mediator who wishes to pro-
pose good potential agreements to the negotiating parties. Raiffa et al. (2002)
suggest the mediator can elicit the preferences of both parties separately (mod-
elling these preferences by means of a multiattribute value function) and then
use these preferences to recommend potential agreements using a criterion that
guarantees Pareto efficiency (details are provided in Section 2).

However, many authors sustain that it is difficult to obtain precise numer-
ical values for the preference model’s parameters (e.g., Lahdelma et al., 2003
and Sarabando and Dias, 2009): the decision makers do not have time to study
the problem carefully enough, the decision makers have difficulties in compar-
ing criteria, the decision makers do not want to fix their preferences because
the preferences may change during the process, and in general they find that
precise quantitative information is hard to provide. Even in private, there may
exist also reluctance from the parties to share their complete information with
the mediator.

We assume that negotiators feel more “comfortable” providing ordinal in-
formation. For instance, instead of asking for precise values for the criteria
weights, a mediator can simply ask for a ranking of these weights. This is the
type of information required by the SMARTER method (Edwards and Barron,
1994) and other multicriteria analysis methods. It is also possible to avoid ask-
ing for precise quantitative estimates of the value that each potential agreement
has for each issue of interest. We consider in particular that the information
provided by the parties to the mediator, possibly in private, is solely:

1. ordinal information about the weights of the issues (which is the issue
with highest weight, the issue with second highest weight, etc.),

2. ordinal information about the value of each performance level in each
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issue (which is the best level for one issue, the second best level for that
issue, etc.), and, possibly,

3. ordinal information about the difference of value between consecutive lev-
els in each issue.

One of the possibilities described in the literature to exploit ordinal infor-
mation on the weights is to select a weights vector from a set of admissible
weights to represent that set and then to use this vector to evaluate the al-
ternatives. Examples of this are the use of equal weights and the use of ROC
(rank order centroid) weights, which are compared in the simulation study of
Barron and Barrett (1996). This study concludes that ROC weights provide
a better approximation than the other weighting vectors. In posterior stud-
ies, Sarabando and Dias (2009, 2010) have extended and compared this type of
rules in the context of supporting an individual decision maker.

While it is expected that eliciting ordinal information (instead of precise
cardinal information) contributes to facilitate the interaction between the me-
diator and the parties, this implies working with less information. This raises
the question of knowing whether using a simple rule to obtain results from or-
dinal information will lead to results that are close enough to the results that
would be obtained by a fully cardinal elicitation process (assuming that would
be possible). A related question is to know which rules are more interesting
in terms of the compromise between the elicitation effort they require and the
results they yield. Finally, it is important to know whether conclusions about
the usefulness of the rules are sensitive to some characteristics of the problem.

This paper aims at providing answers to these questions in the context of
supporting a mediator in bilateral multi-issue negotiation. Knowing the an-
swers to these questions, a mediator can make informed decisions about the
type of information she will elicit from each party (this will of course also de-
pend on each party’s characteristics, the available time, etc.). The rules we
compare in this paper have been already compared considering the case of in-
dividual decision (e.g. Barron and Barrett, 1996; Sarabando and Dias, 2009,
2010), but, as far as we now, they have never be compared to the case of nego-
tiation. As in these previous comparison studies, this paper provides answers
that are based on a large number of Monte-Carlo simulations. We conclude
that it is possible to obtain good results considering ordinal information re-
garding the preferences of the parties.

This paper is structured as follows. First, we present the model for the
preferences of the parties and the negotiation analysis criteria that a mediator
can use to identify a Pareto efficient alternative and review other types of ap-
proaches. Afterwards, we formally introduce the type of information we assume
is available to the mediator and the decision rules she can follow. In Section
4 the conducted simulations are described, and results of such simulations are
presented in Section 5. Section 6 presents some conclusions and some lines for
future research. The tables with detailed results referred to in the text are
presented in Appendix A.
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2 Background: NegotiationAnalysis andMedia-
tion Criteria

Let us consider Raiffa’s negotiation analysis setting in which two parties are
negotiating over multiple issues, there is a finite number of potential alterna-
tives for an agreement, and the preferences of each party can be modelled by a
multiattribute value (or utility) function (Raiffa et al., 2002). In this Negotia-
tion Analysis context Raiffa assumes that the preferences of each party can be
modelled by a multiattribute additive value (or utility) function (Raiffa et al.,
2002):

vk(x(j)) =

n∑
i=1
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i v
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i (l

(j)
i ) = wk
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1 (l

(j)
1 ) + ... + wk

nv
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n ), j = 1, ...,m (1)

where n represents the number of issues in negotiation, m represents the num-

ber of alternatives (the potential agreements), l
(j)
i represents the performance

level that alternative x(j) reaches in issue i, vki (.) represents the value (or util-
ity) function of issue i (i = 1, ..., n) for party k (k = 1, 2), and wk

i represents the
weight of the value function vki (.) (the weight of the issue i), for party k. Let
us note that there are other preference models that compute an overall global
value besides the one we are presenting, such as PROMETHEE II (Brans and
Vincke, 1985; Beynon and Barton, 2008) and AHP (Saaty, 1996; Hajeeh, 2008),
but to our knowledge no negotiation analysis models based on these alternative
models have been proposed so far.

The subjective preferences of each party are modelled by the value functions

and the weights. The function vki (l
(j)
i ) is such that the higher its value is, the

better is the level attained by alternative x(j) in issue i, for party k. The
weights wk

1 , ..., w
k
n are scaling coefficients that reflect value trade-offs between

the issues, for party k. For instance, if wk
1 = 2wk

2 , then this means that one
unit of value in issue 1 is valued as highly as 2 units of value in issue 2.

An alternative x(j) is Pareto efficient if and only if there exists no other
potential agreement x(j′) that is better for one party without being worse for
the other party:

@x(j′) 6= x(j) : [v1(x(j′)) ≥ v1(x(j)) ∧ v2(x(j′)) > v2(x(j))]∨

∨[v1(x(j′)) > v1(x(j)) ∧ v2(x(j′)) ≥ v2(x(j))]. (2)

There exist typically multiple Pareto optimal alternatives, hence the medi-
ator should use some criterion to propose a potential agreement to the parties.
Several such criteria can be developed, depending on whether the mediator is
more interested in finding an efficient solution (which maximizes the total value
created) or an equitable solution (which tries to balance the interests of the par-
ties involved). Three well-known criteria for selecting a potential compromise
are the following (see Raiffa et al., 2002):
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- Maximizing the sum of the values: Select the alternative x(j) that maxi-
mizes

v1(x(j)) + v2(x(j)). (3)

- Maximizing the product of the excesses regarding the reservation values:
Select the alternative x(j) that maximizes

(v1(x(j))−RV 1)× (v2(x(j))−RV 2) (4)

(RV k represents the reservation value for party k (k = 1, 2), i.e., the
value below which the negotiator would not accept any alternative and
would rather not make a deal).

