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AMS Subject Classification: 33C45; 33C47; 33D45.

1. Motivation

Laguerre-Hahn affine orthogonal polynomials on the unit circle are related to
Carathéodory functions, F , that satisfy first order differential equations with polyno-
mial coefficients [1, 2]

zAF ′ = CF +D . (1)

Well-known families of such polynomials include the semi-classical orthogonal polyno-
mials on the unit circle - characterized through a rational logarithmic derivative for the
weight function, equivalently, through an ODE (1) with a specific polynomial D [1–3] - as
well as some of their perturbations, for instance, the ones studied in [4–6].

The analysis of relations between differential properties of sequences of orthogonal poly-
nomials and differential properties of the corresponding Carathéodory function through
ODEs (1) is an often encountered problem in the literature of Orthogonal Polynomials.
A central aim is to deduce properties of the polynomials and their recurrence coefficients
from the knowledge of a differential equation satisfied by the weight function or from
(1). Such a problem has been studied in a vast list of works, e.g., in [7–11] as well as in
many of the references therein, where one emphasises the semi-classical character of the
orthogonal polynomials (when orthogonality on the real line, the Carathéodory function
is replaced by the Stieltjes function). Connections with integrable systems, including
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continuous and discrete Painlevé equations, are well-known (see [7, 8, 10, 12–15]). For a
comprehensive overview of Painlevé equations, see [16, 17].

The study of differential systems for sequences of Laguerre-Hahn affine orthogonal
polynomials on the unit circle is known at least since [2], and it has been recently revis-
ited in [18, 19]. In general and basic terms (details are given in Section 3), having the
differential system for the sequence of polynomials related to (1), say {φn}n≥0, by a stan-
dard method based on the recurrence relations, one obtains the so-called compatibility
conditions, written in the matrix form as

BnAn −AnBn−1 = Cn (2)

where An are the transfer matrices (cf. Section 2) and Bn, Cn are matrices having poly-
nomial entries containing the information on the coefficients of (1).

In this work the above equations (2) are re-analysed within the theory of matrix
Sylvester equations (cf. Sections 3 and 4). In Proposition 3.3 is given a closed form
solution of (2), which is equivalent to the two scalar equations stated in Corollary 3.4,

an (ln,1 + ln−1,1 − (n− 1)A) = Θn,1 − zΘn−1,1 , n ≥ 1 , (3)

ln,1 − ln−1,1 = A− anΘn,2 + zanΘn−1,1 , n ≥ 1 , (4)

where ln,1,Θn,j , j = 1, 2, are polynomials, A is the same as in (1), and an are the reflec-
tion coefficients of {φn}n≥0 (cf. Section 2). Eqs. (3)-(4) constitute one of the tools for
providing recurrences for the reflection coefficients of orthogonal polynomials related to
(1). Applications of these results are shown for the so-called generalized Jacobi polyno-
mials on the unit circle [20, Section 4], as well as for some of its perturbations falling
in the Laguerre-Hahn affine class (non semi-classical): several recurrences are derived,
including a form of the discrete Painlevé equation dPV (cf. Section 4).

The remainder of the paper is organized as follows. In Section 2 is given the basic
results and notations to be used in the forthcoming sections. In Section 3 is deduced the
closed form solution of the Sylvester matrix equations contained in Theorem 3.1, leading
to the above Eqs. (3)-(4). Section 4 is devoted to the derivation of recurrences for the
generalized Jacobi polynomials and its perturbations.

2. Preliminary results and notations

Let T = {z ∈ C : |z| = 1} be the unit circle, let Λ = span {zk : k ∈ Z} be the linear
space of Laurent polynomials with complex coefficients, and P = span {zk : k ∈ N0} its
linear subspace of polynomials. We consider a Hermitian linear functional u : Λ → C,
that is, its sequence of moments un = 〈u, z−n〉, n ∈ Z, is such that u−n = un, ∀n ≥ 0.
With u we associate the Toeplitz matrices

Tn =

 u0 · · · un...
. . .

...
un · · · u0

 , n ≥ 0 ,

and we set ∆n = det(Tn), n ≥ 0. By convention, ∆−1 = 1.
Assuming ∆n 6= 0, ∀n ≥ 0, that is, u is regular, one defines the sequence of orthogonal

polynomials with respect to u, {φn}n≥0, such that deg(φn) = n, and

〈u, φn(z)z−k〉 = hnδn,k , 0 ≤ k ≤ n , hn 6= 0 , n ≥ 0 .
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In the sequel we will take each φn as monic, i.e., φn(z) = zn+lower degree terms, and
{φn}n≥0 will be called a monic orthogonal polynomial sequence sequence (MOPS). Note
that the MOPS can be given as [21]

φn(z) =
1

∆n−1

∣∣∣∣∣∣∣∣∣
u0 u1 · · · un
...

