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1. Introduction

The study of the Christoffel and Geronimus transformations, members of the so-called
canonical linear spectral transformations, is a widely known theme in the literature of
orthogonal polynomials and special functions. From the historical point of view, the
analysis of Christoffel and Geronimus transformations puts emphasis on modifications
of weights supported on subsets of the real line under the multiplication and polynomial
division with the addiction of a mass point, respectively. The seminal references are
traced back to [1–5].

When the original weight is a member of the semi-classical class, that is, the log-
derivative is a rational function, there are well-known applications, e.g., in quantum
mechanics, and in the theory of integrable systems (see, for instance, [6–10]). A common
topic of research concerns the formulae expressing the new orthogonal polynomials in
terms of the original system. Basic structures to be analysed are the consequences for the
recurrence relation coefficients and the spectral derivatives of the corresponding system
of orthogonal polynomials. Let us note that, when dealing with semi-classical families
supported on the real line, the spectral derivatives are, essentially, systems of difference-
differential equations involving two consecutive elements of the sequence of orthogonal
polynomials, {Pn}n≥0, say,

AP ′n = MnPn +NnPn−1 , (1)
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where A,Mn, Nn are polynomials. Equations such as (1) have been extensively studied
from several points of view, allowing classifications and characterizations [11, 12].

In the present paper we study the action of the Christoffel and Geronimus transforma-
tions on Laguerre-Hahn families of orthogonal polynomials. Such sequences of orthogo-
nal polynomials generalize the semi-classical families. Indeed, the Laguerre-Hahn class
includes, as subclass, the semi-classical families as well as some of their transformations,
including the linear spectral ones [13–15].

The main motivation for the present work relies on studies concerning polynomial and
rational modification of weights in the semi-classical class, [8] and [10, Sec. 3].

A fundamental tool in our study are the systems of difference-differential equations

involving the Laguerre-Hahn orthogonal polynomials and their associated, {P (1)
n }n≥0

(cf. Section 2),

AΨ′n =MnΨn +NnΨn−1 , n ≥ 0 , Ψn =
[
Pn+1 P (1)

n

]T
, (2)

where A is a polynomial andMn,Nn are 2×2 matrices with polynomial entries [16]. We
study the modifications of systems of type (2) under the general framework of Christoffel
and Geroninums transformations of linear functionals [15, 17, 18]. The main goal is to
study the derivatives of the system (2) under such modifications and, as a consequence,
to analyse the corresponding changes on the recurrence relation coefficients of the or-
thogonal polynomials. Our main results give the new matrices in (2) for the modified
system in terms of the original one (cf. Section 4). Also, in the semi-classical case, we
give the modified transfer matrices in terms of the original ones.

The reminder of the paper is organized as follows. In Section 2 we give the basic results
on Laguerre-Hahn orthogonal polynomials and we introduce notation to be used in the
sequel. In Section 3 we deduce formulae expressing the new matrices Ψn in terms of
the original ones (see Theorems 3.1, 3.3, and 3.5), from which the recurrence relation
coefficients for the modified orthogonal polynomials are recovered (see Corollaries 3.2
and 3.4). In Section 4 we deduce the modified matrices of systems of type (2) under
the Christoffel and Geronimus transformations for the generic Laguerre-Hahn class (see
Theorem 4.1), together with the analysis of the transformations in the semi-classical class
(see Theorem 4.2). Examples, illustrating the main results, are given in Sub-Section 4.2.

2. Preliminary results and notations

Let P = span {xk : k ∈ N0} be the linear space of polynomials with complex coefficients,
and let P∗ be its algebraic dual space. We will denote by 〈u, f〉 the action of u ∈ P∗
on f ∈ P. Given the moments of u, un = 〈u, xn〉, n ≥ 0, where we take u0 = 1, the
principal minors of the corresponding Hankel matrix are defined by Hn = det(ui+j)

n
i,j=0,

where, by convention, H−1 = 1. The functional u is said to be quasi-definite (respect.,
positive-definite) if Hn 6= 0 (respect., Hn > 0), for all n ≥ 0.

Let u ∈ P∗ and let {Pn}n≥0 be a sequence of polynomials such that deg(Pn) = n. The
basis {Pn}n≥0 is said to be a sequence of orthogonal polynomials with respect to u if

〈u, PnPm〉 = hnδn,m , hn 6= 0 , n,m ≥ 0 . (3)

Throughout the paper we shall take each Pn monic, that is, Pn(x) = xn+ lower degree
terms, and we will denote {Pn}n≥0 by SMOP.