- Maximizing the minimal proportion of potential (PoP): Select the alter-
native x(j) that maximizes

min
k=1,2

vk(x(j))−RV k

vk−max −RV k
(5)

(vk−max denotes the best payoff that negotiator k can reach considering
the set of alternatives that are better for both parties than the reservation
value).

The choice of the criteria to use depends on the preferences of the media-
tor and all of them present advantages and disadvantages. For example, the
criterion of maximizing the sum of the values may not be attractive to many
due to the inequality of results that normally provides and due to its character
completely compensatory. The criterion of maximizing the sum of the values
does not meet the balance and disregards the fact that a party is “rich” and
the other “poor”, i.e., it assumes that each unit has the same value for both
parties. However, this is the criterion that maximizes the total value created
and the mediator can devise compensation mechanisms. Let us note that the
objective of this paper is not to compare the criteria, but to assess and compare
the decision rules we will present in the next section.

Usually it is assumed that the parameters of the multiattribute value func-
tions are known or can be asked to each party. If the mediator knows the exact
value functions of both parties, she can calculate the Pareto frontier, defined
by the Pareto efficient alternatives. So, the mediator can suggest an agreement
in this set, where the choice between the solutions that are Pareto efficient can
be based on maximizing the sum of the values, maximizing the product of the
excesses regarding the reservation values, or maximizing the minimal propor-
tion of potential (PoP). But, in many cases, this assumption is unrealistic for
the reasons mentioned in the introduction.

The importance of the information about the preferences is clearly men-
tioned in the negotiation literature. According to the “Dual Concern” model
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(Pruitt, 1983; Thomas, 1992), solutions that improve the position of the par-
ties relatively the current situation only can be achieved if negotiators have
enough knowledge about their preferences and about the preferences of the
other parties. Ehtamo et al. (1999) present a class of methods called “Con-
straint Proposal Methods”, which are interactive methods to find Pareto opti-
mal solutions through common tangent hyperplanes, for negotiations between
two parties about two or more continuous issues, with the help of a mediator.
Heikanen (1999) proposes an interactive method to determine Pareto optimal
solutions in negotiations with multiple parties about continuous issues, using
a mediator. The method does not require that negotiators know the value
functions of the other parties, neither that the mediator knows all the value
functions.

For bilateral negotiation processes with a discrete set of alternatives and
incomplete information on weights, Cĺımaco and Dias (2006) propose an ex-
tension of the VIP-G (Dias and Cĺımaco, 2005) methodology, based on the
relaxation of the weights space that each negotiator accepts and defining con-
vergence paths in this space. The methodology suits situations in which the
parties agree on which issues are to maximize and which ones are to minimize.
Lai et al. (2006) present a model that considers Pareto and computational ef-
ficiency, for situations where information is incomplete, the value functions are
not linear and are not explicitly known. The authors refer that the major prob-
lem associated with multiattribute negotiation is the difficulty in making deci-
sions in a multidimensional space. To overcome this difficulty, they propose a
process that allows the negotiators to negotiate based in a single line, called the
“negotiation base line”, with the help of a mediator. Although it is not difficult
to involve a mediator in automated negotiations between software agents, there
may exist situations in which the parties do not trust the mediator or where
an artificial mediator is difficult to implement. Thus, Lai and Sycara (2009)
focus on the development of mechanisms to search for Pareto efficiency in mul-
ticriteria negotiations without the presence of a mediator. Vetschera (2009)
proposes a method to measure the amount of information that is available dur-
ing the negotiation, considering that information is obtained implicitly through
the offers. The method is based on the domain criterion (which was initially
developed for sensitivity analysis), and can be used both when a compromise
is reached and when it is not. Sarabando et al. (2009) propose to derive in-
complete information about the preferences of negotiators from the statements
they make and the offers they exchange during the negotiation process. The
authors also present and discuss three approaches that use this information in
order to help a mediator proposing a better solution than the compromise the
negotiators have reached or are close to reach.

In this work we study a different and much simpler strategy, which consists
of using simple decision rules based on surrogate parameter values.
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3 Ordinal Information and Decision Rules

To identify which alternatives are Pareto efficient and which ones are the best
according to a mediation criterion it is necessary that the mediator knows ex-
actly the numerical values for the value functions and the weights. We are now
going to drop the assumption of complete information and will consider instead
that the mediator can only elicit information that has an ordinal character:

1. Ordinal information about the weights of the issues. Given two
value functions, say vki (.) and vkj (.), negotiator k can indicate if one unit
of value on one of the functions is worth more than one unit of value in
the other function, but does not need to quantify how much. We consider
that the indices of the issues are coded, in such a way that, for each
negotiator k (k = 1, 2), the weights are in decreasing order:

W k = {(wk
[1], w

k
[2], ..., w

k
[n]) : wk

[1] ≥ wk
[2] ≥ ... ≥ wk

[n] ≥ 0,

n∑
i=1

wk
[i] = 1} (6)

where wk
[i] ∈ {w

k
1 , ..., w

k
n} represents the weight in position i for negotiator

k, for i = 1, ..., n.

2. Ordinal information about the value of each level in each issue.
We also consider that the negotiators provide ordinal information about
the value of each performance level in each issue, stating which is the best
level in that issue, the second best level, and so on (let us note that dif-
ferent alternatives can have the same performance level in a given issue).
We assume that, for negotiator k and for issue i (k = 1, 2 and i = 1, ..., n):

Vik =
{

(vki (l
([1]k)
i ), vki (l

([2]k)
i ), ..., vki (l

([mi]k)
i )) :

: 0 = vki (l
([1]k)
i ) ≤ vki (l

([2]k)
i ) ≤ ... ≤ vki (l

([mi]k
i ) = 1

}
, (7)

where l
([j]k)
i ∈ {l(1)

i , ..., l
(mi)
i } represents the level in position mi + 1− j of

issue i for negotiator k, and mi represents the number of levels in issue i.

3. Ordinal information about the difference of value between con-
secutive levels in each issue. We consider that in some cases each ne-
gotiator can also provide ordinal information about the difference of value
between consecutive levels in each issue (Sarabando and Dias, 2010). Let

∆k
i(mi−1) = vki (l

([mi]k)
i )−vki (l

([mi−1]k)
i ), ..., and ∆k

i1 = vki (l
([2]k)
i )−vki (l

([1]k)
i ).