...
...

un−1 un−2 · · · u1
1 z · · · zn

∣∣∣∣∣∣∣∣∣ , n ≥ 1 , φ0(z) = 1 . (5)

Additionally, if ∆n > 0,∀n ≥ 0, that is, u is positive definite, then u has an integral
representation given in terms of a finite and positive Borel measure, µ, with infinite
support on T, such that

〈u, f(z)〉 =
1

2π

∫ 2π

0
f(eiθ)dµ(θ) , f ∈ Λ . (6)

In such a case, the φn’s are the so-called orthogonal polynomials on the unit circle
(OPUC) [22]. If µ is absolutely continuous with respect to the Lebesgue measure on T,
defined in terms of a weight, say w, then we will also say that {φn}n≥0 is a sequence of
orthogonal polynomials with respect to w.

For future purposes we introduce the operator ∗p, where p is a positive integer, as

follows. Given an analytic function f , f∗p(z) = zpf(1/z), that is, if f(z) =
∑+∞

k=0 bkz
k,

then f∗p(z) =
∑+∞

k=0 bkz
−k+p. Whenever f is a polynomial of degree p, the index p will be

omitted and it will be written f∗ instead of f∗p . In such a case, f∗ is called the reversed
polynomial of f.

MOPS on the unit circle satisfy the Szegő recurrence relations [21], for all n ≥ 1:

φn(z) = zφn−1(z) + anφ
∗
n−1(z) , (7)

φ∗n(z) = φ∗n−1(z) + anzφn−1(z) . (8)

Define the vectors Ψn(z) =

[
φn(z)
φ∗n(z)

]
, n ≥ 0. The Szegő recurrence relations can be

written as

Ψn(z) = AnΨn−1(z) , An =

[
z an
anz 1

]
, n ≥ 1 . (9)

The matrices An, called transfer matrices, play an important role in the theory of or-
thogonal polynomials on the unit circle. A comprehensive study, related to the theory of
matrix valued functions, can be found in [23]. The complex numbers an in (7)-(9), called
reflection coefficients, satisfy |an| 6= 1 , ∀n ≥ 1 (in the regular case) or |an| < 1 ,∀n ≥ 1
(in the positive definite case). The converse result, commonly referred to as Favard’s The-
orem on the unit circle, also holds, that is, any sequence of monic polynomials {φn}n≥0
satisfying one of the difference relations (7)-(9) with |an| 6= 1, ∀n ≥ 1, (respectively
|an| < 1, ∀n ≥ 1) constitutes a sequence of orthogonal polynomials with respect to a
Hermitian and regular linear functional (respectively positive definite Hermitian linear
functional)[23, 24].

Some central functions of the present work are defined as follows (see [25, 26]). Given
a MOPS {φn}n≥0 with respect to u, one defines the sequence of associated polynomials
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of the second kind, {Ωn}n≥0, as

Ωn(z) = 〈uθ,
eiθ + z

eiθ − z

(
φn(eiθ)− φn(z)

)
〉, n ≥ 1 , Ω0(z) = 1 .

One defines the generating function of the moments of u, also called formal Carathéodory
function, having expansions

F (z) = u0 + 2

+∞∑
k=1

ukz
k , |z| < 1 , F (z) = −u0 − 2

+∞∑
k=1

u−kz
−k , |z| > 1 .

In the positive definite case, whenever u has an integral representation as in (6), F is the
Carathéodory function of the measure µ,

F (z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ) .

The sequence of functions of the second kind, {Qn}n≥0, is defined as

Qn(z) = Ωn(z) + F (z)φn(z) , n ≥ 1 , Q0(z) = F (z) ,

and the functions Q∗nn , which will be denoted by Q∗n, are defined as

Q∗n(z) = Ω∗n(z)− F (z)φ∗n(z) , n ≥ 1 , Q∗0(z) = −F (z) .