The equivalence between the quasi-definiteness of u and the existence of a SMOP
with respect to u is well-known in the literature of orthogonal polynomials [19, 20].
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Furthermore, if u is positive-definite, then it has an integral representation in terms of a
positive Borel measure, µ, supported on an infinite point set, I ⊆ R, such that

un = 〈u, xn〉 =

∫
I
xn dµ(x) , n ≥ 0 . (4)

If µ is an absolutely continuous measure supported on I, and w denotes its Radon-
Nikodym derivative with respect to the Lebesgue measure, then we will also say that
{Pn}n≥0 is orthogonal with respect to the weight w.

Associated with any SMOP there exist sequences {γn}n≥0 and {βn}n≥0 of positive real
numbers and real numbers, respectively, such that the three-term recurrence relation
holds [20]:

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n ≥ 1 , (5)

with P0(x) = 1 and P1(x) = x− β0.
Given a SMOP with respect to u, the sequence of associated polynomials of the first

kind is defined by

P (1)
n (x) = 〈u[t],

Pn+1(x)− Pn+1(t)

x− t
〉 , n ≥ 0 ,

as we are assuming u0 = 1. Here, u[t] denotes the action of u on the variable t.

The sequence {P (1)
n }n≥0 also satisfies a three-term recurrence relation,

P (1)
n (x) = (x− βn)P

(1)
n−1(x)− γnP (1)

n−2(x) , n ≥ 1 , (6)

with P
(1)
−1 (x) = 0 and P

(1)
0 (x) = 1.

The Stieltjes function of u is defined by S(x) =

∞∑
n=0

un
xn+1

. Note that if u is positive-

definite, defined by (4), then S is given by

S(x) =

∫
I

dµ(t)

x− t
, x ∈ C \ I .

The sequence of functions of the second kind corresponding to {Pn}n≥0 is defined as
follows:

qn+1 = Pn+1S − P (1)
n , n ≥ 0 , q0 = S .

Whenever u is positive-definite, defined by (4), the qn’s are given in terms of an integral
formula,

qn(x) =

∫
I

Pn(t)

x− t
dµ(t) , n ≥ 0 .

The Stieltjes function S is said to be Laguerre-Hahn if there exist polynomials
A,B,C,D, with A 6= 0, such that it satisfies a Riccati differential equation [12]

AS′ = BS2 + CS +D . (7)

3



September 7, 2017 Integral Transforms and Special Functions ”R3 canonical LH 07˙09˙2017”

The corresponding sequence of orthogonal polynomials is called Laguerre-Hahn. If B = 0,
then S is said to be Laguerre-Hahn affine or semi-classical.

Note that equation (7) is equivalent to the distributional equation [12, 14]

D(Au) = ψu+B(x−1u2) , ψ = A′ + C ,

being the left product of u by a polynomial defined as

〈g u, f〉 = 〈u, g f〉 , g, f ∈ P ,

the derivative defined as

〈Du, f〉 = −〈u, f ′〉 , f ∈ P ,

the product of two linear functionals defined as

〈u v, f〉 = 〈u, v f〉 , f ∈ P ,

and the linear functional x−1u defined as

〈x−1u, f〉 = 〈u ,Θ0f〉 , Θ0f(x) =
f(x)− f(0)

x
, f ∈ P .

For further purposes we show the generalization of the above formula, that is, we define
p−1u, with p a polynomial p(x) =

∏s
i=1(x− ci)mi . Let us denote the set of the zeroes of

p, counting multiplicities, by R. The linear functional p−1u is defined as (see [15])

〈p−1(x)u, f〉 = 〈u,ΘRf〉 , ΘRf(x) =
f(x)− LRf(x)

p(x)
, f ∈ P ,

where LRf is the interpolating polynomial of f , LRf(x) =
∑s

i=1

∑mi

k=1 f
(k−1)(ci)`i,k(x),

with `i,k the polynomial such that

`
(µ)
i,k =

{
1 if i = k, µ = k − 1

0 otherwise
.