In this case, each negotiator provides ordinal information about these dif-
ferences of value.
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We intend to assess if a mediator can suggest good alternatives based on
such information. For this purpose, we can use the Rank Order Centroid
(ROC) weights rule (Barron and Barrett, 1996) to compute surrogate weights.
We can also use analogous rules (introduced in Sarabando and Dias (2010) for
the case of individual decisions) for the ordinal information referring to the val-
ues of the levels: when the incomplete information refers to the value of each
level in each issue, we consider the ROC values rule; when the incomplete in-
formation refers to the difference of values between consecutive levels in each
issue, we consider the ∆ROC values rule.

ROC weights

The ROC weights rule consists in using ROC weights, for each negotiator k
(k = 1, 2), defined as follows (assuming that the issue indices reflect their order,
from the highest weight wk

[1] to the lowest weight wk
[n]):

w
k(ROC)
[i] =

1

n

n∑
l=i

1

l
, i = 1, ..., n. (8)

ROC values

The ROC values rule consists in using ROC values. For issue i (i = 1, ..., n),
and for each negotiator k (k = 1, 2), the ROC values are defined as follows:

v
k(ROC)
i (l

([j]k)
i ) =

mi − rki (l
([j]k)
i )

mi − 1
, j = 1, ...,mi. (9)

where rki (l
([j]k)
i ) represents the position in the ranking of level l

([j]k)
i considering

issue i, such that rki (l
([j]k)
i ) < rki (l

([p]k)
i ) implies vki (l

([j]k)
i ) ≥ vki (l

([p]k)
i ).

∆ROC values

Using the ∆ROC values rule, the approximation to the values of each level in
each issue can be obtained using the following algorithm:

Step 1 Ask each negotiator k to provide a ranking of the mi levels in each

issue i. Label the resulting different levels as l
([1]k)
i , ..., l

([mi]k)
i , ranked

from lowest to highest, with vki (l
([1]k)
i ) = 0 and vki (l

([mi]k)
i ) = 1.

Step 2 Ask each negotiator to provide a ranking of the difference of values

between consecutive levels ∆k
i1, ...,∆

k
i(mi−1) (where ∆k

it = vki (l
([t+1]k)
i ) −

vki (l
([t]k)
i ), for t = 1, ...,mi − 1). For each t = 1, ...,mi − 1, let rankk(t)

denote the rank of ∆k
it within the set {∆k

i1, ...,∆
k
i(mi−1)}. This rank is an

integer between 1 and mi−1, with rank 1 denoting the highest difference.

Step 3 Determine a rank order centroid for mi − 1 variables:
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∆k
[t] =

1

mi − 1

mi−1∑
l=t

1

l
, t = 1, ...,mi − 1. (10)

Step 4 For each t = 1, ...,mi − 1, set the values provided by the centroid ap-

proximation: ∆
k(ROC)
it = ∆k

[rank(t)].

Step 5 The approximate values for the levels in issue i, are then defined as
follows:

vki (l
([1]k)
i ) = 0

vki (l
([j]k)
i ) =

j−1∑
t=1

∆
k(ROC)
it , j = 2, ...,mi. (11)

Step 6 For each negotiator k (k = 1, 2), the approximate value in issue i for

level l
([j]k)
i (i = 1, ..., n; j = 1, ...,mi) based on the ∆ROC values rule,

v
k(∆ROC)
i (l

([j]k)
i ), is equal to the approximate value of the respective level,

according to the values for the level correspondence created in Step 1.

The rules we test in this work are hence: ROC weights and TRUE values,
ROC weights and ROC values, and ROC weights and ∆ROC values. For a
more detailed description of these rules, namely the possibility of accepting ties
in the rankings provided, see Sarabando and Dias (2010). We use simulation
to test if the suggested alternatives are “good” alternatives. The behavior of
these rules is studied for the three mediation criteria presented in the previous
section. As we have already said, our objective is not to compare criteria but
to compare rules, as the choice of a criterion depends on the preferences of the
mediator (namely on equity vs. efficiency considerations).

4 Simulations

Considering bilateral negotiation problems it is possible to vary the number of
issues in negotiation and the number of levels in each issue. Since not all the
issues have necessarily the same number of levels, the combination of different
possibilities for these values leads to problem dimensions that can differ a lot
from problem to problem. In our study, to compare the decision rules, we
considered situations with 3 and 5 issues, and 3 and 5 levels in each issue.
In the case with 3 issues and 3 levels in each issue there are a total of 27
alternatives, for 3 issues and 5 levels there are 125 alternatives, for 5 issues and
3 levels there are 243 alternatives, and for 5 issues and 5 levels there are 3125
alternatives. The resulting four templates will be denoted by 3*3, 3*5, 5*3, and
5*5, respectively. We deem that 5 issues is already a large number to consider
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in practice (for instance, cost, quality, deadline, and warranty are typically the
issues under negotiation in a commercial transaction), and 5 levels per issue is
already a reasonable amount of detail.

We studied two scenarios with respect to reservation values: one scenario
corresponds to the case with no reservation values, and in another scenario
we considered that the reservation values of both negotiators are equal to 0.5.
These are arbitrary choices, used to assess if this factor has any effect on the
conclusions of the simulations. Finally, we considered, without loss of general-
ity, that for the first negotiator all the issues are to maximize, and the opposite
for the second negotiator.

To obtain random examples to the four templates presented we used Monte-
Carlo Simulations. The level values were generated from a uniform distribution
in the interval [0,1] and then normalized in such a way that the highest value
in each issue would be equal to one and the lowest value would be equal to
zero. We sorted these values to obtain monotonic value functions. The uni-
form distribution was also considered in Salo and Hämäläinen (2001) and Ahn
and Park (2008). Barron and Barrett (1996) used both uniform and normal
distributions to compare the hit rate and value loss of four rules, concluding
that using the normal distribution did not significantly influence the results.
The scaling weights were also generated according to a uniform distribution in
W k (acceptable set of weights for negotiator k) using the process described in
Butler et al. (1997). Note that, as sustained in Barron and Barrett (1996), if
the information set on the weights is specified entirely by a complete ranking
of the alternatives, then no point in W k may be considered more likely than
another, and the density of the weights is uniform over W k.