Note that {Qn}n≥0 satisfies the recurrence relation, for all n ≥ 1,

Qn(z) = zQn−1(z)− anQ∗n−1(z) , (10)

Q∗n(z) = Q∗n−1(z)− anzQn−1(z) . (11)

Set

φn(z) = zn + τnz
n−1 + · · ·+ knz + an , n ≥ 0 . (12)

Useful identities, to be used in the sequel, are listed below:

τn+1 = τn + anan+1 , n ≥ 0 , τ0 = 0, (13)

kn+1 = an + an+1τn , n ≥ 0 , k0 = 0 , (14)

(following from (7)-(8)), as well as the asymptotic expansions, for all n ≥ 1,

Qn(z) = 2hnz
n − 2τn+1hnz

n+1 +O(zn+2) , |z| < 1 , (15)

Qn(z) = 2an+1hnz
−1 + 2 (an+2hn+1 − an+1τn+1hn) z−2 +O(z−3) , |z| > 1 (16)

(following from (10)-(11)).
Finally, we define the Laguerre-Hahn affine class on the unit circle. Such a class is

constituted by the sequences of orthogonal polynomials whose Carathéodory function
satisfies a first order differential equation [1, 2]

zAF ′ = CF +D , A 6≡ 0 , A, C,D ∈ P . (17)
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The Laguerre-Hahn affine class includes the semi-classical class on the unit circle. The
latter one is characterized through an ODE (17) with a specific polynomial D (see [3,
Corollary 5] and [1, 2]), or, equivalently, whenever F is related to some weight w, through

the rational logarithmic derivative for w,
w′

w
=

C

zA
.

A more detailed study of the Laguerre-Hahn affine class can be found in [1], focusing
on both, the approach through differential equations (17), and the approach through
distributional equations for the corresponding linear functional. The interested reader is
also referred to [3].

3. Laguerre-Hahn affine identities from matrix Sylvester equations

From Theorem 3 and Corollary 3 in [19] (where Eq. (21) below is now written without
the typo) the following result holds.

Theorem 3.1. Let F be a Carathéodory function satisfying a differential equation with
polynomial coefficients zAF ′ = CF + D, let {φn}n≥0 be the MOPS related to F . The

transfer matrix of {φn}n≥0, An =

[
z an
anz 1

]
, satisfies the matrix Sylvester equation

BnAn −AnBn−1 = Cn , Cn =

[
zA 0
anzA 0

]
, n ≥ 1 , (18)

where Bn are matrices whose entries are bounded degree polynomials,

Bn =

[
ln,1 −Θn,1

−Θn,2 ln,2

]
, (19)

such that

tr(Bn) = nA , n ≥ 1 , (20)

det(Bn) = det(B1) +A

n−1∑
k=1

lk,2 , n ≥ 2 , (21)

with tr(Bn) and det(Bn) denoting the trace and the determinant of Bn , respectively, and

det(B1) = A
(
2a1zA− h1D + (|a1|2 + 1)C

)
/(2h1)− C2/4 . (22)

Remark 3.2. The detailed proof of Theorem 3.1 can be obtained from [19, Theorem 3,
Corollary 3], by putting B ≡ 0 in Eqs. (9), (14) and (15) therein. Hence, the polynomials
ln,j ,Θn,j , j = 1, 2 in (19) are defined through the differential system

zAφ′n = (ln,1 − C/2)φn −Θn,1φ
∗
n , (23)

zA(φ∗n)′ = (ln,2 − C/2)φ∗n −Θn,2φn , (24)

where Θn,j , j = 1, 2, are given by Θn,1 = Θ̃n/(2hnz
n), Θn,2 = Θ̂n/(2hnz

n), with

Θ̃n =

{
zA

(
Qn
φn

)′
− CQn

φn

}
φ2n , Θ̂n =

{
zA

(
Q∗n
φ∗n

)′
− CQ

∗
n

φ∗n

}
(φ∗n)2 . (25)
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The leading and trailing expansions of the Θn’s can be obtained through the expansions
(15) and (16). The ln’s can be easily determined by equating coefficients in (23)-(24)
once the Θn’s are known.
Furthermore, let us remark that Eq. (18) follows from the compatibility between the
differential system (23)-(24) and the recurrence relations (9).

The previous theorem gives us the transfer matrixAn as a solution of a matrix Sylvester
equation

BnX −XBn−1 = Cn . (26)

According to the so-called Sylvester Theorem (see [27]), for each matrix Cn, the matrix
Sylvester equation (26) has a unique solution if, and only if, the spectrum of the matrices
Bn and Bn−1 are disjoint sets. The lemma that follows provides a closed form solution of
(26).

