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Abstract

We explore the centrality dependence of the pT correlations in the event-by-event analysis of relativistic heavy-ion collisions at RHIC made
recently by the PHENIX and STAR Collaborations. We point out that the observed scaling of strength of dynamical fluctuations with the inverse
number of the produced particles can be naturally explained by the formation of clusters. We argue that the large magnitude of the measured
covariance implies that the clusters contain at least several particles. We also discuss whether the clusters may originate from jets. In addition, we
provide numerical estimates of correlations coming from resonance decays and thermal clusters.
 2006 Elsevier B.V. All rights reserved.
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Recently new data on the event-by-event fluctuations have
been provided by the PHENIX [1] and STAR [2,3] Collab-
orations, shedding more light on the previously accumulated
knowledge in the field [4–22]. One of the most fascinating but
intricate questions is whether the pT fluctuations in large win-
dows of pseudorapidity and azimuthal angle at intermediate
momenta can result from jets [23,24]. In this Letter we explore
the basic facts of the recent data [1,3]. In particular, we argue
that since (i) the mean and the variance of the inclusive mo-
mentum distribution are practically constant at low centrality
parameters, then (ii) the variance of the average momenta for
the mixed events is nearly equal to the variance of the inclu-
sive distribution divided by the average multiplicity. Moreover,
and this is our basic observation, (i) also results in the fact that
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(iii) the difference of the experimental and mixed-event vari-
ances of average pT , denoted as σ 2

dyn, scales as the inverse
multiplicity of the produced particles, as seen in experiments
[1,3]. A possible explanation of this scaling can be provided by
clustering in the expansion velocity: matter expands in “lumped
clusters” of chunks of matter, having close collective veloc-
ity within a cluster, which induces correlations. Moreover, we
show that the value of σdyn is large at the expected scale pro-
vided by the variance of pT , which indicates that the clusters
should contain at least several particles in order to combinator-
ically enhance the magnitude to the observed level. We discuss
whether jets may be responsible for the formation of the clus-
ters. Finally, we compute numerically the value of σ 2

dyn coming
from the resonance decays and from thermal clusters in statis-
tical models of heavy-ion collisions. The found values of the
covariance per pair are small, suggesting larger numbers of par-
ticles in clusters.

We begin by exploring the PHENIX measurement [1] of
the event-by-event fluctuations of the transverse momentum at√

sNN = 130 GeV. To simplify our notation, the letter p is
used to denote | �pT |, pi is the value of p for the ith particle,
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Table 1
Analysis of the event-by-event fluctuations in the transverse momentum. Up-
per rows: the PHENIX experimental data at

√
sNN = 130 GeV [1]; middle

rows: the mixed-event results; bottom rows: our way of looking at the data.

One observes that to a good approximation σ
2,mix
M

� σ 2
p/〈n〉 and σ 2

dyn =
(σ 2

M
− σ

2,mix
M

) ∼ 1/〈n〉. Except for the first two rows, all values are given in
MeV. The errors in the last row reflect the unknown round-off errors in the data
of the upper and middle parts. No experimental errors of the measured quanti-
ties are provided in Ref. [1]

Centrality 0–5% 0–10% 10–20% 20–30%

〈n〉 59.6 53.9 36.6 25.0
σn 10.8 12.2 10.2 7.8
〈M〉 523 523 523 520
σp 290 290 290 289
σM 38.6 41.1 49.8 61.1

〈M〉mix 523 523 523 520
σmix
M

37.8 40.3 48.8 60.0

σp

√
1

〈n〉 + σ2
n

〈n〉3 38.2 40.5 49.8 60.8

σdyn
√〈n〉 60.3 ± 1.6 59.2 ± 1.5 59.8 ± 1.2 57.7 ± 1.1

and M = ∑n
i=1 pi/n is the average transverse momentum in

an event of multiplicity n. The PHENIX results are recalled
in Table 1. Several features of the data are striking: the quan-
tities 〈M〉 and σp , which is the inclusive standard deviation
of p, are practically constant in the reported centrality range
c = 0–30%,1

(1)〈M〉 = const, σp = const (at low c).