If u is positive-definite, defined in terms of a weight, w, then the semi-classical character
of u, D(Au) = ψu, deg(ψ) ≥ 1, is equivalent to w′/w = C/A with w satisfying the
boundary conditions [12]

xnA(x)w(x)|a,b = 0 , n ≥ 0 ,

where a, b (eventually a and/or b infinite) are linked with the roots of A. In such a case,
w is the weight function on the support I = [a, b], thus, supp(w) = I.

We consider the polynomial and rational transformations of linear functionals (see
[17, 18, 21]):
(a) Christoffel transformation

ũ = (x− c)u , c /∈ supp(u) , (8)
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the corresponding orthogonal polynomials, P̃n, satisfy

(x− c)P̃n(x) = Pn+1(x)− anPn(x) , an = Pn+1(c)/Pn(c) . (9)

(b) Geronimus transformation

ũ = (x− c)−1u+Mδ(x− c) , c /∈ supp(u) , (10)

with M a nonzero constant, and δ(x − c) the Dirac Delta at c. The corresponding or-
thogonal polynomials, P̃n, satisfy

P̃n(x) = Pn(x)− bnPn−1(x) , bn = an−1 −
(

1

an−1 − rn−1
−M

P 2
n−1(c)

〈u, P 2
n−1〉

)−1
, (11)

where an is defined in (9) and rn = qn+1(c)/qn(c).
Throughout the paper we will use the following matrices associated with the SMOP
{Pn}n≥0:

Ψn =
[
Pn+1 P (1)

n

]T
, Yn =

[
Pn+1 qn+1/w
Pn qn/w

]
, n ≥ 0 . (12)

In the account of (5) and (6), we have the recurrence relations

Ψn(x) = (x− βn)Ψn−1(x)− γnΨn−2(x) , n ≥ 1 , (13)

Yn = AnYn−1 , An =

[
x− βn −γn

1 0

]
, n ≥ 1 , (14)

with initial conditions

Ψ−1 =
[
P0 P

(1)
−1

]T
, Ψ0 =

[
P1 P

(1)
0

]T
, Y0 =

[
x− β0 1

1 0

]
.

As usual, An is called the transfer matrix.
The matrices (12) will play a relevant role in the sequel. Indeed, Laguerre-Hahn orthog-

onal polynomials are characterized in terms of differential systems for {Ψn}n≥0: there
holds the equivalence between (7) and

AΨ′n =MnΨn +NnΨn−1 , n ≥ 0 . (15)

Here, A is the same as in (7) and Mn,Nn are 2× 2 matrices whose entries are bounded
degree polynomials depending on the coefficients of the Riccati equation [16, Theorem
1]. In the semi-classical case, that is, B ≡ 0 in (7), when dealing with weights, there
holds the equivalence between the semi-classical character of w, w′/w = C/A, and the
differential system

AY ′n = BnYn , n ≥ 1 . (16)

Here, Bn is a 2× 2 matrix whose entries are bounded degree polynomials depending on
the polynomials A,C (see [22, Theorem 2] and [11]).

Henceforth, (X)(i,j) denotes the (i, j) entry in the matrix X, and I denotes the identity
matrix.
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3. The Christoffel-Geronimus transformations: matrix relations

In this section we will write the matrix modifications for {Ψn}n≥0 under the transforma-
tions (8) and (10).

3.1 Christoffel transformation

Theorem 3.1. Let {Pn}n≥0 be a SMOP and let {P̃n}n≥0 be the SMOP related to the

modification (8). Denote by {Ψn}n≥0 and {Ψ̃n}n≥0 the corresponding sequences defined
through (12). The following relation holds:

(x− c)Ψ̃n(x) = Sn(x; c)Ψn+1(x) + Tn(x; c)Ψn(x) , n ≥ 0 , (17)

where

Sn(x; c) =

[
1 0
−1 x− c

]
, Tn(x; c) = −an+1Sn(x; c) . (18)

Proof. Let us denote by P̃
(1)
n the associated polynomial of the first kind related to P̃n.