Proposition 3.3. Let the matrix Sylvester equation (26) hold, with Bn given in (19). If,
for each z ∈ C, Bn(z) and Bn−1(z) have no common eigenvalue, then (26) is equivalent
to

(Bn − ln−1,2I)X = −(n− 1)Cn + BnzDn + zDnBn−1 (27)

where I denotes the identity matrix and Dn =

[
1 0
an 0

]
.

Proof. Firstly, note that, in account of (20) and (21), for each z, the characteristic poly-
nomial of Bn(z) is given by

νn(s) = βn,2s
2 + βn,1s+ βn,0I , βn,2 = 1 , βn,1 = −nA , βn,0 = det(Bn) . (28)

Hence, from the Cayley-Hamilton Theorem, Bn satisfies

B2n − nABn + det(Bn)I = 02×2 , n ≥ 1 . (29)

Let us compute
∑2

k=0 βn−1,k(BknX −XBkn−1) . After rearranging, we obtain

2∑
k=0

βn−1,k(BknX −XBkn−1) =
(
B2n − (n− 1)ABn + det(Bn−1)

)
X

−X
(
B2n−1 − (n− 1)ABn−1 + det(Bn−1)

)
.

In account of (28) and (29), the previous equality yields

2∑
k=0

βn−1,k(BknX −XBkn−1) = νn−1(Bn)X . (30)

Now let us use [28, Lemma 2.1] BknX −XBkn−1 =
∑k−1

j=0 B
k−1−j
n CnBjn−1, k ≥ 1 , in (30).

After cancelation of common terms, there follows (27).
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Corollary 3.4. Under the conditions of Theorem 3.1, the matrix Sylvester equations
(18) are equivalent to

an (ln,1(z) + ln−1,1(z)− (n− 1)A(z)) = Θn,1(z)− zΘn−1,1(z) , (31)

ln,1(z)− ln−1,1(z) = A(z)− anΘn,2(z) + zanΘn−1,1(z) . (32)

In order to illustrate the results contained in Theorem 3.1 and Corollary 3.4, namely
on the obtention of difference equations for the reflection coefficients of {φn}n≥0 through
Eqs. (31)-(32), we we shall make use of the results that follow.

Corollary 3.5. Let {φn}n≥0 be a MOPS related to a Carathéodory function F satisfying
zAF ′ = CF + D with max{deg(A), deg(C)} ≤ 2. Set A(z) = α2z

2 + α1z + α0, C(z) =
c2z

2 + c1z + c0, φn(z) = zn + τnz
n−1 + · · · + knz + an. For all n ≥ 1, the polynomials

ln,1,Θn,j , j = 1, 2 in Eqs. (31)-(32) are

Θn,1(z) = θ1n,1z + θ0n,1 , (33)

Θn,2(z) = θ2n,2z
2 + θ1n,2z , (34)

ln,1(z) = (nα2 +
c2
2

)z2 + (−α2τn + nα1 + θ1n,1an + c1/2)z + nα0 −
c0
2
, (35)

with

θ1n,1 = −((n+ 1)α2 + c2)an+1 , θ0n,1 = (nα0 − c0)an ,

θ2n,2 = −(nα2 + c2)an , θ1n,2 = ((n+ 1)α0 − c0)an+1 .

Thus, the following equations hold:

an
[
−α2(τn + τn−1) + nα1 + c1 + θ1n,1an + θ1n−1,1an−1

]
− θ1n,1 = −θ0n−1,1 , (36)

−anan+1((n+ 1)α0 − c0)− θ1n,1an

= −an−1an(nα0 − c0)− θ1n−1,1an−1 + α0an−1an − α2an−1an , (37)

Proof. In account of (25), the Θn’s are obtained through the expansions (12), (15) and
(16), thus we obtain (33)-(35).

Plugging (33)-(35) into (31) and equating the coefficients of zk, k = 0, 1, 2, we obtain
(36). Also, by plugging (33)-(35) into (32) and equating the coefficients of zk, k = 0, 1, 2,
we obtain

− anan+1((n+ 1)α0 − c0) + α2(τn − τn−1) + θ1n−1,1an−1 − θ1n,1an

= −an−1an((n− 1)α0 − c0) .

As τn − τn−1 = an−1an (cf. (13)), from the above equality we obtain (37).

4. Difference equations for Laguerre-Hahn affine orthogonal polynomials
on the unit circle from matrix Sylvester equations

The main subject of the present section is the deduction of difference equations for
the reflection coefficients of orthogonal polynomials related to Carathéodory functions
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satisfying zAF ′ = CF +D with max{deg(A),deg(C)} ≤ 2. Well-known examples of such
families of orthogonal polynomials include the so-called generalized Jacobi polynomials
[20, Sections 3, 4] (see also [8, 15]), as well as some of its perturbations related to the
ones studied in [4, 5].