We call the range of c where (1) holds the “fiducial centrality
range”—this is where our conclusions will be drawn. We note
that for peripheral events incomplete thermalization can result
in a different strength of pT fluctuations [21]. Next, we observe
that σM � σp/

√〈n〉. More precisely, for the mixed events one
finds the formula

(2)σmix
M � σp

√
1

〈n〉 + σ 2
n

〈n〉3
,

working at the level of 1–2%. Finally, the difference of the ex-
perimental and mixed-event variances of average pT , denoted
as σ 2

dyn, scales to a remarkable accuracy as the inverse multi-
plicity,

(3)σ 2
dyn ≡ σ 2

M − σ
2,mix
M ∼ 1

〈n〉 .
Now we proceed to elementary statistical considerations. Con-
sider events of multiplicity (of produced charged particles)
equal to n and transverse momenta denoted as p1,p2, . . . , pn.
The multiplicity n and the momenta are varying randomly from
event to event. The probability density of occurrence of a given
momentum configuration is P(n)ρn(p1, . . . , pn), where P(n)

is the multiplicity distribution and ρn(p1, . . . , pn) is the con-
ditional probability distribution of occurrence of p1, . . . , pn in
accepted events, provided we have the multiplicity n. Note that

1 We recall that in the PHENIX and STAR experiments c is determined from
the multiplicity of produced particles.
in general ρ depends functionally on n, which is indicated by
the subscript. The normalization is

(4)
∑
n

P (n) = 1,

∫
dp1 · · ·dpn ρn(p1, . . . , pn) = 1.

The marginal probability densities are defined as

(5)

ρ(n−k)
n (p1, . . . , pn−k) ≡

∫
dpn−k+1 · · ·dpn ρn(p1, . . . , pn),

with k = 1, . . . , n − 1. These are also normalized to unity, as
follows from Eq. (4). Since the number of arguments distin-
guishes the marginal distributions ρ

(n−k)
n , in the following we

drop the superscript (n − k). Further, we introduce the follow-
ing definitions

〈p〉n ≡
∫

dp ρn(p)p, varn(p) ≡
∫

dp ρn(p)
(
p − 〈p〉n

)2
,

(6)

covn(p1,p2) ≡
∫

dp1 dp2
(
p1 − 〈p〉n

)(
p2 − 〈p〉n

)
ρn(p1,p2).

The subscript n indicates that the averaging is taken in samples
of multiplicity n. We note in passing that the commonly used
inclusive distributions are related to the marginal probability
distributions in the following way:

ρin(x) ≡
∑
n

P (n)

∫
dp1 · · ·dpn

n∑
i=1

δ(x − pi)ρn(p1, . . . , pn)

=
∑
n

nP (n)ρn(x),

ρin(x, y) ≡
∑
n

P (n)

∫
dp1 · · ·dpn

×
n∑

i,j=1,j 	=i

δ(x − pi)δ(y − pj )ρn(p1, . . . , pn)

(7)=
∑
n

n(n − 1)P (n)ρn(x, y),

which are normalized to 〈n〉 and 〈n(n − 1)〉, respectively. For
the variable M = ∑n

i=1 pi/n we find immediately

〈M〉 =
∑
n

P (n)

∫
dp1 · · ·dpn Mρn(p1, . . . , pn)

=
∑
n

P (n)〈p〉n,
〈
M2〉 = ∑

n

P (n)

∫
dp1 · · ·dpn M2ρn(p1, . . . , pn)

=
∑
n

P (n)

n

〈
p2〉

n
+

∑
n

P (n)

n2

[
n∑

i,j=1,j 	=i

covn(pi,pj )

(8)+ n(n − 1)〈p〉2
n

]
.