Let us first prove the identity

(x− c)P̃ (1)
n (x) = an+1Pn+1(x)− Pn+2(x) + (x− c)

(
P

(1)
n+1(x)− an+1P

(1)
n (x)

)
. (19)

Using the definition of P̃
(1)
n as well as (9), we get, after some basic computations,

(x− c)P̃ (1)
n (x) = 〈u[t],

tAn(x)− xAn(t)

x− t
〉 − c〈u[t],

An(x)−An(t)

x− t
〉 ,

where An(x) = Pn+2(x)− an+1Pn+1(x).
Note that

〈u[t],
tAn(x)− xAn(t)

x− t
〉 = 〈u[t],

(t− x)An(x)− (x− t)An(t)

x− t
〉+ 〈u[t],

xAn(x)− tAn(t)

x− t
〉 ,

thus,

〈u[t],
tAn(x)− xAn(t)

x− t
〉 = −An(x) + xP

(1)
n+1(x)− an+1xP

(1)
n (x) , (20)

where we have used 〈u[t], (−An(x) − An(t))〉 = −An(x) together with the recurrence
relation (5). Also,

〈u[t],
An(x)−An(t)

x− t
〉 = P

(1)
n+1(x)− an+1P

(1)
n (x) . (21)

Therefore, (20) and (21) yield (19).
Equation (17) is the matrix form of (9) and (19).

The recurrence relation coefficients for the transformed orthogonal polynomials can
also be obtained using the matrix identities (17). Indeed, we recover the results, e.g., in
[21]. More information can be obtained in [15, 18, 23].
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Corollary 3.2. Under the notation of (9), the recurrence coefficients of the SMOP
{P̃n}n≥0 related to (8) are transformed according to the formulas

β̃n = βn+1 + an+1 − an , γ̃n = γn
an
an−1

. (22)

Proof. Multiply the recurrence relation Ψ̃n = (x− β̃n)Ψ̃n−1− γ̃nΨ̃n−2, n ≥ 1, by (x− c)
and use (17), thus obtaining

SnΨn+1 + TnΨn = (x− β̃n) (Sn−1Ψn + Tn−1Ψn−1)− γ̃n (Sn−2Ψn−1 + Tn−2Ψn−2) .

The use of the recurrence relation (13) in the above equality yields

Mn,1Ψn =Mn,2Ψn−1 , n ≥ 0 ,

where

Mn,1 = (x− βn+1)Sn + Tn − (x− β̃n)Sn−1 −
γ̃n
γn
Tn−2 ,

Mn,2 = γn+1Sn + (x− β̃n)Tn−1 − γ̃nSn−2 −
γ̃n
γn

(x− βn)Tn−2 .

After some computations we conclude thatMn,1 andMn,1 are null matrices. Therefore,
we get

(x− βn+1)Sn + Tn − (x− β̃n)Sn−1 −
γ̃n
γn
Tn−2 = 0 , (23)

γn+1Sn + (x− β̃n)Tn−1 − γ̃nSn−2 −
γ̃n
γn

(x− βn)Tn−2 = 0 . (24)

Equation (23) yields only one non-trivial equation,

β̃n = βn+1 + an+1 −
γ̃n
γn
an−1 . (25)

Equation (24) yields only one non-trivial equation,

an =
γ̃n
γn
an−1 . (26)

Equations (25) and (26) yield (22).

3.2 Geronimus transformation

Theorem 3.3. Let {Pn}n≥0 be a SMOP and let {P̃n}n≥0 be the SMOP related to the

modification (10). Denote by {Ψn}n≥0 and {Ψ̃n}n≥0 the corresponding sequences defined
through (12). The following relation holds:

(x− c)Ψ̃n(x) = Sn(x; c)Ψn+1(x) + Tn(x; c)Ψn(x) , n ≥ 0 , (27)

7



September 7, 2017 Integral Transforms and Special Functions ”R3 canonical LH 07˙09˙2017”

where

Sn(x; c) =

[
1− (c−β̃n+1)bn+1

γn+1
− γ̃n+1

γn+1
+ (x−βn)γ̃n+1bn

γnγn+1
0

bn+1

γn+1

bn+1

γn+1

]
, (28)

Tn(x; c) =

[
tn 0

1− (x−βn+1)bn+1

γn+1
1− (x−βn+1)bn+1

γn+1

]
, (29)

where

tn = −bn+2 + β̃n+1 − c+
γ̃n+1bn
γn

− (x− βn+1)((Sn)(1,1) − 1) .