4.1 Generalized Jacobi polynomials on the unit circle: general difference
equations and dPV

We start by analysing the so-called generalized Jacobi polynomials on the unit circle [20,
Section 4], which will be taken as monic,

φn(z) = zn + τnz
n−1 + · · ·+ knz + an , n ≥ 0 .

{φn}n≥0 is orthogonal with respect to the weight function

w(z) = k zγ̃(z − η1)2α(z − η2)2β , η1 = eiθ1 , η2 = eiθ2 , k ∈ C , α, β ∈ R , (38)

where γ̃ = iγ − α − β, being γ a real number. w is real on T and it satisfies
w′

w
=

C

zA
with

A(z) = (z − η1)(z − η2) , (39)

C(z) = (α+ β + iγ)z2 + [η1(α− β − iγ)− η2(α− β + iγ)] z + η1η2 (iγ − α− β) .(40)

The Carathéodory function of w, F , satisfies the differential equation

zAF ′ = CF +D ,

where A,C are the same as in (39)-(40) and D is a polynomial with deg(D) ≤ 2. By
plugging the data of (39)-(40) in (33)-(35), one obtains Corollary 3.4 with the polynomials
ln,1 and Θn,j , j = 1, 2, given by

Θn,1(z) = −(n+ 1 + α+ β + iγ)an+1z + η1η2(n+ α+ β − iγ)an , (41)

Θn,2(z) = −(n+ α+ β + iγ)anz
2 + η1η2(n+ 1 + α+ β − iγ)an+1z , (42)

ln,1(z) = (n+
α+ β + iγ

2
)z2 + `n,1z + η1η2

2n+ α+ β − iγ
2

, (43)

`n,1 = −τn − (η1 + η2)(n+ iγ
2 ) + (η1 − η2)(α−β2 )− (n+ 1 + α+ β + iγ)an+1an.

Proposition 4.1. Let {φn}n≥0 be the MOPS related to the Jacobi weight (38). There
holds, for all n ≥ 1:
(a) the reflection coefficients satisfy the difference equations

(n+ 1 + α+ β + iγ)an+1an − (n− 1 + α+ β + iγ)anan−1

= η1η2 ((n+ 1 + α+ β − iγ)an+1an − (n− 1 + α+ β − iγ)anan−1) ; (44)

(b) the coefficients τn satisfy the difference equations

(n+ 1 + α+ β + iγ)τn+1 − η1η2(n+ 1 + α+ β − iγ)τn+1 = (n+ 1)δ1 , (45)

8
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with

δ1 = (1 + α+ β + iγ)a1 − η1η2(1 + α+ β − iγ)a1 ; (46)

(c) the coefficients τn are related to the an’s through the equation

τn =
(n+ 1 + α+ β + iγ)

2

(
an+1

an
− an+1an

)
− (n− 1 + α+ β + iγ)

2
anan−1

+ η1η2
(n− 1 + α+ β − iγ)

2

an−1
an
− (n+ iγ)

2
(η1 + η2) +

(α− β)

2
(η1 − η2) . (47)

In (a)-(c), there holds the initial conditions a0 = 1, a1 = −u1/u0, where u0 and u1 are
the moments of the weight (38).

Proof. Eq. (44) follows by plugging the data of A,C (cf. (39)-(40)) into (37).
To obtain (45) we sum (44),

n∑
k=1

(Ak −Ak−1) +
n∑
k=1

akak−1 = η1η2

n∑
k=1

(Bk −Bk−1) + η1η2

n∑
k=1

akak−1 ,

where Ak = (k+ 1 +α+β+ iγ)ak+1ak , Bk = (k+ 1 +α+β− iγ)ak+1ak , thus obtaining

An −A0 + τn = η1η2(Bn −B0) + η1η2τn . (48)

In turn, summing (48), after some basic computations, we obtain (45).
Eq. (47) follows by plugging the data of A,C into (36) and using (13).

Proposition 4.2. The reflection coefficients of the MOPS {φn}n≥0 related to the Jacobi
weight (38) can be obtained recursively through

(n+ 1 + α+ β + iγ)an+1 = (η1η2τn + τn + n(η1 + η2))
an

1− |an|2

− η1η2(n− 1 + α+ β − iγ)an−1 , n ≥ 1 , (49)

with initial conditions a0 = 1, a1 = −u1/u0, where u0 and u1 are the moments of the
weight (38).