Next, we use the experimental fact that the variance of the
momentum distribution and its mean are independent of cen-
trality in the fiducial range, which allows us to replace the
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Fig. 1. The cluster model of correlations. Particles are grouped in Ncl clusters,
containing on the average 〈r〉 particles. The particles within a cluster move at
very similar collective velocities, indicated by arrows.

quantities 〈p〉n by 〈M〉 and 〈p2〉n − 〈p〉2
n by σ 2

p at the aver-

age multiplicity, denoted as σ 2
p,〈n〉.2 In this way we get

(9)

σ 2
M = σ 2

p,〈n〉
∑
n

P (n)

n
+

∑
n

P (n)

n2

[
n∑

i,j=1,j 	=i

covn(pi,pj )

]
.

In the mixed events, by construction, particles are not corre-
lated, hence the covariance term in Eq. (9) vanishes and

(10)σ
2,mix
M = σ 2

p,〈n〉
∑
n

P (n)

n
� σ 2

p,〈n〉
(

1

〈n〉 + σ 2
n

〈n〉3
+ · · ·

)
,

where in the last equality we have used the fact that the distribu-
tion P(n) is narrow and expanded 1/n = 1/[〈n〉+ (n−〈n〉)] to
second order in (n − 〈n〉). Comparison made in Table 1 shows
that formula (10) works at the 1–2% level. In addition, since
σp,〈n〉 is not altered by the event mixing procedure, subtracting
(10) from (9) yields

σ 2
dyn =

∑
n

P (n)

n2

n∑
i,j=1,j 	=i

covn(pi,pj )

(11)� 1

〈n〉2

〈n〉∑
i,j=1,j 	=i

cov〈n〉(pi,pj ).

Now we come to the physics discussion. The scaling (3) im-
poses severe constraints on the physical nature of the covariance
term. For instance, if all particles were correlated to each other,∑n

i,j=1, j 	=i cov〈n〉(pi,pj ) would be proportional to the number
of all pairs, and σdyn would not depend on 〈n〉 at large multi-
plicities. A natural explanation of the scaling (3) comes from
the cluster model, depicted in Fig. 1. The system is assumed
to have Ncl clusters, each containing (on the average) 〈r〉 par-
ticles. The particles are correlated if and only if they belong to

2 Note that strictly speaking the experiment tells us that these quantities do
not change when we go from one to another centrality bin listed in Table 1.
Since the binning is narrow, it practically means that the quantities are also
constant within the bins.
the same cluster, where the covariance per pair is 2 cov∗. The
number of correlated pairs within a cluster is r(r − 1)/2. Some
particles may be unclustered, hence the ratio of clustered to all
particles is 〈Ncl〉〈r〉/〈n〉 = α. If all particles are clustered then
α = 1. With these assumptions Eq. (11) becomes

(12)σ 2
dyn = α〈r(r − 1)〉

〈r〉〈n〉 cov∗ = αr∗

〈n〉 cov∗,

where we have introduced r∗ = 〈r(r − 1)〉/〈r〉, the ratio of the
average number of pairs in the cluster to the average multiplic-
ity of the cluster. For a fixed number of particles in each cluster
we have r∗ = 〈r〉 − 1, for the Poisson distribution r∗ = 〈r〉,
while for wider distributions r∗ > 〈r〉. Eq. (12) complies to the
scaling (3) as long as the product αr∗ cov∗ does not depend on
〈n〉 (in the fiducial centrality range). This is the basic physics
constraint that follows from the data.

The next question is whether we can use the above results to
draw conclusions on effects of jets (minijets), which have been
proposed as a possible explanation of the experimental data
even at the considered soft momenta [23]. Jets, when fragment-
ing, lead to correlations in the momentum space. They naturally
provide a generic mechanism for clustering. The resulting full
covariance from jets is then Njet〈j (j − 1)〉 covj /〈n〉2, where
Njet is the number of jets, 〈j〉 is the average number of par-
ticles in the jet-cluster, and 2 covj is the average covariance
per pair. The total number of particles produced from jets is
Njet〈j〉.3 On the other hand, the commonly accepted estimate
of the dependence of Njet〈j〉 on centrality is accounted for by
the nuclear modification factor RAA multiplied by the number
of binary nucleon–nucleon collisions Nbin. Since RAA depends
on the ratio 〈n〉/〈n〉pp , where 〈n〉pp is the multiplicity in the
proton–proton collisions, in a given pT bin one finds