Proof. Let us first prove the identity

(x− c)P̃ (1)
n (x) = Pn+1(x)− bn+1Pn(x) + P (1)

n (x)− bn+1P
(1)
n−1(x) . (30)

Note that

(x−c)P̃ (1)
n (x) = 〈(x− t)ũ[t],

P̃n+1(x)− P̃n+1(t)

x− t
〉+〈(t−c)ũ[t],

P̃n+1(x)− P̃n+1(t)

x− t
〉 . (31)

In the account of the orthogonality relation, the first integral in (31) gives us

〈ũ[t], P̃n+1(x)〉 = P̃n+1(x) . (32)

The second integral in (31) gives us, in the account of (11),

〈u[t],
P̃n+1(x)− P̃n+1(t)

x− t
〉 = P (1)

n (x)− bn+1P
(1)
n−1(x) . (33)

Therefore, from (32) and (33) we get (30).
Now let us write, in the matrix notation, (11) and (30), that is,

(x− c)Ψ̃n = AΨn+1 + BnΨn + CnΨn−1 +DnΨn−2 ,

with

A =

[
1 0
0 0

]
, Bn =

[
β̃n+1 − bn+2 − c 0

1 1

]
,

Cn =

[
(c− β̃n+1)bn+1 + γ̃n+1 0

−bn+1 − bn+1

]
, Dn =

[
−γ̃n+1bn 0

0 0

]
.

The use of the recurrence relation (13) yields

(x− c)Ψ̃n = SnΨn+1 + TnΨn ,

with

Sn = A− Cn
γn+1

−(x− βn)

γnγn+1
Dn , Tn = Bn+

(x− βn+1)

γn+1
Cn+

(
(x− βn)(x− βn+1)

γnγn+1
− 1

γn

)
Dn .
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Hence, we obtain (27) with the matrices Sn, Tn given in (28) and (29).

Following the same technique as in Corollary 3.2, and using the matrix relations (27),
we recover the recurrence coefficients of the modified polynomials (see, e.g., [21]).

Corollary 3.4. Under the notation of (11), the recurrence coefficients of the SMOP
{P̃n}n≥0 related to (10) are transformed according to the formulas

β̃n = βn + bn+1 − bn , γ̃n = γn−1
bn
bn−1

. (34)

3.3 Iterations - General formulas

In this section we consider the iteration of (8) and (10). Without loss of generalization,
and for simplicity matters, in (35) and (36) we take ci 6= cj , νi 6= νj , i 6= j . We denote
the iterated transformation (8) by

u[K] =
K∏
j=1

(x− cj)u , cj /∈ supp(u) , j = 1, . . . ,K , (35)

and the iterated transformation (10) by

u[L] =
1∏L

j=1(x− νj)
u+

L∑
j=1

Mjδ(x− νj) , νj /∈ supp(u) , j = 1, . . . , L , (36)

with Mj nonzero constants, j = 1, . . . , L. The monic orthogonal polynomials related to
(35) and (36) will be denoted by Pn,K,· and Pn,·,L, respectively. The corresponding vectors

defined in (12) related to u[K] will be denoted by Ψn,K,·, and the ones related to u[L] will
be denoted by Ψn,·,L. Recall that the vectors related to u are denoted by Ψn.

As a consequence of Theorems 3.1 and 3.3 we obtain the following result.

Theorem 3.5. For the modification (35), the following relation holds, for all n ≥ 0:

K∏
j=1

(x− cj)Ψn,K,·(x) = Sn(x; ck, . . . , c1)Ψn+1(x) + Tn(x; ck, . . . , c1)Ψn(x) , (37)

where the matrices Sn(x; ck, . . . , c1), Tn(x; ck, . . . , c1) are defined recursively through

Sn(x; ck, . . . , c1) = (x− βn+2)Sn(x; ck)Sn+1(x; ck−1, . . . c1)

+Sn(x; ck)Tn+1(x; ck−1, . . . , c1) + Tn(x; ck)Sn(x; ck−1, . . . , c1),

Tn(x; ck, . . . , c1) = −γn+2Sn(x; ck)Sn+1(x; ck−1, . . . , c1)

+Tn(x; ck)Tn(x; ck−1, . . . , c1) ,

with initial conditions

Sn(x; c1) =

[
1 0
−1 x− c1

]
, Tn(x; c1) = −an+1Sn(x; c1) .