For each random problem, defined by a value matrix and a weights vec-
tor, multiattribute value function model (1) provides the overall value of each
alternative, which induces what we call the supposedly true ranking, i.e., the
ranking that would be obtained if this cardinal information was known. On the
other hand, each of the rules produces rankings using ordinal information about
the weights vector and the values matrix. Since the decision rules use surrogate
parameter values that are an approximation to the supposedly true values, the
rankings in general will not coincide. We will use the notation x(real−sum) to
denote the supposedly best alternative according to the criterion of maximizing
the sum of the values, and the notation x(rule−sum) to denote the best alterna-
tive provided by the rule according to the same criterion, and similarly for the
other mediation criteria.

Comparing results according to the supposedly true parameters with the
results according to the decision rule used, we determined the following indica-
tors for each simulation run:

- The position that the best alternative according to the true ranking reaches
in the ranking generated by the decision rule used (this allows us to know
the minimum number of alternatives that must be chosen, beginning by
the top of the ranking provided by the rule, so that the true best alter-
native belongs to the chosen set).
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- The position that the best alternative in the ranking generated by the
rule reaches in the supposedly true ranking (this allows us to know how
good the alternative chosen by the rule is in terms of the supposedly true
ranking).

- The hit rate, i.e., the proportion of cases in which the best alternatives
in the two rankings coincide. The hit rate considering the position of
the supposedly best alternative in the ranking induced by the different
rules is typically equal to the hit rate considering the position of the best
alternative using the different rules in the supposedly true ranking, but
it may differ in the presence of ties in the top of the ranking.

- The value loss, i.e., the difference between the real value of the best al-
ternative and the real value of the alternative chosen by the rule, in the
cases in which the two alternatives did not match. This allows us to know
if the alternatives chosen by the rules have global value much inferior to
the best alternatives in reality. For example, for the criterion of maxi-
mizing the sum of the values, the value loss is given by:

[v1(x(real−sum)) + v2(x(real−sum))]−

−[v1(x(rule−sum)) + v2(x(rule−sum))]. (12)

5 Results

In this section we present the results of the simulations described in the pre-
vious section, considering 5000 random problem instances, for each problem
dimension (the same number of simulations performed, for example, in Sara-
bando and Dias, 2009 and Sarabando and Dias, 2010). Throughout this sec-
tion, “ROC TRUE” refers to the use of ROC weights and TRUE values, “ROC
∆ROC” refers to the use of ROC weights and ∆ROC values, and “ROC ROC”
refers to the use of ROC weights and ROC values. All the tables we will refer
to are presented in Appendix A.

We consider that an alternative needs to be better than the reservation val-
ues, for both parties, to be acceptable. In our simulation study, we eliminated
the cases in which there was no alternative better than the reservation values
for both parties: to determine a realistic value loss we decided to analyze only
the cases in which the alternative provided by each rule is acceptable. Indeed,
no value loss would occur if the alternative proposed by the mediator was un-
acceptable for one of the parties, since there would be no agreement.

Table 2 presents results related to the position of the best alternative ac-
cording to the different rules in the supposedly true ranking (i.e., hit rate), not
considering reservation values and considering reservation values. It shows, for
each rule and each criterion, the average of the position (the minimum posi-
tion was always equal to 1), and the proportion of cases in which the position
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reached is equal to 1, ≤ 2 and ≤ 20. To better observe the general patterns
referred below see Figure 1:

- As expected, since the total number of alternatives is high, the best al-
ternative according to the rule is not frequently the best one.

- Increasing the number of issues decreases the hit rate; the same happens
increasing the number of levels in each issue. This is a natural result,
since increasing the number of issues, or increasing the number of levels
in each issue, increases the number of alternatives.

- As expected, the worst results are obtained using the ROC ROC rule,
since this is the case in which less information is required from the nego-
tiators, and the best results are obtained using the ROC TRUE rule. It
is noteworthy that the results of the ROC ∆ROC rule are closer to the
ones of the ROC TRUE rule than the ones of the ROC ROC rule.

- Although it is not our objective to compare the criteria, it is possible to
observe that for the PoP criterion the hit rate is not as high as it is for
the other criteria, for all the rules.

Note that the results are sensitive to the number of issues and to the num-
ber of levels in each issue, because as the number of issues increases and as
the number of levels in each issue increases, the number of alternatives also
increases. For example, for 3 issues and 3 levels in each issue, the base rate for
a coincidence at the top of the ranking is equal to 3.704%. For 5 issues and 5
levels in each issue, this base rate is equal to 0.032%.

We used paired t-tests to see if a significant difference occurs in the average
of the hit rate without reservation values and with reservation values for all the
criteria (sum, product and PoP), after verifying that the normality assumption
is not violated (the hypothesis tests are similar to those presented in Sarabando
and Dias, 2009). In Table 3 we present the p-values, i.e., the lowest significance
levels at which the hypothesis of equality of the rules can be rejected, and the
observed value of the test statistic. Since the p-values are high, it is not possible
to conclude that the use of reservation values significantly affects the quality of
the approximations provided by the rules.

We also conducted some hypothesis tests to check if the difference between
the rules is significant in what concerns the average of the hit rate, using
ANOVA for repeated measures. This requires multivariate normality, homo-
geneity of covariance matrices, and sphericity. The Mauchly’s test of sphericity
is used to test the last assumption. However this test is not robust for small
samples, and if the dimensions are small even sever violations may not be de-
tected. So we used the Greenhouse-Geisser Epsilon correction factor (the most
adequate for small dimensions). In the cases in which the equality of the rules
can be rejected, we used paired t-tests to see between which rules is the differ-
ence significant. We considered significance levels equal to 1% and 5%, which
are values often used in practice. In Table 4 and Table 5 we show the p-values
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Figure 1: Comparison of the hit rate of the different rules.

related to the Greenhouse-Geisser Epsilon correction and to the paired t-tests,
respectively:

- For the sum criterion, using and without using reservation values, the
difference between the average of the hit rates can be considered signif-
icant for a significance level equal to 5%. Without reservation values,
the difference can also be considered significant for a significance level
equal to 1%. However, in this case the observed power of the test (this
is, the probability of rejecting correctly the equality of the rules) is equal
to 0.652, a very low value (values inferior than 0.8 should be interpreted
carefully). For a significance level equal to 5%, both without and with
reservation values, analyzing the p-values related to the paired t-tests it
is possible to conclude that all the rules are significantly different. For a
significance level equal to 1%, without reservation levels, it is not possible
to conclude that the difference between the rules is significant.