Proof. Evaluating (31) and (32) at η1 (respectively η2) and summing the result, we
obtain, after some computations, respectively,

((n+ 1 + α+ β + iγ)an+1 + η1η2(n− 1 + α+ β − iγ)an−1)
1− |an|2

an

= τn + η1η2τn + δ1 − 2(αη1 + (β − iγ)η2) + η2(n+ α+ β − iγ) + η1(n+ α+ β + iγ) ,

((n+ 1 + α+ β + iγ)an+1 + η1η2(n− 1 + α+ β − iγ)an−1)
1− |an|2

an

= τn + η1η2τn + δ1 − 2(βη2 + (α− iγ)η1) + η1(n+ α+ β − iγ) + η2(n+ α+ β + iγ) ,

9
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with δ1 given in (46). Summing the above equations and dividing the result by 2 yields

((n+ 1 + α+ β + iγ)an+1 + η1η2(n− 1 + α+ β − iγ)an−1)
1− |an|2

an

= τn + η1η2τn + λ+ n(η1 + η2) , (50)

where

λ = δ1 + (α− β)(η2 − η1) + iγ(η1 + η2) .

Recall that, in account of (5), δ1 is given in terms of the moments u0 and u1 of w,
δ1 = −(1 + α+ β + iγ)u1

u0
+ η1η2(1 + α+ β − iγ)u1

u0
. Thus, λ = 0 and (49) follows.

Remark 4.3. Eq. (49) is Eq. (24) in [20].

The discrete Painlevé V (dPV ) system is deduced in the theorem that follows.

Theorem 4.4. The reflection coefficients of the MOPS {φn}n≥0 related to the Jacobi
weight (38) satisfy the system of discrete Painlevé equations, for all n ≥ 1,

Fn + Fn−1 = 2α+
n− 1 + α+ β − iγ

Gn − 1
+
η1(n+ α+ β + iγ)

Gn − η1/η2
, (51)

(Fn + n)(Fn + n+ 2β)

Fn(Fn − 2α)
=
η2
η1
Gn+1Gn , (52)

with

Fn =
1

η2 − η1

(
−τn − nη2 +

(n+ 1 + α+ β + iγ)an+1

an
(1− |an|2)

)
, (53)

Gn =
η1(n− 1 + α+ β − iγ)− (n+ α+ β + iγ)an/an−1
η2(n− 1 + α+ β − iγ)− (n+ α+ β + iγ)an/an−1

, (54)

subject to the initial conditions F0 = 0, G1 =
η1(α+ β − iγ)− (1 + α+ β + iγ)a1
η2(α+ β − iγ)− (1 + α+ β + iγ)a1

.

Proof. Let us write, for j = 1, 2, in account of (41)-(43),

Θn,1(ηj) = ηj
(
−Nn+1an+1 +Nnηπj

an
)
, (55)

Θn,2(ηj) = η2j
(
−Nnan +Nn+1ηπj

an+1

)
, (56)

ln,1(ηj) = ηj (ρj − τn −Nn+1anan+1) , (57)

where

ρ1 = αη1 + (β − iγ)η2 , ρ2 = βη2 + (α− iγ)η1 , Nn = n+ α+ β + iγ ,

πj = 2 if j = 1, πj = 1 if j = 2 .

Firstly we deduce (51). This equation follows from the use of (31) evaluated at ηj . Let
us detail.
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By evaluating (31) at η1 we obtain, in account of (56)-(57),

F 1
n + F 1

n−1 = −2ρ1 + η2Nn + η1Nn − η1η2Nn−1
an−1
an

+Nn
an
an−1

with F 1
n = −τn +Nn+1

an+1

an
(1− |an|2). Therefore, we get

F̂n + F̂n−1 = 2α(η2 − η1)− η2Nn−1 + η1Nn − η1η2Nn−1
an−1
an

+Nn
an
an−1

(58)

with F̂n = F 1
n − η2Nn + (α+ β − iγ)η2.

As −η2Nn + (α+ β − iγ)η2 = −nη2, (58) is given by

F̃n + F̃n−1 = 2α(η2 − η1)−
(
η2Nn−1 −Nn

an
an−1

)
− η1

(
η2Nn−1 −Nnan/an−1

an/an−1

)

with F̃n = F 1
n − nη2, equivalently,

F̃n + F̃n−1 = 2α(η2 − η1) +
(η2 − η1)Nn−1
−(η2−η1)Nn−1

η2Nn−1−Nnan/an−1

+
η1(η2 − η1)Nn

−(η2−η1)Nnan/an−1

η2Nn−1−Nnan/an−1

.