9
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For the modification (36), the following relation holds, for all n ≥ 0:

L∏
j=1

(x− νj)Ψn,·,L(x) = Sn(x; νL, . . . , ν1)Ψn+1(x) + Tn(x; νL, . . . , ν1)Ψn(x) , (38)

where the matrices Sn(x; νL, . . . , ν1), Tn(x; νL, . . . , ν1) are defined recursively through

Sn(x; νL, . . . , ν1) = (x− βn+2)Sn(x; νL)Sn+1(x; νL−1, . . . , ν1)

+ Sn(x; νL)Tn+1(x; νL−1, . . . , ν1) + Tn(x; νL)Sn(x; νL−1, . . . , ν1),

Tn(x; νL, . . . , ν1) = −γn+2Sn(x; νL)Sn+1(x; νL−1, . . . , ν1)

+Tn(x; νL)Tn(x; νL−1, . . . , ν1) ,

with initial conditions

Sn(x; ν1) =

[
1− (ν1−β̃n+1)bn+1

γn+1
− γ̃n+1

γn+1
+ (x−βn)γ̃n+1bn

γnγn+1
0

bn+1

γn+1

bn+1

γn+1

]
,

Tn(x; ν1) =

[
tn 0

1− (x−βn+1)bn+1

γn+1
1− (x−βn+1)bn+1

γn+1

]
,

where

tn = −bn+2 + β̃n+1 − ν1 +
γ̃n+1bn
γn

− (x− βn+1)((Sn(x; ν1))(1,1) − 1) .

Remark 3.6. If we consider multiplicity greater than one of some cj or νj in (35) and
(36) we get a more general situation. More information on this topic can be obtained in
[1, 4, 5, 14, 24].

4. Modifications within the Laguerre-Hahn class

Recall that the Laguerre-Hahn class is closed under the Christoffel and Geronimus trans-
formations [12]. Let us take a Laguerre-Hahn Stieltjes function, S, and let S̃ be its Stieljtes
modified under the Christoffel or Geronimus transformations. Recall the equivalence be-
tween the Riccati equation for S̃, say

ÃS̃′ = B̃S̃2 + C̃S̃ + D̃ ,

and a structure relation for the corresponding Ψ̃n,

ÃΨ̃′n = M̃nΨ̃n + ÑnΨ̃n−1 , n ≥ 0 . (39)

In what follows we construct the difference-differential equation (39) for the transformed

Ψ̃n, based on the matrices from the difference-differential equation (15) for Ψn related
to S, AΨ′n =MnΨn +NnΨn−1, as well as on the matrices from the identities (17) and

(27), (x− c)Ψ̃n = SnΨn+1 + TnΨn .

Theorem 4.1. Let {Pn}n≥0 be a SMOP related to a Laguerre-Hahn Stieltjes function S
satisfying AS′ = BS2 + CS +D, equivalently, the corresponding {Ψn}n≥0 satisfying the

10
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difference-differential equation (15),

AΨ′n =MnΨn +NnΨn−1 , n ≥ 0 .

Let {P̃n}n≥0 be the SMOP related to the modified Stieltjes function under the Christoffel

or Geronimus transformations (8) or (10), say, S̃, satisfying

ÃS̃′ = B̃S̃2 + C̃S̃ + D̃ , Ã(x) = (x− c)A(x) . (40)

There holds the equivalence between (40) and the difference-differential equation

ÃΨ̃′n = M̃nΨ̃n + ÑnΨ̃n−1 (41)

with the matrices M̃n, Ñn given by

M̃n =

(
Ŝn +

1

γn+1
ÑnTn−1

)
S−1n , Ñn =

(
T̂nT −1n − ŜnS−1n

)
V−1n , (42)

where

Ŝn = (x− c)
(
AS ′n + SnMn+1 −

1

γn+1
TnNn

)
−ASn , (43)

T̂n = (x− c)
(
AT ′n + SnNn+1 + Tn

(
Mn +

(x− βn+1)

γn+1
Nn
))
−ATn , (44)

Vn =
1

γn+1
Tn−1S−1n +

(
Sn−1 +

(x− βn+1)

γn+1
Tn−1

)
T −1n , (45)

with Sn, Tn the matrices from (17) and (27).