- For the product criterion, using and without using reservation values, the
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difference between the average of the hit rates can be considered signifi-
cant for a significance level equal to 5%, but not for a significance level
equal to 1%. However, with reservation values, the observed power is
equal to 0.693. For a significance level equal to 5%, without reservation
values, analyzing the p-values related to the paired t-tests it is possible
to conclude that all the rules are significantly different. With reservation
levels it is not possible to conclude that the difference between the ROC
∆ROC rule and the ROC ROC rule is significant.

- For the PoP criterion, the difference between the average of the hit rates
can not be considered significant for a significance level equal to 5%.

Results related to the position of the supposedly best alternative in the
ranking induced for each rule are presented in Table 6, without reservation
values and with reservation values. This table enables us to known how many
alternatives should be retained to guarantee the retention of the supposedly
best alternative. In Figure 2 it is possible to see how many alternatives should
be chosen to guarantee the retention of the supposedly best alternative, in the
case with 5 issues and 3 levels in each issue (243 alternatives), i.e., this figure
shows the proportion of cases in which the best alternative is chosen depending
on the number of alternatives retained. Since the total number of alternatives
is high, retaining only one alternative is not enough in the majority of the
cases. Obviously, the probability of retaining the supposedly best alternative
increases with the number of alternatives that are retained. For the dimensions
tested, it is possible to conclude:

- Without considering reservation values, retaining 20 alternatives is enough
to retain the supposedly best one in more than 35% of the cases. Results
not presented in the table indicate that, considering the ROC TRUE and
ROC ∆ROC rules, retaining 10 alternatives is enough to retain the sup-
posedly best alternative in more than 42% of the cases.

- The results are worse considering reservation values (the corresponding
percentages are 13% and 10%, respectively).

- Note that these values are not very high, since in the case with 5 issues
and 5 levels in each issue there are 3125 alternatives. In this case, retain-
ing 20 alternatives corresponds to retaining 0.64% of the total number of
alternatives.

Table 7 depicts the average, the standard deviation and the maximum of
the value loss, using the different rules and considering the different criteria,
not using reservation values and using reservation values. Figure 3 presents
some of the results. As expected, the worst results were obtained using the
ROC ROC rule. However, even using this rule, the value loss is not very high.
It is not possible to compare the value loss without reservation values and with
reservation values, since the results are not comparable. However we used hy-
pothesis tests to see if the difference between the average of the hit rate of the
rules is significant. The results are presented in Tables 8 and 9:
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Figure 2: How many alternatives should be retained to guarantee the retention
of the supposedly best alternative (5 issues and 3 levels in each issue)?

- For the sum criterion, using and without using reservation values, the
difference between the average of the value losses can be considered sig-
nificant for a significance level equal to 1%. However, with reservation
values, for a significance level equal to 1%, the observed power of the test
is equal to 0.622. Using paired t-tests it is possible to conclude that, for
a significance level equal to 5%, with and without reservation values, the
difference between all the rules can be consider significant. Without reser-
vation values, for a significance level equal to 1%, the ROC TRUE rule
and the ROC ∆ROC rule can not be considered different. With reser-
vation values, for a significance level equal to 1%, the difference between
the rules can not be considered significant.

- For the product criterion, without using reservation values, the difference
between the average of the value losses can be considered significant for a
significance level equal to 1%. Using paired t-tests, for a significance level
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equal to 5%, the difference between all the rules can be consider signifi-
cant. For a significance level equal to 1%, the ROC TRUE rule and the
ROC ∆ROC rule can not be considered different. For a significance level
equal to 5%, with reservation values, the difference between the rules can
be considered significant. It is not possible to conclude that the difference
between the ROC TRUE rule and the ROC ∆ROC rule is significant.

- For the PoP criterion, without using reservation values, the difference
between the average of the value losses can be considered significant for
a significance level equal to 1% (in this case the observed power is equal
to 0.774). With reservation values, the difference between the average
of the value losses can be considered significant for a significance level
equal to 5% (in this case the observed power is equal to 0.709), but not
for a significance level equal to 1%. Without reservation levels, using
paired t-tests it is possible to conclude that for a significance level equal
to 5%, the difference between all the rules can be consider significant,
for a significance level equal to 1%, the ROC TRUE rule and the ROC
∆ROC rule can not be considered different. With reservation levels it is
possible to conclude that all the rules are significantly different.

6 Conclusions

In this work we considered a setting of multiple-issue bilateral integrative ne-
gotiation, in which the preferences of both parties can be modelled by an ad-
ditive value function. We compared the performance of three decision rules
(ROC TRUE, ROC ∆ROC and ROC ROC) to help a mediator suggesting an
alternative under these circumstances, considering that the mediator does not
have complete information (there exists ordinal information both on the scaling
weights and on the level’ values), and tested them using Monte-Carlo Simula-
tion (i.e., Monte-Carlo Simulation was used to assess the effectiveness of the
three decision rules under several experimental conditions). Using four prob-
lem dimensions as templates for generating random examples we compared the
rules under three mediation criteria: maximizing the sum of the values, maxi-
mizing the product of the excesses regarding the reservation values and maxi-
mizing the minimal PoP.

In the simulation study we determined the proportion of cases in which
each rule chooses the truly best alternative and, whenever this did not hap-
pen, we determined the value loss. The best results were obtained using the
ROC TRUE and ROC ∆ROC rules. There are cases in which it is possible to
consider that these rules are equivalent which is, in a certain way, surprising,
because the ROC TRUE rule requires cardinal information about the levels’
values from the negotiators. The ROC ∆ROC rule is, almost always, better
than the ROC ROC rule.

In Table 1 it is possible to see the main conclusions of the statistic tests we
performed, using a significance level equal to 0.05. The conclusions in italics
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Figure 3: Comparison of the average of the value loss of the different rules.

should be read carefully since in these cases the observed power of the test is
not very high.

We also compared the ranking of the alternatives according to the suppos-
edly true parameters with the ranking of the alternatives according to the deci-
sion rule used. We considered the following results: the position that the best
alternative according to the true ranking reaches in the ranking generated by
the decision rule used and the position that the best alternative in the ranking
generated by the rule reaches in the supposedly true ranking. The position that
the best alternative according to the true ranking reaches in the ranking gen-
erated by the decision rule used allowed us to assess the strategy of retaining
a small subset of alternatives instead of only one.