Therefore, we obtain

1

η2 − η1

(
F̃n + F̃n−1

)
= 2α+

Nn−1
Gn − 1

+
η1Nn

Gn − η1/η2
(59)

with Gn =
η1Nn−1 −Nnan/an−1

η2Nn−1 −Nnan/an−1
. Hence, we have (51) with Fn and Gn given by (53)

and (54), respectively.
Let us now deduce (52). This equation follows from the use of (21) evaluated at ηj .

Let us detail.
By evaluating (21) at η1 we obtain

l2n,1(η1)

η21
− b1
η21

= −Θn,1(η1)Θn,2(η1)

η21
, b1 = −det(B1)(η1) . (60)

Recall the relations (cf. (57))

ln,1(η1)

η1
= (η2 − η1)Fn + ρ1 + nη2 −Nn+1

an+1

an
, ρ1 + nη2 = η2Nn − α(η2 − η1) ,

as well as, in account of (22) and (40), b1 = α2η21(η2 − η1)2, which yield the left hand
side of (60) given by

(η2 − η1)2
(
(Fn − α)2 − α2

)
+ (η2Nn −Nn+1

an+1

an
)

(
η2Nn −Nn+1

an+1

an
+ 2(η2 − η1)(Fn − α)

)
.

11
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Therefore, in account of (55)-(56), Eq. (60) yields

(η2 − η1)2Fn(Fn − 2α)

= (−η2Nn +Nn+1
an+1

an
)

(
η2Nn −Nn+1

an+1

an
+ 2(η2 − η1)(Fn − α)

)
+

(
Nn+1

an+1

an
− η2Nn

)(
−η1Nn|an|2 + η1η2Nn+1anan+1

)
.

Using Fn given by (53) in the right-hand side of the above equation we obtain

(η2 − η1)2Fn(Fn − 2α) = η1
an−1
an

(1− |an|2)× denominator of Gn+1Gn . (61)

Proceeding by an analogous manner, starting by evaluating (21) at η2 we obtain

l2n,1(η2)

η22
− b2
η22

= −Θn,1(η2)Θn,2(η2)

η22
, b2 = −det(B1)(η2) . (62)

Recall the relations (cf. (57))

ln,1(η2)

η2
= (η2 − η1)Fn + ρ2 + nη2 −Nn+1

an+1

an
,

which yield the left hand side of (62) given by(
(η2 − η1)(Fn + n)−Nn+1

an+1

an
+ ρ2 + nη1

)2

− b2
η22
,

equivalently, in account of ρ2 + nη1 = η1Nn + β(η2 − η1) and b2 = β2η22(η2 − η1)2,

(η2 − η1)2
(
(Fn + n+ β)2 − β2

)
+ (η1Nn −Nn+1

an+1

an
)

(
η1Nn −Nn+1

an+1

an
+ 2(η2 − η1)(Fn + n+ β)

)
.

Therefore, in account of (55)-(56), Eq. (62) yields

(η2 − η1)2(Fn + n)(Fn + n+ 2β)

= (−η1Nn +Nn+1
an+1

an
)

(
η1Nn −Nn+1

an+1

an
+ 2(η2 − η1)(Fn + n+ β)

)
+

(
Nn+1

an+1

an
− η1Nn

)(
−η2Nn|an|2 + η1η2Nn+1anan+1

)
.

Using Fn given by (53) in the right-hand side of the above equation we obtain

(η2 − η1)2(Fn + n)(Fn + n+ 2β) = η2
an−1
an

(1− |an|2)× numerator of Gn+1Gn . (63)

Taking the ratio between (61) and (63) we get (52).
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Remark 4.5. If we take {η1, η2} = {−1,−1/t} in (38), then the difference equations
contained in Propositions 4.1 and 4.2 as well as in Theorem 4.4 agree with the ones given
in [15], in Lemmas 3.2, 3.3, 3.4, Corollary 3.1, and Proposition 3.4.

4.2 Further results: difference equations for perturbations of generalized
Jacobi polynomials

Let w be the Jacobi weight (38) and (un)n∈Z its moments. For a fixed non-negative

integer j, we define the weight w[j], with moments (u
[j]
n )n∈Z, through the perturbations

u[0]n =

{
un , n 6= 0 ,

u0 +m, n = 0
(64)

u[j]n =


un , n /∈ {−j, j} , j ≥ 1 ,

un +m, n = j ,

un +m, n = −j
(65)

where, in (64), m ∈ R and, in (65), m ∈ C.