Proof. Set the relations (17) and (27) written as

(x− c)Ψ̃n = SnΨn+1 + TnΨn . (46)

Take derivatives in (46), multiply by the polynomial A, and use (15), thus obtaining

AΨ̃n +A(x− c)Ψ̃′n = Sn,1Ψn+1 + Tn,1Ψn , (47)

with

Sn,1 = AS ′n+SnMn+1−
1

γn+1
TnNn , Tn,1 = AT ′n+SnNn+1+Tn

(
Mn +

(x− βn+1)

γn+1
Nn
)
.

Multiply (47) by (x− c) and use again (46), thus obtaining

ÂΨ̃′n = ŜnΨn+1 + T̂nΨn , (48)

with

Â = (x− c)2A , Ŝn = (x− c)Sn,1 −ASn, T̂n = (x− c)Tn,1 −ATn .

11
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To deduce the matrices M̃n, Ñn, in (41) we multiply (x− c)AΨ̃′n = M̃nΨ̃n + ÑnΨ̃n−1
by x− c and use (46) and (48), as well as the recurrence relation (13), thus getting

Mn,1Ψn+1 =Mn,2Ψn ,

with

Mn,1 = Ŝn−M̃nSn+
1

γn+1
ÑnTn−1 , Mn,2 = −T̂n+M̃nTn+ÑnSn−1+

(x− βn+1)

γn+1
ÑnTn−1 .

Taking into account the structure of the matrices defining Mn,1 and Mn,2, we conclude

that Mn,1 and Mn,2 are null matrices. Hence, we obtain that M̃n, Ñn are given by
(42).

4.1 The semi-classical class: the Christoffel and Geronimus weight
transformations

Recall that the semi-classical class is closed under the Christoffel and Geronimus trans-
formations [12]. Whenever dealing with weights, there holds the equivalence between the
semi-classical character of w, say w′/w = C/A, and the differential system (16) for the
corresponding Yn,

AY ′n = BnYn , n ≥ 1 ,

where Bn is a matrix of polynomial entries [22, Theorem 2].
Let us now consider w̃, a modification of w under the Christoffel or Geronimus trans-

formation. As w̃ is semi-classical, there holds a differential system for the corresponding

Ỹn =

[
P̃n+1 q̃n+1/w̃

P̃n q̃n/w̃

]
,

ÃỸ ′n = B̃nỸn , n ≥ 1 . (49)

In what follows we see how B̃n in (49) and the transfer matrices of {Ỹn}n≥0, henceforth

denoted by Ãn, relate to Bn in (16) and to the transfer matrices An of {Yn}n≥0.

Theorem 4.2. Let {Pn}n≥0 be a SMOP related to a semi-classical weight w with the
corresponding {Yn}n≥0 satisfying (16),

AY ′n = BnYn , n ≥ 1 .

Let An be the transfer matrix of Yn.
a) Christoffel case.
a.1) The sequence {Ỹn}n≥0 related to the modified weight w̃(x) = (x− c)w(x) satisfies

(x− c)Ỹn = CnYn , Cn = An+1 −An , n ≥ 1 , (50)

where An =

[
an+1 0

0 an

]
, an = Pn+1(c)/Pn(c);

a.2) {Ỹn}n≥0 satisfies a linear system (49), ÃỸ ′n = B̃nỸn , n ≥ 1 , where

Ã = (x− c)A , B̃n =
(
(x− c)(AC′n + CnBn)−ACn

)
C−1n ; (51)

12
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a.3) The transfer matrices of Ỹn and Yn are related through

Ãn = CnAnC−1n−1 , n ≥ 1 . (52)

b) Geronimus case.

b.1) The sequence {Ỹn}n≥0 related to the modified weight w̃(x) =
w(x)

(x− c)
satisfies

Ỹn = GnYn , Gn = An+1 −Bn , (53)

where Bn =

[
bn+1 0

0 bn

]
, bn = qn(c)/qn−1(c);

b.2) {Ỹn}n≥0 satisfies a linear system (49), ÃỸ ′n = B̃nỸn , n ≥ 1 , where

Ã = (x− c)A , B̃n = (x− c)
(
AG′n + GnBn

)
G−1n ; (54)

b.3) The transfer matrices of Ỹn and Yn are related through

Ãn = GnAnG−1n−1 . (55)

Proof. Christoffel case.
a.1) The sequence of functions of the second kind related to w̃, {q̃n}, satisfies

q̃n(x) = qn+1(x)− anqn(x) , n ≥ 1 . (56)

Thus,

(x− c)Ỹn = Yn+1 −AnYn .