In our opinion the results are encouraging. Considering that the total num-
ber of alternatives is high obviously the hit rate cannot be expected to be high
(the base rate for a coincidence at the top of the ranking is very low), but when
the rule does not choose the real true alternative the average value loss is rel-
atively low. The position that the best alternative according to a rule reaches
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Without reservation values With reservation values
HIT RATE

Sum
ROC TRUE better than ROC ∆ROC
ROC TRUE better than ROC ROC
ROC ∆ROC better than ROC ROC

ROC TRUE better than ROC ∆ROC
ROC TRUE better than ROC ROC
ROC ∆ROC better than ROC ROC

Product
ROC TRUE better than ROC ∆ROC
ROC TRUE better than ROC ROC
ROC ∆ROC better than ROC ROC

ROC TRUE better than ROC ∆ROC
ROC TRUE better than ROC ROC
ROC ∆ROC and ROC ROC can not
be considered different

PoP
it is not possible to conclude that the
average of the rules is different

it is not possible to conclude that the
average of the rules is different

VALUE LOSS
Sum

ROC TRUE better than ROC ∆ROC
ROC TRUE better than ROC ROC
ROC ∆ROC better than ROC ROC

ROC TRUE better than ROC ∆ROC
ROC TRUE better than ROC ROC
ROC ∆ROC better than ROC ROC

Product
ROC TRUE better than ROC ∆ROC
ROC TRUE better than ROC ROC
ROC ∆ROC better than ROC ROC

ROC TRUE better than ROC ∆ROC
ROC TRUE better than ROC ROC
ROC ∆ROC and ROC ROC can not be
considered different

PoP
ROC TRUE better than ROC ∆ROC
ROC TRUE better than ROC ROC
ROC ∆ROC better than ROC ROC

ROC TRUE better than ROC ∆ROC
ROC TRUE better than ROC ROC
ROC ∆ROC better than ROC ROC

Table 1: Main conclusions of the statistic tests (significance level equal to 5%).

in the supposedly true ranking complements the results that show if the alter-
native chosen by the rule is typically a good alternative. It was possible to
see that, although in some cases the hit rate is relatively high, retaining one
alternative is not sufficient in the majority of the cases. However, instead of
one alternative, the mediator can keep, for example, a set of 20 alternatives.
Note that retaining 20 alternatives does not seem to be a very encouraging re-
sult, and it is not if the initial set of alternatives is small, but, when there are
hundreds or thousands of alternatives, it can be very useful for a mediator to
focus on a subset of 20 alternatives.

The difference between the results related to the average of the hit rate,
considering reservation values (equal to 0.5 for both negotiators) and without
considering reservation values, can not be considered significant. Obviously the
same does not happen with the average of the value loss, since using reservation
values leads to different results (lower values losses for the sum and product cri-
teria, and higher value losses for the PoP criterion). We also studied scenarios
where we considered that the reservation value of one negotiator is equal to
0.5, and the reservation value of the other negotiator is equal to 0 (despite not
showing the results in this text). It was possible to conclude that the hit rate
for the product and for the PoP criteria is slightly higher in this case. For the
sum criterion, the values of the hit rate are almost always between the other
two cases (no reservation values and reservation values equal to 0.5 for both
negotiators).

Regarding the decision rules we compared, the main results of the paper
are: in almost all the cases, ROC weights and true cardinal values is better
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than ROC weights and ∆ROC values, which is better than ROC weights and
ROC values. The results are somewhat sensitive to the mediation criteria used
by the mediator (maximizing the sum of the values, maximizing the product of
the excesses regarding the reservation values or maximizing the minimal PoP)
and to the criteria of comparison (hit rate or value loss). For example, for the
PoP criterion, it is not possible to conclude that the average of the rules is
different, but considering the value loss it is possible to conclude that the ROC
TRUE rule is better than the ROC ∆ROC rule which is better than the ROC
ROC rule. Considering the hit rate, for the PoP criterion, it is not possible
to conclude that the average of the rules is different, but considering the sum
criterion it is possible to conclude that the ROC TRUE rule is better than the
ROC ∆ROC rule which is better than the ROC ROC rule.

The values of the hit rate are sensitive to the number of issues and to the
number of levels in each issue. As the number of issues increases and as the
number of levels in each issue increases, the number of alternatives also in-
creases, decreasing the hit rate. However, changing the problem dimension
does not affect the conclusion that the ROC TRUE rule is better than the
ROC ∆ROC rule which is better than the ROC ROC rule.

When conducting the hypotheses tests there were cases in which it was not
possible to conclude that the different rules lead to different results. Note that
the fact of not rejecting the equality of the rules does not mean they are equal,
but it means that the simulations do not provide arguments to state that the
rules lead to different results.

We consider that testing the quality of approximations based on centroids
to other kind of constraints is an interesting issue for future research, and we
also believe that the presented type of approximations can also be extended to
other methods besides the multiattribute additive value model.

While our study has led to some interesting results, it also has several limi-
tations which indicate the need for future research. An important next step in
our research will therefore consist in creating a larger empirical basis, to apply
the rules to real data from (experimental) negotiations.
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A TABLES

Without reservation values With reservation values
Sum

3 * 3 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 2.88 47.14 68.18 99.78 2.02 52.60 75.59 100
ROC ∆ROC 3.74 37.10 56.88 98.86 2.34 43.19 67.33 100
ROC ROC 5.52 26.34 43.46 95.78 2.80 30.07 56.17 100

3 * 5 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 6.37 40.14 40.14 93.36 4.86 42.20 42.20 96.47
ROC ∆ROC 9.04 31.14 31.14 88.56 6.16 34.89 34.89 94.75
ROC ROC 21.67 17.36 17.36 70.20 9.85 18.04 18.04 86.86

5 * 3 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 6.44 37.50 55.08 93.34 5.76 37.71 54.37 93.21
ROC ∆ROC 10.19 25.60 49.64 91.02 7.95 26.40 41.08 89.65
ROC ROC 20.35 16.04 34.62 77.74 12.13 16.44 27.83 80.79

5 * 5 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 214.82 13.48 40.98 67.16 186.31 10.45 10.45 37.80
ROC ∆ROC 246.80 9.32 31.24 55.30 211.9441 7.12 7.12 32.56
ROC ROC 407.48 4.66 23.18 35.42 260.88 4.09 4.09 21.28

Product
3 * 3 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20

ROC TRUE 2.49 49.58 71.32 99.98 1.93 51.23 76.81 100
ROC ∆ROC 2.94 38.56 62.34 99.98 2.28 39.26 68.86 100
ROC ROC 4.28 27.44 46.46 99.86 2.73 27.17 57.60 100

3 * 5 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 5.90 41.20 41.20 94.36 4.84 36.54 36.54 97.68
ROC ∆ROC 7.47 30.50 30.50 91.60 5.84 27.99 27.99 96.70
ROC ROC 15.85 15.06 15.06 73.84 9.54 8.59 8.59 89.43