(13)Njetj ∼ RAANbin = 〈n〉
Nbin〈n〉pp

Nbin ∼ 〈n〉,

which complies to the scaling of Eq. (12). We stress that this
scaling follows just from the presence of clusters, and is in-
sensitive to the nature of their physical origin as long as one
imposes Ncl ∼ 〈n〉. In other words, as long as Eq. (13) is used,
the explanation of the observed data in terms of quenched jets
agrees with the cluster picture. However, the explanation of the
centrality dependence of the pT fluctuations in terms of jets
based solely on Eq. (13) is insufficient and not conclusive: any
mechanism leading to clusters would do. Microscopic realis-
tic estimates of the magnitude of covj and 〈j〉 are necessary in
that regard, including the interplay of jets and medium. For the
current status of this program the user is referred to [24,25].

Before continuing the analysis of the cluster model in a more
quantitative manner we need to consider the effects of accep-
tance and detector efficiency. This is particularly important in
the event-by-event analysis, since the experiments select parti-
cles with very clearly identified tracks, and thus the detector
efficiency, denoted by a, is small. The number of observed

3 For jets the meaning of the cluster in the |pT |-space embodies all particles
formed in a single hard process. This is because all particles belonging to a dijet
originating from a common hard process have correlated momenta.
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particles is proportional to a, and the number of pairs con-
tributing to the covariance is proportional to a2. Thus Eq. (12)
may be rewritten as σ 2

dyn = r∗
〈n〉 full

cov∗ = a r∗
〈n〉 obs

cov∗, where
“full” denotes all particles (that would be observed with 100%
efficiency), while “obs” stands for the actually observed multi-
plicity of particles. Thus

(14)cov∗ = σ 2
dyn

〈n〉obs

ar∗ .

Our estimate for a in the PHENIX experiment is of the order of
10%, which together with the numbers of Table 1 gives

(15)cov∗ � 0.035 GeV2

r∗ .

In the considered problem the coefficient 0.035 GeV2 is not a
small number when compared to the natural scale set by the
variance σ 2

p � 0.08 GeV2. We recall that |cov∗| � σ 2
p . Compar-

ing the numbers, we note that for r∗ = 1 (for instance the case
where all clusters have two particles) the value of cov∗ would
assume almost a half of the maximum possible value. This is
very unlikely, as argued in the dynamical estimates presented
below, which give cov∗ at most 0.01 GeV2. Thus a natural ex-
planation of the values in (15) is to take a significantly larger
value of r∗. Of course, the higher value, the easier it is to sat-
isfy (15) even with small values of cov∗. We call this picture the
“lumped clusters”: lumps of matter move at some collective ve-
locities, correlating the momenta of particles belonging to the
same cluster, see Fig. 1.

The above estimates were based on the PHENIX data [1],
however, very similar quantitative conclusions can be reached
from the recently published STAR data [3]. We note that the
measure 〈�pi�pj 〉 used by STAR is just the estimator for σ 2

dyn.
Indeed, elementary steps lead to

(16)〈�pi�pj 〉 = Nevent − 1

Nevent
σ 2

M − 1

Nevent

Nevent∑
k=1

σ 2
p

Nk

.

Comparison to Eq. (9) leads immediately for a large number
of events to 〈�pi�pj 〉 = σ 2

dyn. Taking the values of Table I of
Ref. [3] and assuming a = 0.75 we find cov∗ r∗ = 0.058, 0.043,
0.035, 0.014 GeV2 for

√
sNN = 200, 130, 62 and 20 GeV, re-

spectively. The value at 130 GeV is close to the value (15).
Interestingly, we note a significant beam-energy dependence,
with cov∗ r∗ increasing with

√
sNN . This may be due to the in-

crease of the covariance per correlated pair with the increasing
energy, and/or an increase of the number of clustered particles.