The use of (14), Yn+1 = An+1Yn, in the equation above yields (50).
a.2) Take derivatives in (50), then multiply the resulting equation by (x− c)A and use

(50) again, thus obtaining

(ACn + B̃nCn)Yn = (x− c)
(
AC′n + CnBn

)
Yn .

Hence, we have the linear system (49) with the data (51).
a.3) Relation (52) follows from the use of the recurrence relation for Yn as well as for
Ỹn, into (50).

Geronimus case.
b.1) The sequence of functions of the second kind related to w̃, {q̃n}, satisfies

(x− c)q̃n(x) = qn(x)− bnqn−1(x) , n ≥ 1 .

Thus,

Ỹn = Yn+1 −BnYn .

The use of (14), Yn+1 = An+1Yn, in the equation above yields (53).
b.2) and b.3) are deduced similarly as a.2) and a.3).

13
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4.2 Examples

Let {PLn }n≥0, {P Jn }n≥0 denote the sequences of monic Laguerre and Jacobi anti-
associated polynomials, respectively. These are members of the Laguerre-Hahn families
of class zero [25].

The recurrence relation coefficients of {PLn }n≥0 are

βn = 2n+ α− 1 , γn+1 = n(n+ α) , n ≥ 1 , β0 = α− 1 + λ , γ1 = ρ ,

with α, λ ∈ C, α 6= −n, n ≥ 1, ρ ∈ C \ {0}. The recurrence relation coefficients of
{P Jn }n≥0 are

βn =
β2 − α2

(2n+ α+ β − 2)(2n+ α+ β)
,

γn+1 =
4n(n+ α)(n+ β)(n+ α+ β)

(2n+ α+ β − 1)(2n+ α+ β)2(2n+ α+ β + 1)
, n ≥ 1

and β0 = β−α
α+β−2 + λ, γ1 = ρ, α, β, λ ∈ C, α 6= −n, β 6= −n, n ≥ 1, α + β 6= −n, n ≥

2, α+ β 6= 2, ρ ∈ C \ {0}.
The corresponding Stieltjes functions satisfy (7), AS′ = BS2 + CS + D, and the

corresponding Ψn satisfy structure relations (15), AΨ′n =MnΨn +NnΨn−1, where (see
[22, Lemma 6]):
(i) in the PLn case,

A = x , B = −x2 − (λ− 2β0)x− αβ0 + ρ , C = x− α , D = 0 ,

Mn =

[
−x+ n+ α −B

0 n

]
, Nn = n(n+ α)I , n ≥ 1 ;

(ii) in the P Jn case,

A = 1− x2 , B = (−α− β + 1)x2 + (β0(α+ β) + β − α)x+ (α+ β + 1)ρ+ β0(α− β)− 1 ,

C = (α+ β)x+ α− β , D = 0 ,

Mn =

[
−(α+ β + n)x− (α− β)− αn −B

0 −nx− αn

]
, Nn = (−α2

n + 2νn + n)I , n ≥ 1 ,

where αn =
∑n

k=1 βk, νn =
∑n

1≤i<j≤n βiβj −
∑n

k=2 γk, n ≥ 1.

Under the Christoffel transformation (8), the modified Stieltjes function S̃ is given by
S̃(x) = (x− c)S(x)− 1. Thus, we have ÃS̃′ = B̃S̃2 + C̃S̃ + D̃, with

Ã(x) = (x− c)A , B̃ = B , C̃ = A+ 2B+ (x− c)C , D̃ = A+B+ (x− c)C + (x− c)2D .

The difference-differential equation (41) holds with the matrices M̃n, Ñn given by (42),
with the Sn, Tn given in (18).

Under the Geronimus transformation (10), the modified Stieltjes function S̃ is given

14
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by S̃(x) =
S(x)− S(c) +M

x− c
. Thus, we have ÃS̃′ = B̃S̃2 + C̃S̃ + D̃, with

Ã(x) = (x− c)A , B̃ = (x− c)2B , C̃ = −A+ 2(S(c)−M)(x− c)B + (x− c)C ,

D̃ = (S(c)−M)2B + (S(c)−M)C +D .

The difference-differential equation (41) holds with the matrices M̃n, Ñn given by (42),
with the Sn, Tn given in (28)–(29).
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