Remark 4.6. The above transformations are connected to perturbations of Hermitian
matrices [5]. In the language of Hermitian linear functionals, the functional related to
w[j] is a sum perturbation of the functional u related to w, given as

u[j] =

{
u+mL , j = 0 ,

u+ 2<e(mzj)L , j ≥ 1 ,
(66)

with L the normalized Lebesgue functional. Necessary and sufficient conditions for the
regularity of linear functionals u[j] of the above type were given in [5, Propositions
1 and 7].

The Carathéodory function of w[j], F [j], is given in terms of the Carathéodory function
of w as

F [j](z) =

{
F (z) +m, j = 0 ,

F (z) + 2mzj , j ≥ 1 .

As F satisfies zAF ′ = CF +D, then we have

zA
(
F [j]

)′
= CF [j] +D +

{
−mC , j = 0 ,

2mzj(jA− C) , j ≥ 1 .
(67)

Thus, F [j] is Laguerre-Hahn affine such that the condition max{deg(A), deg(C)} ≤ 2 is
preserved.

In the sequel we assume the regularity of u[j] defined by (66), that is, we assume the

regularity of the weight w[j]. We denote the MOPS related to w[j] by {φ[j]n }n≥0 and we
write

φ[j]n (z) = zn + τj,nz
n−1 + · · ·+ kj,nz + aj,n, n ≥ 0 .

13
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In account of (5), there holds aj,0 = 1, j ≥ 0,

a0,n =
(−1)n det

(
T̂n +mZtn

)
det (Tn−1 +mIn)

, n ≥ 1 , (68)

and, for all j ≥ 1, n ≥ 1,

aj,n =



an , n ≤ j − 1 ,

(−1)n det
(
T̂n +mZj−1n

)
∆n−1

, n = j ,

(−1)n det
(
T̂n +mZj−1n

)
det (Tn−1 +mZj +m(Ztn)j)

, n = j + 1 ,

(−1)n det
(
T̂n +mZj−1n +m(Ztn)j+1

)
det
(
Tn−1 +mZjn +m(Ztn)j

) , n ≥ j + 2 ,

(69)

where T̂n =


u1 u2 . . . un
u0 u1 . . . un−1
...

. . .
...

un−2 . . . u0 u1

, Zn is the shift matrix of order n with ones on the first

upper-diagonal and zeroes on the remaining entries, t denotes the transpose, and In is
the identity matrix of order n.

Theorem 4.7. Under the notations previously defined, for each non-negative integer j,
the following statements hold:

(a) the reflection coefficients of the MOPS {φ[j]n }n≥0 satisfy Eqs. (44), (45), (47) where,
for all n ≥ j + 1, the initial conditions aj,j , aj,j+1 given by (68)-(69) take place ;

(b) for all n ≥ j + 1, the reflection coefficients of the MOPS {φ[j]n }n≥0 can be obtained
recursively through

(n+ 1 + α+ β + iγ)aj,n+1 = (η1η2τ j,n + τj,n + n(η1 + η2) + λj)
aj,n

1− |aj,n|2

− η1η2(n− 1 + α+ β − iγ)aj,n−1 , (70)

with λj = δj,1 + (α− β)(η2 − η1) + iγ(η1 + η2),

δj,1 =

−(1 + α+ β + iγ) u1

u0+m
+ η1η2(1 + α+ β − iγ) u1

u0+m
, j = 0 ,

−(1 + α+ β + iγ)u1

u0
+ η1η2(1 + α+ β − iγ)u1

u0
, j ≥ 1 ,

with initial conditions aj,j , aj,j+1 given by (68)-(69);

(c) the reflection coefficients of the MOPS {φ[j]n }n≥0 satisfy the system of discrete
Painlevé equations (51)-(52), where, for all n ≥ j + 1, the initial conditions are defined
in terms of aj,j , aj,j+1 given by (68)-(69).

Proof. Recall that the difference equations deduced in Propositions 4.1 and 4.2 and The-
orem 4.4 follow from the difference relations given in Corollary 3.4, and these are based

14
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on the polynomials ln and Θn, which depend on the coefficients A,C of the differential
equation zAF ′ = CF +D. As F [j] satisfies (67) with the same A,C, then all the calcu-
lus done before remain valid. Hence, the assertions follow. Note that (70) follows from
(50).
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