5 * 3 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 5.76 39.36 56.72 94.36 4.75 37.49 53.36 96.57
ROC ∆ROC 8.66 26.08 49.64 91.02 6.65 26.56 41.12 92.90
ROC ROC 16.32 16.40 34.62 77.74 10.27 16.48 27.47 85.71

5 * 5 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 279.69 9.74 40.98 67.16 229.51 6.02 6.02 24.69
ROC ∆ROC 302.33 6.72 31.24 55.30 252.65 4.32 4.32 21.87
ROC ROC 453.63 3.82 23.18 35.42 291.82 2.35 2.35 14.08

PoP
3 * 3 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20

ROC TRUE 2.48 39.54 66.86 100 2.17 42.67 68.62 100
ROC ∆ROC 2.90 32.00 64.76 100 2.48 34.72 61.17 100
ROC ROC 3.76 20.88 48.40 99.96 2.72 24.84 55.40 100

3 * 5 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 6.47 21.96 35.80 94.36 5.63 22.24 35.05 97.36
ROC ∆ROC 7.98 17.24 29.30 90.54 6.54 18.13 30.53 95.68
ROC ROC 13.67 7.64 14.92 77.80 8.80 9.66 18.69 90.84

5 * 3 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 7.36 23.82 39.80 92.78 6.52 23.85 38.68 94.06
ROC ∆ROC 9.74 18.12 49.64 91.02 8.31 18.27 30.85 90.16
ROC ROC 15.78 11.30 21.24 75.68 11.62 10.91 20.47 83.08

5 * 5 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 390.62 1.42 40.98 67.16 325.83 1.39 1.99 9.29
ROC ∆ROC 704.70 0.74 31.24 55.30 341.45 1.08 1.64 8.97
ROC ROC 810.22 0.66 23.18 35.42 353.05 0.64 1.09 6.23

Table 2: Position of the best alternative according to the different rules in the
supposedly true ranking (in n∗m, n represents the number of issues and m the
number of levels in each issue).
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ROC TRUE tobs p-value
Sum - Sum -0.662 0.555

Produto - Product 1.543 0.220
PoP - PoP -1.119 0.345

ROC ∆ROC tobs p-value
Sum - Sum -1.173 0.325

Product - Product 1.059 0.367
PoP - PoP -1.748 0.179
ROC ROC tobs p-value
Sum - Sum -1.140 0.337

Product - Product 1.346 0.271
PoP - PoP -1.383 0.261

Table 3: Comparison of the hit rate without using reservation values and using
reservation values.

Without reservation values With reservation values
Sum 0.008 0.017

Product 0.021 0.034
PoP 0.056 0.055

Table 4: Comparison of the hit rate for the different rules (p-values -
Greenhouse-Geisser Epsilon correction).

Without reservation values With reservation values
Sum tobs p-value tobs p-value

ROC TRUE - ROC ∆ROC 5.315 0.013 4.582 0.020
ROC TRUE - ROC ROC 5.697 0.011 4.514 0.020
ROC ∆ROC - ROC ROC 5.108 0.015 3.665 0.035

Product tobs p-value tobs p-value
ROC TRUE - ROC ∆ROC 4.250 0.024 3.588 0.037
ROC TRUE - ROC ROC 4.249 0.024 3.582 0.037
ROC ∆ROC - ROC ROC 3.762 0.033 3.048 0.056

Table 5: Comparison of the hit rate for the different rules (p-values and ob-
served values of the test statistic - paired t-tests).
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Without reservation values With reservation values
Sum

3 * 3 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 2.34 59.94 76.28 99.80 1.76 61.08 82.43 100
ROC ∆ROC 2.76 54.94 69.22 99.70 2.16 55.34 76.82 100
ROC ROC 3.88 40.72 52.28 98.30 2.40 35.29 62.35 100

3 * 5 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 5.91 45.30 45.30 93.76 4.19 45.73 45.73 97.47
ROC ∆ROC 7.18 41.98 41.98 91.66 5.34 42.18 42.18 95.23
ROC ROC 14.84 34.58 34.58 78.92 6.74 27.13 27.13 93.12

5 * 3 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 4.93 46.78 61.18 95.44 5.97 43.93 57.60 92.16
ROC ∆ROC 7.71 38.40 49.64 91.02 8.33 34.81 46.19 88.15
ROC ROC 15.34 28.58 34.56 77.74 11.93 24.82 32.59 78.87

5 * 5 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 51.36 40.98 40.98 67.16 101.44 32.99 33.99 56.47
ROC ∆ROC 79.63 31.24 31.24 55.30 124.95 23.84 23.84 48.11
ROC ROC 203.47 23.18 23.18 35.42 183.91 16.33 16.33 32.22

Product
3 * 3 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20

ROC TRUE 2.13 56.18 76.20 100 1.91 55.36 78.33 100
ROC ∆ROC 2.67 43.56 66.62 100 2.28 43.08 72.28 100
ROC ROC 4.06 27.44 53.60 100 2.50 27.17 65.11 100

3 * 5 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 5.37 42.98 42.98 95.16 4.90 37.46 37.46 97.30
ROC ∆ROC 7.10 32.06 32.06 91.94 5.97 28.72 28.72 95.84
ROC ROC 15.52 15.06 15.06 73.80 7.19 8.59 8.59 94.66

5 * 3 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 5.09 40.60 57.96 95.24 5.37 38.44 54.31 94.47
ROC ∆ROC 7.87 26.86 49.64 91.02 7.44 27.37 41.78 91.02
ROC ROC 15.58 16.40 34.62 77.74 11.81 16.48 27.85 81.03

5 * 5 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 149.90 29.24 40.98 67.16 124.57 18.28 18.28 39.73
ROC ∆ROC 193.95 21.04 31.24 55.30 143.64 12.47 12.47 34.41
ROC ROC 360.83 12.04 23.18 35.42 192.63 7.54 7.54 21.78

PoP
3 * 3 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20

ROC TRUE 2.49 39.54 60.08 100 2.26 42.67 64.47 100
ROC ∆ROC 2.85 32.16 51.48 99.96 2.53 34.85 58.74 100
ROC ROC 4.22 20.88 31.04 100 2.66 24.84 53.32 100

3 * 5 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 6.90 21.96 34.02 93.82 5.58 22.24 36.46 96.70
ROC ∆ROC 8.49 17.26 28.18 90.36 6.51 18.13 31.21 94.93
ROC ROC 15.43 7.82 14.28 74.04 6.95 9.66 30.68 95.25