In the last part of this Letter we present some dynamical esti-
mates of cov∗ in thermal models. The first calculation concerns
the role of resonances in pT correlations. Clearly, a resonance,
such as the ρ meson, decaying into daughter particles induces
momentum correlations. We make a numerical calculation of
this effect in the model of Ref. [26,27], using the formula

(17)

cov∗
res

=
∫

d3p
∫ d3p1

Ep1

∫ d3p2
Ep2

δ(4)(p − p1 − p2)C
dNR

d3p
(p⊥

1 − 〈p⊥〉)(p⊥
2 − 〈p⊥〉)∫

d3p
∫ d3p1

Ep1

∫ d3p2
Ep2

δ(4)(p − p1 − p2)C
dNR

d3p

,

where dNR/d3p is the resonance distribution in the momentum
space (obtained from the Cooper–Frye formula as described in
Ref. [28]), p1 and p2 are the momenta of the emitted parti-
cles, Ep is the energy of a particle with momentum p, and the
function C represents the experimental cuts. We note that from
now on the letter p, depending on the context, denotes the four-
or three-momentum. The results of our numerical study show
that for the resonance mass between 500 MeV and 1.2 GeV
the covariance cov∗

res varies between 0.005 GeV2 at low masses
to −0.015 GeV2 at high masses, changing sign around 700–
800 MeV, depending on the assumed experimental cuts. Thus,
cancellations between contributions of various resonances are
possible; in fact, a full-fledged simulation with Thermina-
tor [29] revealed a negligible contribution of resonances to
the pT correlations. Of course, the “lumpy” feature of the ex-
pansion was not implemented in the calculation. Details of this
study will be presented elsewhere.

The second model of particle correlations assumes that the
particle emission at the lowest scales occurs from local thermal-
ized sources. Each element of the fluid moves with its collective
velocity and emits particles with locally thermalized spectra.
This picture was put forward as a mechanism creating corre-
lations in the charge balance function [28,30] resulting from
charge conservation within the local source. Correlations be-
tween particles emitted from the same cluster come from the
fact that those particles are emitted from a source with the
same collective transverse velocity. The average number of par-
ticles 〈r〉 originating from such a local source determines the
strength of the surviving dynamical fluctuation in the whole
event, as discussed above. The covariance between particles i

and j emitted from a cluster moving with a velocity u is

(18)

cov∗(i, j)

=
∫

dΣµ uµ
∫

d3p1 (p⊥
1 − 〈p⊥〉)f u

i (p1)
∫

d3p2 (p⊥
2 − 〈p⊥〉)f u

j (p2)∫
dΣµ uµ

∫
d3p1f

u
i (p1)

∫
d3p2f

u
j (p2)

,

where f u
i (p) = (exp(p · u/T ) ± 1)−1 is the boosted ther-

mal distribution and dΣµ denotes integration over the freeze-
out hypersurface. The result turns out to depend strongly on
the temperature. Considering the emission of correlated pion
pairs one gets cov∗(π,π) = 0.0034 GeV2 for freeze-out pa-
rameters corresponding to the single freeze-out model [26]
(T = 165 MeV, average flow velocity 0.5c) and cov∗(π,π) =
0.01 GeV2 for parameters corresponding to a late kinetic
freeze-out (T = 100 MeV, average flow velocity 0.6c). For
realistic values of thermal freeze-out parameters the experimen-
tally estimated value of the covariance cannot be accounted for,
unless the number of charged particles belonging to the same
cluster is at least of the order 4–10 assuming the Poisson distri-
bution. For wider distributions in the variable r a lower number
is requested.

In conclusion, we have found that in the fiducial centrality
range the scaling of the σ 2

dyn for the pT correlations with the
inverse multiplicity of produced particles indicates the cluster
nature of the system formed in relativistic heavy-ion collisions.
The clusters may a priori originate from very different physics:
jets, droplets of fluid formed in the explosive scenario of the
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collision, or other mechanisms leading to multiparticle corre-
lations. A larger number of particles within a cluster helps to
obtain the large measured value of σ 2

dyn.
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