5 * 3 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 8.03 23.82 37.56 90.04 6.31 23.85 38.90 94.38
ROC ∆ROC 11.05 18.12 49.64 91.02 8.53 18.27 30.24 90.00
ROC ROC 19.63 11.30 34.62 77.74 12.26 10.91 20.93 79.62

5 * 5 Average % 1 % ≤ 2 % ≤ 20 Average % 1 % ≤ 2 % ≤ 20
ROC TRUE 517.89 4.30 40.98 67.16 184.25 4.59 4.59 18.25
ROC ∆ROC 564.49 3.26 31.24 55.30 194.37 3.64 3.64 17.43
ROC ROC 732.49 2.20 23.18 35.42 228.25 2.50 2.50 13.29

Table 6: Position of the supposedly best alternative in the ranking induced by
the different rules.
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Without reservation values With reservation values
Sum

3*3 Average Std. Dev. Maximum Average Std. Dev. Maximum
ROC TRUE 0.0999 0.1069 0.8571 0.0610 0.0603 0.3825
ROC ∆ROC 0.1189 0.1108 0.7266 0.0753 0.0693 0.4267
ROC ROC 0.1750 0.1609 1.2622 0.0967 0.0852 0.4722

3*5 Average Std. Dev. Maximum Average Std. Dev. Maximum
ROC TRUE 0.0736 0.0855 0.7956 0.0519 0.0577 0.5851
ROC ∆ROC 0.0907 0.0974 0.9864 0.0633 0.0642 0.4605
ROC ROC 0.1636 0.1517 1.1498 0.0970 0.0849 0.5164

5*3 Average Std. Dev. Maximum Average Std. Dev. Maximum
ROC TRUE 0.0575 0.0671 0.5649 0.0469 0.0487 0.3391
ROC ∆ROC 0.0754 0.0762 0.6106 0.0631 0.0599 0.3811
ROC ROC 0.1184 0.1116 0.7978 0.0874 0.0774 0.4799

5*5 Average Std. Dev. Maximum Average Std. Dev. Maximum
ROC TRUE 0.1467 0.1453 0.9588 0.0940 0.0926 0.7352
ROC ∆ROC 0.1539 0.1460 0.8653 0.0987 0.0917 0.6603
ROC ROC 0.1959 0.1573 0.9073 0.1106 0.0954 0.5963

Product
3*3 Average Std. Dev. Maximum Average Std. Dev. Maximum

ROC TRUE 0.0718 0.0802 0.5308 0.0190 0.0209 0.1773
ROC ∆ROC 0.0779 0.0752 0.5050 0.0234 0.0250 0.1984
ROC ROC 0.1061 0.0867 0.5064 0.0257 0.0258 0.1855

3*5 Average Std. Dev. Maximum Average Std. Dev. Maximum
ROC TRUE 0.0538 0.0627 0.4471 0.0154 0.0179 0.1855
ROC ∆ROC 0.0608 0.0654 0.4932 0.0175 0.0194 0.2119
ROC ROC 0.0988 0.0805 0.5043 0.0256 0.0236 0.1724

5*3 Average Std. Dev. Maximum Average Std. Dev. Maximum
ROC TRUE 0.0424 0.0498 0.0508 0.0129 0.0134 0.0110
ROC ∆ROC 0.0536 0.0547 0.5029 0.0161 0.0157 0.1130
ROC ROC 0.0807 0.0703 0.5169 0.0268 0.0203 0.1297

5*5 Average Std. Dev. Maximum Average Std. Dev. Maximum
ROC TRUE 0.1232 0.1185 0.7963 0.0316 0.0273 0.2071
ROC ∆ROC 0.1285 0.1158 0.8010 0.0331 0.0277 0.1706
ROC ROC 0.1559 0.1214 0.7496 0.0365 0.0273 0.1816

PoP
3*3 Average Std. Dev. Maximum Average Std. Dev. Maximum

ROC TRUE 0.0842 0.0792 0.4695 0.2385 0.1987 0.9706
ROC ∆ROC 0.0942 0.0875 0.5318 0.2576 0.2035 0.9528
ROC ROC 0.1148 0.1015 0.6690 0.2799 0.2134 0.9600

3*5 Average Std. Dev. Maximum Average Std. Dev. Maximum
ROC TRUE 0.0701 0.0622 0.4489 0.2080 0.1738 0.9236
ROC ∆ROC 0.0796 0.0686 0.5330 0.2247 0.1775 0.9512
ROC ROC 0.1166 0.0904 0.5776 0.2659 0.1938 0.9663

5*3 Average Std. Dev. Maximum Average Std. Dev. Maximum
ROC TRUE 0.0575 0.0546 0.5653 0.1682 0.1177 0.9227
ROC ∆ROC 0.0689 0.0599 0.5108 0.1888 0.1506 0.9340
ROC ROC 0.0927 0.0747 0.5682 0.2259 0.1637 0.8956

5*5 Average Std. Dev. Maximum Average Std. Dev. Maximum
ROC TRUE 0.2235 0.1344 0.7737 0.3409 0.1796 0.8930
ROC ∆ROC 0.2270 0.1342 0.8474 0.3460 0.1842 0.8740
ROC ROC 0.2455 0.1401 0.7871 0.3516 0.1758 0.8516

Table 7: Value loss.

Without reservation values With reservation values
Sum 0.003 0.009

Product 0.000 0.022
PoP 0.005 0.032

Table 8: Comparison of the value loss of the different rules (p-values -
Greenhouse-Geisser Epsilon correction).
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Without reservation values With reservation values
Sum tobs p-value tobs p-value

ROC TRUE - ROC ∆ROC -5.609 0.011 -4.627 0.019
ROC TRUE - ROC ROC -7.791 0.004 -5.507 0.012
ROC ∆ROC - ROC ROC -7.410 0.005 -5.085 0.015

Product tobs p-value tobs p-value
ROC TRUE - ROC ∆ROC -5.634 0.011 -4.382 0.022
ROC TRUE - ROC ROC -13.709 0.001 -4.485 0.021
ROC ∆ROC - ROC ROC -11.523 0.001 -3.099 0.053

PoP tobs p-value tobs p-value
ROC TRUE - ROC ∆ROC -4.923 0.016 -4.371 0.022
ROC TRUE - ROC ROC -6.579 0.007 -3.776 0.033
ROC ∆ROC - ROC ROC -6.013 0.009 -3.287 0.046

Table 9: Comparison of the value loss of the different rules (p-values and ob-
served values of the test statistic - paired t-tests).
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